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Diseases associated with nanoparticles
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Why computational modelling?

« Experimental testing of chemicals for physicochemical,
toxicological and environmental properties is time-consuming and
expensive ~30,000 nano products by 2015

* Increasing pressure to reduce or
discontinue animal testing.

« Computational methods like QSAR
are becoming increasingly useful
and reliable

» Such tools will help regulators make
decisions about the risk nano-
materials may pose

o Computational modelling will complement, not replace the need
for experimental assessment of the biological effects of
nanoparticles
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Problems we face — can we do anything?

Potential
detrimental
effects on
organisms

Nanoparticle:
intrinsic physical
and molecular
properties

7

Regime of QSAR
methods

Cell-based experiments
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COST nanotoxicity modelling workshop

T EEE CccosE

EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY

COST Exploratory Workshop
Quantitative Nanostructure Toxicity Relationships (QNTR)

From Sunday 3 April to Wednesday 6 April 2011
The Vaeshartelt Castle (near Maastricht), The Netherlands

Defining the biologically relevant entity (particle plus corona).

Choosing the right assays (in vitro that indicate in vivo).

Modelling of complex nanomaterials-biology interactions (descriptors).

A roadmap for the future (collaboration, ontologies, databases, funds).

Winkler et al. In silico strategies for safe management of manufactured
nanomaterials, Toxicol. 2012 ASAP.
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Quantitative structure-activity modelling

Quantitative structure-activity relationships modelling (QSAR) was
developed by Hansch and Fujita in the early 1960s to model
physicochemical and biological properties of drugs.

In essence the method is deceptively simple. It is a supervised
modelling method that describes the complex relationships between the
molecular (microscopic) and physicochemical properties of molecules
and their biological (macroscopic) effects

Biological response (BR) = F (molecular properties)

The method involves finding relevant mathematical descriptions
(descriptors) for the microscopic (molecular) properties and the optimum
form for the (nonlinear) function F g, x h

uptake X Jmechanism -

It is essentially a kind of complex pattern recognition process
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... and beware of correlation versus causation

Global Average Temperature Vs. Number of Pirates
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Main steps in QSAR modelling

QSAR is a supervised learning method that needs a data set of
materials and their biological properties. There are four steps...

1 Generate descriptors — this involves converting the molecular
structure of the materials into a set of numbers that capture their
microscopic and/or physicochemical properties in a relevant way.
This is a major research need for nanoscience

2 Select a sparse subset of descriptors in a context-dependent way
(that is choosing a small subset of descriptors that have the most
Influence on the biological properties of the compounds)

3 Deduce the potentially complex and nonlinear relationship between
the descriptors and the biological response(s)

4 Validate the model: robustness, predictivity, domain of applicability

The model can then be used to estimate the biological properties of
new molecules where these data are not known
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Finding structure-activity relationships

Slide courtesy of Prof. Alex Tropsha, UNC

There are many methods of varying sophistication

Simple linear statistical regression methods like multiple linear
regression

BR=a+ bx1l+cx2+...

Nonlinear regression methods using polynomials or kernel functions
(e.g. Gaussians)

BR=a+bx+cx2+dx3+...
BR=a+bd, +cd, +dd; + ...

Nonlinear machine learning methods like neural nets
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Modelling complex, nonlinear properties

Slide courtesy of Prof. Alex Tropsha, UNC

* Linear methods (e.g. multiple linear regression) generate good
models.

 However, the structure-activity relationship is often nonlinear.

« Polynomial regression methods, nonlinear kernel methods, and
neural network are methods of choice for QSAR modelling.

* Neural networks are useful because they are nonlinear universal
approximators - can generate poor models if care not taken.

* Neural networks can also be overtrained, becoming better and better
at predicting (memorizing) training data, and worse at predicting new
data. Techniques exist to avoid overtraining.

