This applications authentication system has been updated Dec 7th, please report access problems to the Helpdesk at 301-496-4357.
Skip Navigation
NIH | National Cancer Institute | NCI Wiki   New Account Help Tips
Skip to end of metadata
Go to start of metadata

Welcome to the CBIIT Speaker Series Wiki

The NCI Center for Biomedical Informatics and Information Technology (CBIIT) Speaker Series presents talks from innovators in the research and informatics community. The biweekly presentations allow thought leaders to share their work and discuss trends across a diverse set of domains and interests. The goals of the Speaker Series are: to share leading edge research; to inform the community of new tools, trends, and ideas; to inspire innovation; and to provide a forum from which new collaborations can begin.

Speakers represent many different institutions, and the topics they address are wide-ranging. View a list of all past speakers, and view their presentations on our NCI CBIIT Speaker Series YouTube playlist!

For help accessing NCI CBIIT Speaker Series files, go to Help Downloading Files.

Location: 9609 Medical Center Drive, Rockville, Maryland 20850

Speaker Series Guidelines for Speakers: Download Word document

Questions or suggestions? If you have questions or would like to recommend a speaker, please email Eve Shalley at eve.shalley@nih.gov

Please refer to the Speaker Calendar below for upcoming speakers.

Notices

An invitation: If you are interested in presenting your work to our diverse audience of informaticists; basic, translational, and clinical researchers; software developers; and others interested in exploring the uses of informatics in cancer research, contact Eve Shalley at eve.shalley@nih.gov or 240-276-5194.

Upcoming Speakers:

March 15: Aviv Regev, MIT, Broad Institute

March 29: John Schnase, NASA

April 12: Joyce Niland, City of Hope Comprehensive Cancer Center & Samir Courdy, Huntsman Cancer Institute

April 26: Wei Wang, University of California, Los Angeles (UCLA)

May 10: Vivek Navale, National Institutes of Health

May 24: Brad Erickson & Eliot Siegel

SYNOPSIS:The cancer transcriptome is shaped by genetic changes, variation in gene transcription, mRNA processing, editing and stability, and the cancer microbiome. Deciphering this variation and understanding its implications on tumorigenesis requires sophisticated computational analyses. Most RNA-Seq analyses rely on methods that first map short reads to a reference genome, and then compare them to annotated transcripts or assemble them. However, this strategy can be limited when the cancer genome is substantially different than the reference or for detecting sequences from the cancer microbiome. "Assembly first" (de novo) methods that combine reads into transcripts without any mapping are a compelling alternative. The assembled transcriptome can then be used to identify mutations, splicing patterns, expression levels, tumor-associated microbes, and — if collected from single cells — characterize tumor heterogeneity. There is thus an enormous need for computationally efficient, accurate and user friendly tools for transcriptome reconstruction and analysis in cancer. In this talk, Dr. Regev will describe how the Trinity, a leading software for de novo RNA-Seq assembly, is used to understand exome expression in cancer research.

Session details...

Tina Hernandez-Boussard SYNOPSIS:

Prostate cancer is the most common malignancy in men and newly diagnosed men face complex treatment choices, each with different risks of acquired morbidities, including patient-centered outcomes (PCOs). Current government initiatives highlight the need to incorporate PCOs into healthcare quality metric evaluations and the widespread implementation of electronic health records (EHRs) provides opportunities to do so. However, efforts to assess quality metrics in EHRs have been limited because most relevant data are not reliably captured in structured formats. Instead they are buried as non-structured, free text recorded by clinicians. Leveraging the power of computational resources for processing the vast amount of medical information residing in EHRs, we achieve automation and precision in the evaluation of both process and outcome quality metrics, including metrics focused on PCOs.

To develop our approach, we first built a patient cohort using ICD-9/10 diagnosis codes to identify prostate cancer patients. Patients are confirmed in the California Cancer Registry, which returns tumor characteristics and treatment data on all patients with a confirmed cancer diagnosis, including complete historical record of disease pathology. Next we create novel ontological representations of quality metrics, many that are non-prostate specific. Each quality metric determines the target terms and concepts to extract from the EHRs. These terms may include diagnostic procedures and tests and their results, therapeutic procedures, and drugs. Terms are mapped to a standardized medical vocabulary (e.g., SNOMED or RxNorm), enabling us to represent the elements of a metric by a concept domain and its permissible values. The structured representation of the quality metric terms are used to create quality phenotypes, which are rules involving the temporal order of components of the quality metrics. Finally, we use data mining algorithms, including Natural Language Processing (NLP) technologies to parse the clinical narrative text and extract pertinent structured information. While we test our methodology in prostate cancer patients, these approaches are applicable to all cancer patients and are the basis of a learning healthcare system. This presentation will demonstrate the feasibility of using our methods to increase the usability of existing EHRs and enhance the efficiency and accuracy of quality measurement in cancer patients, including PCO measurements.

Session details...

Michael Liebman SYNOPSIS:

Significant research efforts and resources are being directed towards the development of methodologies and data to support the Precision Medicine and the Cancer Moonshot Initiatives and to utilize these as the basis for translational medicine. Most of these focus on the development and implementation of technology that integrates genomics into clinical practice and/or the development of new diagnostics and therapeutics. The success of these efforts may be hindered by a lack of appreciation of the complexities present in real world clinical practice, e.g., quality and adherence to clinical guidelines, and real world patients, e.g., co-morbidities and poly-pharmacy.  We have been developing and implementing system-based modeling approaches to facilitate the evaluation of these critical factors to enhance the goal of delivering the right care to the right patient.

The approach that we have developed, in collaboration with the Epidemiology and Health Research Department at the National Research Council of Italy (CNR-Pisa) involves the development of a Disease Process Model and its instantiation as an ontology implemented in a web-based platform. This disease-agnostic model has been successfully applied in drug and diagnostic development, clinical trial design (and evaluation), risk evaluation and clinical decision support applications.  An additional critical component of this modeling approach incorporates the patient’s underlying physiological development and the reality that risk, particularly to lifestyle and environmental factors, will vary throughout a patient’s lifetime and stage of development. This presentation will address the gap between unmet clinical need and unstated, unmet clinical and provide examples from our work in breast cancer, pediatric Acute Respiratory Distress Syndrome (pARDS) and heart failure. 

Session details...

Guoqin Yu SYNOPSIS:

Human-associated microbial communities (microbiota) play an essential role in immunity, health, and disease. Understanding human microbiota and its genomes (microbiome) will increase the possibility of various applications including personalized medicine and cancer immune therapy. Dr. Yu will talk about her research in microbiota, exposures, and lung cancer. She will also discuss the challenges of microbiota research.

Session details...

Complete List of Update Posts

Speaker Calendar

  1. EDIT THE CALENDAR

    Customise the different types of events you'd like to manage in this calendar.

    #legIndex/#totalLegs
  2. RESTRICT THE CALENDAR

    Optionally, restrict who can view or add events to the team calendar.

    #legIndex/#totalLegs
  3. SHARE WITH YOUR TEAM

    Grab the calendar's URL and email it to your team, or paste it on a page to embed the calendar.

    #legIndex/#totalLegs
  4. ADD AN EVENT

    The calendar is ready to go! Click any day on the calendar to add an event or use the Add event button.

    #legIndex/#totalLegs

 

 

  • No labels