NIH | National Cancer Institute | NCI Wiki   New Account Help Tips
Page tree
Skip to end of metadata
Go to start of metadata

  ISA-TAB-Nano Curated Examples (ISA-TAB-Nano Version 1.2)

The following ISA-TAB-Nano curated examples are using Version 1.2 of the ISA-TAB-Nano specification.

  1. Zou P, Helson L, Maitra A, Stern ST, McNeil SE. Polymeric Curcumin Nanoparticle Pharmacokinetics and Metabolism in Bile Duct Cannulated Rats. Mol Pharm 10:1977-1987 (2013).


      2. Lo ST, Stern S, Clogston JD, Zheng J, Adiseshaiah PP, Dobrovolskaia M, Lim J, Patri AK, Sun X, Simanek EE. Biological assessment of triazine dendrimer: toxicological profiles, solution behavior, biodistribution,
        drug release and efficacy in a PEGylated, paclitaxel construct. Mol Pharm 7:993-1006 (2010).


      3. Efthimiadou EK, Tapeinos C, Chatzipavlidis A, Boukos N, Fragogeorgi E, Palamaris L, Loudos G, Kordas G. Dynamic in vivo imaging of dual-triggered microspheres for sustained release applications: synthesis, characterization and cytotoxicity study Int J Pharm. 461:54-63 (2014).


    4. Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5:209ra152 (2013).


    5. Wen CY, Wu LL, Zhang ZL, Liu YL, Wei SZ, Hu J, Tang M, Sun EZ, Gong YP, Yu J, Pang DW. Quick-response magnetic nanospheres for rapid, efficient capture and sensitive detection of circulating tumor cells. ACS Nano. 8:941-9 (2014).


   6. Han H, Davis ME. Targeted nanoparticles assembled via complexation of boronic-acid-containing  targeting moieties to diol-containing polymers. Bioconjug Chem. 24:669-77 (2013). Han, Davis ME. Single-antibody, targeted nanoparticle delivery of camptothecin. Mol Pharm. 10:2558-67 (2013).


   7. Gaur S, Wang Y, Kretzner L, Chen L, Yen T, Wu X, Yuan YC, Davis M, Yen Y. Pharmacodynamic and pharmacogenomic study of the nanoparticle conjugate of camptothecin CRLX101 for the treatment of cancer.   Nanomedicine 10:1477-1486 (2014).


  8. Guan YY, Luan X, Xu JR, Liu YR, Lu Q, Wang C, Liu HJ, Gao YG, Chen HZ, Fang C. Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapyof melanoma lung metastasis. Biomaterials 35:3060-3070 (2014).


 9. Perica K, Tu A, Richter A, Bieler JG, Edidin M, Schneck JP. Magnetic-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 8:2252-2260.


10. Tang L, Yang X, Yin Q, Cai K, Wang H, Chaudhury I, Yao C, Zhou Q, Kwon M, Hartman JA, Dobrucki IT, Dobrucki LW, Borst LB, Lezmi S, Helferich WG, Ferguson AL, Fan TM, Cheng J. Investigating the optimal size of anticancer      nanomedicine Proc Natl Acad Sci U S A 111:15344-9 (2014).


11.  Ayala-Orozco C, Urban C, Knight MW, Urban AS, Neumann O, Bishnoi SW, Mukherjee S, Goodman AM, Charron H, Mitchell T, Shea M, Roy R, Nanda S, Schiff R, Halas NJ, Joshi A. Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano. 8:6372-6381 (2014).


12. Sykes EA, Chen J, Zheng G, Chan WC Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACSNano 8:5698-5706 (2014).


13. Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z, Zhang L, Yan J, Miller D, Zhang HG. Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver TherapeuticAgents to Inflammatory Tumor Sites. Cancer Res 75:2520-2529 (2015).


14. Reuter KG, Perry JL, Kim D, Luft JC, Liu R, DeSimone JM. Targeted PRINT Hydrogels: The Role of Nanoparticle Size and Ligand Density on Cell Association, Biodistribution, and Tumor Accumulation. Nano Lett. 15:6371-6378 (2015)


15.  Binzel DW, Shu Y, Li H, Sun M, Zhang Q, Shu D, Guo B, Guo P. Specific Delivery of MiRNA for High Efficient Inhibition of Prostate Cancer by RNA Nanotechnology. Mol Ther. 24:1267-77 (2016).