« Bayesian regularized neural nets automatically choose the optimum
complexity of a QSAR model — achieving the best balance between
bias and variance
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Expectation maximization

Figure courtesy of Prof. Alex Tropsha, UNC
Optimum QSAR Feature Selection using Sparse Bayesian Methods, Burden, Winkler QSAR Comb Sci. (2009) 28, 645

It is often important to choose a small number of variables that are most relevant to the
problem at hand. We used sparse Bayesian feature selection methods based on an
expectation (or likelihood) maximization(EM) algorithm.

Regular Multiple Linear Regression( MLR) uses a Gaussian prior

Ny Ny
p(w| a):H%exp(—awf):(%j exp(—a || w, ||,) " v ”1: Zl v, |
i

i=1

Where the w are the MLR coefficients.

Multiple Linear Regression with expectation maximisation (MLREM)? uses a Laplacian
prior whose sparsity properties are well known

Ny Ny
a a
pwla)] Izexp(—a | w; I)=| 5] exp(—a || w;|l,)
i=1

We have modified this to provide tuneable sparsity to obtain a minimal number of
descriptors consistent with desired performance
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Optimal self-pruning neural network

An optimal self-pruning neural network that performs nonlinear descriptor selection for QSAR, Burden, Winkler,
QSAR Comb. Sci. (2009) 28, 1092.

Again using a Laplacian prior in a backward propagation artificial neural network
(BPNN) we wish to minimise.

M(W)=P +ally =Y~ [V +ayw,

By assigning non-informative priors to a and B and integrating them out we are left
with maximising the loss function L.

LzéNDLogED + Ny LogE,,

which was introduced into our Bayesian Regularised Artificial Neural Network
algorithm (BRANN)?! creating BRANNLP.

Unnecessary weights are driven to zero and if all the weights associated with a
particular descriptor are driven to zero then the descriptor is discounted in the model.
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Optimal self-pruning neural network and nonlinear
descriptor selection

Slide courtesy of Prof. Alex Tropsha, UNC
Robust QSAR Models Using Bayesian Regularized Artificial Neural Networks, Burden, Winkler, J. Med. Chem., 42; 3183 (1999).
Optimum QSAR Feature Selection using Sparse Bayesian Methods, Burden, Winkler, QSAR Comb Sci. 28, 645, (2009)

Again using a Laplacian prior in a regularized backpropagation artificial neural
network (BPNN) we wish to minimise.

M(w)=PE + ok, =ﬁi(yi—f (xi))2+aiwf

By assigning non-informative priors to a and f and integrating them out we are
left with maximising the loss function L .

L=%NDLogED + N, LogE,

The Laplacian prior (LP) was introduced into our Bayesian Regularised Atrtificial
Neural Network algorithm (BRANN)! creating BRANNLP.

Unnecessary weights are driven to zero and if all the weights associated with a
particular descriptor are driven to zero then the descriptor is discounted in the
model.
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Feature selection using expectation maximization

Slide courtesy of Prof. Alex Tropsha, UNC

These sparse Bayesian feature selection methods can very effectively deliver a
relatively small number of relevant features very efficiently.

Figeuiredo, IEEE Trans Patt Anal Mach Intell, 25, 1150 (2003)
Burden, Winkler, QSAR Comb Sci. 28, 645-653, (2009)
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How well does it work? QNTR examples

MIO nanoparticle induced apoptosis (Shaw/Weissleder,
Harvard)

MIO nanoparticle cellular uptake (Shaw/Weissleder,
Harvard)

Carbon nanotube protein binding and toxicity (Yan, St
Jude’s)

In vitro-in vivo models

In silico modelling of biological effects of nanoparticles | Dave Winkler



Perturbational profiling of nanomaterial

biologic activity

Stanley Y. Shaw**, Elizabeth C. Westly*, Mikael J. Pittet's, Aravind Subramanian®, Stuart L. Schreiber*1l,

and Ralph Weissleders!

*Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142; *Center for Systems Biology, *Cardiovascular Research Center, and SCenter

for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Bostor

MA 021124 and THoward

Hughes Medical Institute and Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138

Contributed by Stuart L. Schraiber, March 21, 2008 (sent for review February 24, 2008)

Qur understanding of the biologic effects (induding toxicity) of
nanomaterials is incomplete. In vivo animal studies remain the gold
standard; however, widespread testing remains impractical, and the
development of in vitro assays that correlate with in vivo activity has
Here, we d the feasibility of analy

m vitro nanolmmﬂnl naMty ina gﬂnernllzd:le systematk fashion.
We I manner, using
multiple cell types and multiple assays that reflect different aspects of
cellular physiology. Hierarchical clustering of these data identifies
nanomaterials with similar pattems of biologic activity across a broad
sampling of cellular contexts, as opposed to extrapolating from
results of a single in witro assay. We show that this approach yields
robust and detailed structure-activity relationships. Furthermore, a
subset of nanoparticles were tested in mice, and nanoparticles with
similar activity profiles in wvitro exert similar effects on monocyte
number in vivo. These data suggest a strategy of multidimensional
characterization of nanomaterials in vitro that can inform the design
of novel nanomaterials and guide studies of in vivo activity.

cluster analysis | molecular imaging | nanopartides

'he expanding use of nanomaterials has spurred interest in

defining their biologic effects (1). Traditionally, the in vive
biologic and toxic effects of nanomaterials have been revealed
via animal studies. For instance, single-wall carbon nanotubes
cause pulmonary granulomas upon intratracheal instillation in
rats and mice (2, 3). Although extremely informative, animal
studies are costly and labor-intensive and thus ill-suited to
systematically explore the sheer number of potential nanoma-
terial variables that can influence in vivo activity (including size,
core material, coating, surface functionalization, and nanoscale

says, in multiple cell types, and at multiple doses. Each nano-
material (NM) can then be characterized by a profile P(NM) =
{Zy}, in which each feature is the normalized assay result Zy,
that results when the nanomaterial is added at dose i to cell type
j. and its effect is measured using assay k. Each profile is thus
composed of (i % j % k) features. This profile samples a much
broader swath of biology than is accessible by characterizing a
material in a single cell type and using a single phenotype.
Clustering methods can then classify nanomaterials into groups
based on similarities in their profiles (i.e., based on similarities
in their patterns of biologic effects in many different cellular
contexts). This approach is analogous to the use of gene expres-
sion data to discover novel classifications among tumor samples
(7) but with cell-based physiologic measurements in place of
levels of gene expression. Furthermore, the use of multiple cell
lines (vs. a single cell line) has yielded nowel insights into
mechanisms of anticancer drug action and resistance (8, 9).

Because the unit of comparison among nanomaterials is a profile
that reflects multiple cellular assays and cell types, the goal of this
analysis is not to extrapolate from the results of a particular in vire
assay to a specific in vivo phenotype. Rather, the goal is to analyze
the broad patterns of activity of the nanomaterials relative to one
another, and identify nanomaterials that cause similar biologic
effects; one can then test whether nanomaterials with similar
activity in vifro also behave similarly in vivo.

As a proof-of-concept for this approach, we evaluated 50 differ-
ent nanomaterials at four different doses in four cell types, using
four physiologic assays. We demonstrate that this high-
dimensionality analysis results in different relationships among
nanoparticles compared with those ascertained by more limited
data subsets. The data also reveal how alterations in nanomaterial

Stanley Shaw Mass General

Hospital, Boston
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Examples of QNTR modelling

ARTICLES

. Cell-specific targeting of nanoparticles by multivalent

attachment of small molecules

Ralph Weissleder', Kimberly Kelly'?, Eric Yi Sun'”, Timur Shtatland' & Lee Josephson'

