Skip Navigation
NCI Wiki New Account Help Tips
Skip to end of metadata
Go to start of metadata

Welcome to the CBIIT Speaker Series Wiki


The NCI Center for Biomedical Informatics and Information Technology (CBIIT) Speaker Series is a bi-weekly knowledge-sharing forum featuring speakers on topics of interest to the biomedical informatics and research communities. General topics to be discussed include but are not limited to novel experimental approaches in basic research that require innovative informatics solutions; general informatics methodologies for specific tasks such as natural language processing and data exchange/integration; novel software applications (proprietary or open source); standards; ontologies; open-source development projects; human/computer interactions; future trends in biomedical informatics research and development; and CBIIT/NCIP partnerships inside and outside NCI/NIH.

Speaker Series Guidelines for Speakers: Download Word document

Please refer to the Speaker Calendar below for upcoming speakers.

Presentations: Please visit our Speaker Series Videos page or our YouTube playlist Exit Disclaimer logo to view past speakers' presentations on video.

Location: 9609 Medical Center Drive, Rockville, Maryland 20850

Questions? Please email Eve Shalley at

RSS Feed:  You may subscribe to the "Notices" to the right, by using this RSS feed in your Feed Reader software.



An invitation: If you are interested in presenting your work to our diverse audience of informaticists; basic, translational, and clinical researchers; software developers; and others interested in exploring the uses of informatics in cancer research, contact Eve Shalley at or 240-276-5194.


Upcoming Speakers:

July 8: Dr. Georgia Tourassi, Oak Ridge National Laboratory

July 22: Ravi Madduri, University of Chicago

September 30: John Schnase, NASA

December 9: Ilya Shmulevich, Institute for Systems Biology

January 6, 2016: Deniz Kural, Seven Bridges Genomics

January 20, 2016: Gad Getz, Broad Institute


In the era of big data, effective use of increasingly larger, complex, and diverse datasets has become a critical challenge for healthcare transformation. To meet the challenge, the scientific community must deliver innovative and scalable frameworks for interpreting the influx of information to keep pace with rapid scientific developments. The mission of a national lab is to enable scientific innovations and transformative technical breakthroughs for grand challenges by leveraging unique resources. ORNL is taking on this "Big Data to Knowledge" challenge for health innovations via its Health Data Sciences Institute (HDSI). In this presentation Dr. Tourassi will discuss informatics innovations coordinated by the institute to expand and accelerate biomedical knowledge discovery. Dr. Tourassi will illustrate the value of these innovations with two cancer-related examples from precision medicine and population health. The first example will demonstrate how linking of heterogeneous information across The Cancer Genome Atlas (TCGA) can provide novel insights into cancer-specific mutations at the individual level that can then directly inform molecular epidemiology of specific tumor states. The second example will demonstrate the use of cyber-informatics to accelerate discoveries in environmental cancer epidemiology. Underlying the two applications is a powerful semantic reasoning framework built at ORNL that enables seamless hypotheses generation for exploratory research.

Session details...


Dr. Javed Khan, Deputy Chief of NCI's Genetics Branch and Senior Investigator and Head of the Oncogenomics Section, will discuss the following:

1. Success and Challenges of Treating Pediatric Cancers.

2. Biomarkers, Drivers, and Therapeutic Targets

3. Using first Generation Genomics to identify biologically relevant therapeutic targets

4. Next generation genomics of pediatric cancers

5. Tumor heterogeneity

6. Next Generation Therapeutics: Personalized Therapies and Immunogenomics

7. Enabling Precision Therapy Trials in CCR

Session details...

photo of Christopher Chute


The well-known phenomenon of "information explosion" has impacted virtually all areas of human enterprise, and healthcare has become no exception. While one might quibble whether more information is actually being created, there is no disagreement that vastly more information is being electronically captured and stored. Latent within the proliferation of such machine readable archives of information lays previously impractical metrics, capabilities for linkages and association, and ultimately new knowledge. The over-used moniker of "big data" is applied to the rise of vast, potentially-federated data sources, analytic methods for their interpretation, and emergent findings. Despite this non-precision, most observers agree that there is something new and different emergent in the opportunistic mining of disparate data on an unprecedented scale.

Examples of impressive inferences from big data abound in finance, marketing, education, social sciences, and economics. More focused, "big science" opportunities are self-evident in astronomy, physics, and arguably the discovery of the Higgs Boson (which really was inferred from perturbations observed across Exabytes of experimental particle-accelerator data). In biology and medicine the sweet spot has historically been in the human genome, where genotype-phenotype associations emerge from "genome-wide association studies" done at massive scale — more so in the present era of whole-genome sequencing.

The promise of best-evidence discovery, comparative effectiveness research, new outcomes analyses, adverse event discovery, and improved clinical care in general that might emerge from big-data methods applied to large, federated, clinical data repositories is intriguing. There is "gold in them hills," and the potential benefits of well-conducted data mining must not be lightly dismissed.

However, caution must dominate an otherwise unfettered analyses of clinical information, as the consequences of skewed, biased, spurious, or otherwise "wrong" answers can have serious adverse impact. While most of us are quite content to have a target answer appear "on the page" of a Google search result, somehow having the right answer "on the list" but not chosen for healthcare interventions may be interpreted as malpractice in some litigious countries — not to mention likely sub-optimal outcomes for a patient. Clinical decision support resources may recommend a spectrum of options to a clinician — who presumably has the responsibility of synthesizing such advice and selecting the optimal path, though few would argue that the amount of information and the complexity of their interactions have long ago exceeded the unaided human capacity for cognition, reliable processing, or well-balanced interpretation.

The importance of comparable and consistently represented clinical information, either at entry or through normalization to a canonical form, must remain as a necessary step before big-data methods can be meaningfully or safely applied to clinical data repositories.


Session details...

photo of Ronald Summers


The need for decision support systems in radiology is growing given the dramatic increase in imaging utilization, intensity and workload. Dr. Summers' laboratory at NIH focuses on the application of advanced image processing and machine learning techniques to provide decision support for radiology image interpretation. As a body radiologist and CT subspecialist, Dr. Summers has chosen to focus his research on the development of decision support for thoracoabdominal CT image interpretation.

In this talk, Dr. Summers will discuss his laboratory's approach to full automation of body CT interpretation. In the last three years, his laboratory has made substantial progress towards this goal. Topics will include fully-automated detection and segmentation of major body organs and their lesions, including spine and spine lesions and lymphadenopathy. Validation results will be presented. Dr. Summers will describe potential unrecognized benefits of fully-automated quantitation on routine body CT scans without the need for additional radiation exposure. He will also discuss the impact of advances in deep learning to radiology image analysis.

Session details...

Complete List of Update Posts

Speaker Calendar


    Customise the different types of events you'd like to manage in this calendar.


    Optionally, restrict who can view or add events to the team calendar.


    Grab the calendar's URL and email it to your team, or paste it on a page to embed the calendar.


    The calendar is ready to go! Click any day on the calendar to add an event or use the Add event button.




  • No labels