16. Senzer N, Nemunaitis J, Nemunaitis D, Bedell C, Edelman G, Barve M, Nunan R, Pirollo KF, Rait A, Chang EH. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 21:1096-1103 (2013).


17. Pirollo KF, Nemunaitis J, Leung PK, Nunan R, Adams J, Chang EH. Safety and Efficacy in Advanced Solid Tumors of a Targeted Nanocomplex Carrying the p53 Gene Used in Combination with Docetaxel: A Phase 1b Study. Mol Ther        24:1697-1706 (2016).


18. Siefker-Radtke A, Zhang XQ, Guo CC, Shen Y, Pirollo KF, Sabir S, Leung C, Leong-Wu C, Ling CM, Chang EH, Millikan RE, Benedict WF. A Phase l Study of a Tumor-targeted Systemic Nanodelivery System, SGT-94, in Genitourinary Cancers. Mol Ther 24:1484-1491 (2016).


19. Le DHT, Lee KL, Shukla S, Commandeur U, Steinmetz NF Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale 9:2348-2357 (2017).


20. He Z, Wan X, Schulz A, Bludau H, Dobrovolskaia MA, Stern ST, Montgomery SA, Yuan H, Li Z, Alakhova D,  Sokolsky M, Darr DB, Perou CM, Jordan R, Luxenhofer R, Kabanov AV. A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials 101:296-309 (2016).


21. Shmeeda H, Amitay Y, Gorin J, Tzemach D, Mak L, Stern ST, Barenholz Y, Gabizon A Coencapsulation of alendronate and doxorubicin in pegylated liposomes: a novel formulation for chemoimmunotherapy of cancer. J Drug Target. 24:878-889 (2016).


22. Kang T, Zhu Q, Wei D, Feng J, Yao J, Jiang T, Song Q, Wei X, Chen H, Gao X, Chen J Nanoparticles Coated with Neutrophil Membranes Can Effectively Treat Cancer Metastasis ACS Nano 11:1397-1411 (2017).


23. Chai Z, Hu X, Wei X, Zhan C, Lu L, Jiang K, Su B, Ruan H, Ran D, Fang RH, Zhang L, Lu W. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J Control Release. 264:102-111 (2017).


24. Bressler EM, Kim J, Shmueli RB, Mirando AC, Bazzazi H, Lee E, Popel AS, Pandey NB, Green JJ. Biomimetic peptide display from a polymeric nanoparticle surface for targeting and antitumor activity to human triple-negative breast cancer cells. J Biomed Mater Res A. 2018 (in press)


25. Nascimento AV, Singh A, Bousbaa H, Ferreira D, Sarmento B, Amiji MM. Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles Acta Biomat 47:71-80 (2017).

2018 06 26

26. Lu YJ, Lin PY, Huang PH, Kuo CY, Shalumon KT, Chen MY, Chen JP  Magnetic Graphene Oxide for Dual Targeted Delivery of Doxorubicin and Photothermal Therapy Nanomaterials 8:193 (2018).

2018 08 10

27. Vogus DR, Evans MA, Pusuluri A, Barajas A, Zhang M, Krishnan V, Nowak M, Menegatti S, Helgeson ME,  Squires TM, Mitragotri S. A hyaluronic acid conjugate engineered to synergistically and sequentially delivery gemcitabine and doxorubicin to treat triple negative breast cancer. J Control Release 267:191-202 (2017).

2019 04 04

28. Pathak RKBasu UAhmad ASarkar SKumar ASurnar BAnsari SWilczek KIvan MEMarples BKolishetti NDhar S.  A designer bow-tie combination therapeutic platform: An approach to resistant cancer treatment by simultaneous delivery of cytotoxic and anti-inflammatory agents and radiation. Biomaterials.  187:117-129 (2018).

2019 04 04

ISA-TAB-Nano Curated Examples (ISA-TAB-Nano Version 1.1)

The following ISA-TAB-Nano curated examples are using Version 1.1 of the ISA-TAB-Nano specification.

1.  Decuzzi P, Godin B, Tanaka T,  Lee S.-Y, Chiappini C, Liu X, Ferrari M. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141:320-327 (2010).