Nanomaterials with precise have P I for use in P Here we
investigate whether multivalent attach t of small molecules can i specific binding affinity and reveal new biological
properties of such terials. We describe the parallel synthesis of a library comprising 146 ticles decorated with
different synthetic small molecules. Using fl t ti ticles, we rapidly d me library againsi different
cell lines and discovered a series of nanoparticles with high specificity for endothelial cells, activated human or

pancreatic cancer cells. Hits from the last-mentioned screen were shown to target pancreatic cancer in vivo. The method and

described materials could facilitate of

detecting distinct cellular states and tatgeihg specific cell types.

for such as differentiating cell lines,

One of the emerging goals of nanotechnology is to functionalize inert
and biocompatible materials to impart precise biobgical functions.
Several novel materials have recently been described for diagnostic
or leapcunc use!?, mdn.dmg quantum dots*4, polymers™® and
. Considerable effort has been
dlmed toward rational surfaoe modlﬁcanans and coatings to modu-
]ane p]larmamhnenc pmpemes (e.g. blmd half-life, elimination and
dation), toxicity, icity and efficient targeting.
Targelmg has generally been achieved by conjugating nanoparticle
surfaces to antibodies, Although this approach has succeeded for
in vitro sensing' ™2, its in vivo application has proved more challeng-
ing because of cost, limited shelf life, regulatory hurdles and patenna]
mmunogenicity after repeat injections of such prep

cent

ials that discriminate among distinct cell types, or among
different physiological states of a given cell type.

RESULTS

Synthesis of nanoparticle library

The first step towards creation of the nanoparticle library was w

identify biologically and chemically suitable nanoparticles that could

be detected by magnetic and ﬂmrement means and could be chemi-

cally modified. We used mag icles™19 ag

starting material because such preparations can be made with high

(R2 > 30 mMsec™") magnetic relaxivity, because related materiak are

biocompatible and in clinical use', and because aminated base
ials facilitate conjugation of small molecules through sulfhydryl,

cent

nother targeting approach with promnsmg initial results mva}w:s

carboxyl, amine and anh‘;'dride chemistries (Fig. le).




MIO nanoparticle induced apoptosis

Shaw et al. tested 51 coated nanoparticles in-vitro in 4 cell lines
using 4 assay types at 4 concentrations (51x64 data matrix). Carried
out ~24,000 experiments with replicates and controls.

edextran coated cross-linked iron oxide (CLIO)-based (23 NPs)

epolymer coated pseudocaged nanoparticle (PNP)-based (19 NPs)

edextran coated monocrystalline iron oxide nanoparticle (MION)-based (4 NPs)
equantum dot-based with a CdSe core, a ZnS shell, and a polymer coating (3 NPs)

*two other iron-based MNPs: Feridex IV (approved for in vivo imaging) and Ferrum
Hausmann (approved for iron supplementation)

Shaw et al. Perturbational profiling of nanomaterial biologic activity. PNAS, 2008, 105,
7387-7392
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MIO nanoparticle induced apoptosis

Shaw et al. Perturbational profiling of nanomaterial biologic activity. PNAS, 2008, 105, 7387-7392

4 cell lines x 4 assays x 4 concentrations

Cell Lines: Vascular cells (endothelial), Vascular cells (smooth
muscle cells), Monocytes, Hepatocytes.

*Assays: ATP content, Reducing equivalents, Caspase-mediated
apoptosis, Mitochondrial membrane potential.

eConcentrations: 0.01, 0.03, 0.1, 0.3 mg/ml Fe for iron-based
nanoparticles
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Only 3 of 16 cell/assays contain signal

Measurable SAR

No SAR

Z-score

Nanoparticle concentration

Rinlnniral reennnea

Frank Burden Nanoparticle concentration
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Surprisingly simple QNTR model explains
data

BR = 2.26(+0.72)-10.73(+1.05) I..,0:—5.57(+0.98)

Idextran —-3.53 (i0'54) Isurf.chg 5
. 5 []

ritrain = 0.79, r?,., = 0.90, SEE = 2.8, SEP= 2.9 £, .
% (X ] A
%-10 [ ]

.. ) 3 cake %

lee203/ ldextrans and Iy, che are indicator varlalgles forthe {; i g

identity of the core materials, surface coating, and

charge of the surface functionalizing groups (+, -, or

neutral). T s w3 T T w

Observed value of apoptosis (BR)

However, we need to include more nanoparticle core
and surface functionality to generate models with
greater generality
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MIO nanoparticle cellular uptake

Weissleder et al. (Nat. Biotechnol., 2005, 23 (11), 1418-1423) investigated
whether the multivalent attachment of small organic molecules on a same NP can
modify its binding affinity to certain cells. 109 NPs with same core (CLIO) but
different compounds bound to surface.

O PaCa2 PaCa2: Pancreatic cancer cell
. ;iABZSF HUVEC: human umbilical vein endothelial cell
RestMph U937: Macrophage cell line
GMCSF: Activated primary human macrophages
RestMph: Resting primary human macrophages

Unlike the other cell lines, the
PaCa2 pancreatic cancer cells
and HUVEC cells showed
diverse cellular uptakes for

0 50 100 ) different nanoparticles.
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109 NP with different chemical surface

Presentation title | Presenter name | Page 24 %




CLIO — cross-linked iron oxide core

4
\\\‘\ b /

A

FITC (fluorescein
7 isothiocyanate)

Small organic
compounds
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Uptake SAR of functionalized nanoparticles
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QNTR models of nanoparticle uptake

Cell Type Model Descriptors 17 SEE(scaled) ¢’ SEP(scaled)

HUVEC MLREM 11 0.74 0.13 0.63 0.14
BRANNGP 11 0.70 0.11 0.66 0.13

PaCa2 MLREM 19 0.76  0.10 0.79 0.13
BRANNGP 19 0.77 0.07 0.54 0.14

U937 MLREM 7 042 0.11 0.25 0.14

GMCSF Mph MLREM 15 0.59 0.10 0.02 0.44

RestMph MLREM 16 043 0.13 0.001 0.43

Only two cell types have uptake that is sensitive to the surface chemistry. The
macrophages and macro-phage-like cell lines do not take up nanoparticles in a
manner that is modulated by the surface functionalization. As these are ‘universal
phagocytes’ perhaps this is not unexpected
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QNTR models of nanoparticle uptake
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Performance of PaCa2 model for training set (left) and test set
(right). Each point represents a different surface-modified
nanoparticle.
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Uptake on CLIO nanoparticles by

macrophages
. 0.04 -
'g - Uptake increases exponentially with
& nanoparticle size. Zeta potential in
S 002 biological fluids is usually small and
.5 0.0 . negative.
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Uptake on CLIO nanoparticles by PaCa cells

Many types of nanoparticles are designed primarily to
image tumours by preferential accumulation or cell
specific targeting. Higher uptake by PaCa cells is therefore
not unexpected

Swiss Med Wkly. 2010;140:w13081

In silico modelling of biological effects of nanoparticles | Dave Winkler



How well does it work? QNTR examples

MIO nanoparticle induced apoptosis (Shaw/Weissleder,
Harvard)

MIO nanoparticle cellular uptake (Shaw/Weissleder,
Harvard)

Carbon nanotube protein binding and toxicity (Yan, St
Judes)

In vitro-in vivo models

Bing Yan St Jude’s
Hospital, Memphis now at
Shandong University
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Synthesis of functionalized nanoparticles

i
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Synthesis of functionalized nanoparticles

M HB Binding
M CA Binding
B CT Binding

MW BSA Binding

Zhou et al, Nano Lett. 3, 859 (2008)
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Modelling of functionalized nanoparticles

 Asetof 77 ‘physically interpretable’ descriptors was computed
for each structure using ADRIANA and DRAGON.

e These were used with CSIRO_SM_BioModeller to construct linear
(MLREM) and non-linear (BRANNGP and BRANNLP) models.