2. Park J, Wrzesinski SH, Stern E, Look M, Criscione J, Ragheb R, Jay SM, Demento SL, Agawu A, Licona Limon P, Ferrandino AF, Gonzalez D, Habermann A, Flavell RA, Fahmy TM.
Combination delivery of TGF-beta inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater. 11:895-905 (2012).


3. Khatun Z, Nurunnabi M, Reeck GR, Cho KJ, Lee YK. Oral delivery of taurocholic acid linked heparin-docetaxel conjugates for cancer therapy. J Control Release 170:74-82 (2013).


4. Zaric M, Lyubomska O, Touzelet O, Poux C, Al-Zahrani S, Fay F, Wallace L, Terhorst D, Malissen B, Henri S, Power UF, Scott CJ, Donnelly RF, Kissenpfennig A. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D,L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano 7:2042-2055 (2013).


5. Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, Nie S, Mao H, Yang L. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano 7:2078-2089  (2013).


6. Ahn RW, Chen F, Chen H, Stern ST, Clogston JD, Patri AK, Raja MR, Swindell EP, Parimi V, Cryns VL, O'Halloran TV. A novel nanoparticulate formulation of arsenic trioxide with enhanced therapeutic efficacy in a murine model of breast cancer. Clin Cancer Res 16:3607-17 (2010).


ISA-TAB-Nano Curated Examples (ISA-TAB-Nano Version 1.0)

The following ISA-TAB-Nano curated examples are using Version 1.0 of the ISA-TAB-Nano specification.

1.  Zhang G, Liao Y, Baker I
    Surface engineering of core/shell iron/iron oxide nanoparticles from microemulsions for hyperthermia.
    Mater Sci Eng C 30:92-97 (2010).


2.  Decuzzi P, Godin B, Tanaka T,  Lee S.-Y, Chiappini C, Liu X, Ferrari M.
    Size and shape effects in the biodistribution of intravascularly injected particles.
   J Control Release 141:320-327 (2010).


3. Kersey FR, Merkel TJ, Perry JL, Napier ME, DeSimone JM.

     Effect of Aspect Ratio and Deformability on Nanoparticle Extravasation through Nanopores.
     Langmuir 28:8733-8781 (2012).


4. Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T, De Witt D, Figa M, Figueiredo M, Horhota A, Low S, McDonnell K, Peeke E, Retnarajan B, Sabnis A, Schnipper E, Song JJ, Song YH, Summa J, Tompsett D, Troiano G, Van Geen Hoven T, Wright J, LoRusso P, Kantoff PW, Bander NH, Sweeney C, Farokhzad OC, Langer R, Zale S. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4:128ra39 (2012).


5. Galloway JF, Winter A, Lee KH, Park JH, Dvoracek CM, Devreotes P, Searson PC.  Quantitative characterization of the lipid encapsulation of quantum dots for biomedical applications. Nanomedicine 8:1190-1199 (2012).


6. Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, Natan MJ, Gambhir SS. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci U S A 106:13511-13516 (2009).


7. Ashley CE, Carnes EC, Epler KE, Padilla DP, Phillips GK, Castillo RE, Wilkinson DC, Wilkinson BS, Burgard CA, Kalinich RM, Townson JL, Chackerian B, Willman CL, Peabody DS, Wharton W, Brinker CJ. Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. ACS Nano 6:2174-2188 (2012).


8. Jokerst JV, Cole AJ, Van de Sompel D, Gambhir SS.  Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance  via Raman imaging in living mice. ACS Nano 6:10366-10377 (2012).


9. Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan CW, Mellinghoff IK, Holland EC, Gambhir SS. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18:829-834 (2012). 


10.  Thakor AS, Luong R, Paulmurugan R, Lin FI, Kempen P, Zavaleta C, Chu P, Massoud TF, Sinclair R, Gambhir SS. The fate and toxicity of Raman-active silica-gold nanoparticles in mice.
Sci Transl Med 3:79ra33 (2011).


11. Zavaleta CL, Hartman KB, Miao Z, James ML, Kempen P, Thakor AS, Nielsen CH, Sinclair R, Cheng Z, Gambhir SS. Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging. Small 7:2232-2240 (2011).

2013-08-06 STANFORD_UC-DK-CZavaletaSmall2011.zi

  • No labels