 The training set (selected by clustering) had 67 molecules while
the test set contained 16 molecules.

e The protein adsorption data was modelled as the logarithm of
the ratio of the fluorescence intensities of the functionalized
MWNT to that of the pristine one.

e Zhou et al, Nano Lett. 3, 859 (2008)
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Haemoglobin QNTR model

Training Set

15

Test Set

15

10| 10 b

05 |- 05 |

3 3
T ool T ool SEE = 0.082
r? train = 0.71
-as5 | —a5| SEP =0.093
r’ test = 0.69
% o5 50 o5 10 15 Lo s 50 o5 10 15
Measured Measured

Binding of functionalized nanotubes to haemoglobin, data set split
80:20% into training set used to build model and test set used to
estimate prediction accuracy. Binding data logit transformed.

Zhou et al, Nano Lett. 3, 859 (2008)
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Carbonic anhydrase QNTR model

Training Set Test Set

0.8

0.8

06 06

04 04 -

2 2 SEE =0.156
r2 train = 0.55
wl SEP = 0.157
r2 test = 0.59
—D.4 -0.2 0.0 Meaiflred 04 0.6 0.8 —p.4 —0.2 0.0 Meaﬂsjlred 04 0.6 08

Binding of functionalized nanotubes to carbonic anhydrase, data
set split 80:20% into training set used to build model and test set

used to estimate prediction accuracy. Binding data logit
transformed.

Zhou et al, Nano Lett. 3, 859 (2008)
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Chymotrypsin QNTR model

Training Set

0.8

0.8

Test Set

06 06 -

04 04

T T
E 02 - E 02 | SEE = 0131
0 @ .
& & r? train = 0.61
0.0 0o | SEP = 0146
r’ test = 0.73
0.2 0.2
AT 50 52 54 06 08 T % a0 02 04 G 08
Measured Measured

Binding of functionalized nanotubes to chymotrypsin, data set split
80:20% into training set used to build model and test set used to
estimate prediction accuracy. Binding data logit transformed.

Zhou et al, Nano Lett. 3, 859 (2008)
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Modelling of functionalized nanoparticles

Table 1. Statistics for the best QSPR models for the binding of proteins to the f-

MWCNTs
Protein n Number of descriptors 1’ SEE
Hemoglobin 2 12 0.71 0.08
Carbonic anhydrase 2 10 0.58 0.14
Chymotrypsin 3 14 0.68 0.11
BSA 2 6 0.21 0.16

N is the number of nodes in neural network model, r* is the squared correlation coefficient

and SEE is the standard error of estimation.
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How well does it work? QNTR
examples

MIO nanoparticle induced apoptosis (Shaw/Weissleder,
Harvard)

MIO nanoparticle cellular uptake (Shaw/Weissleder,
Harvard)

Gold nanoparticle AChE inhibition and non-specific protein
binding(Yan, St Judes)

Carbon nanotube protein binding and toxicity (Yan, St
Judes)

In vitro-in vivo models
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Predicting in vivo toxicity from in vitro assay

S. Lee et al. / Toxicology and Applied Pharmacology 246 (2010) 38—48

(a)

logVivo

logVivo

Predicted values (model #22)
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What can QSAR/QNTR not do?

 Replace the need for experimental measurement. Models are
synergistic with measurements.

e Generate good predictive models without understanding modelling
process and without remaining skeptical until models are validated.

« Build predictive models with very small data sets, poor quality data.

» Generate good models with bad descriptors or data sets with low
diversity, or low dynamic range of biological activities.

« Make reliable predictions that are well outside the property space in
which they are trained.

« Convince regulators and other science professionals that they are
useful unless their predictivity is tested experimentally

 Molecular details of the mechanism of action are often not
accessible from the model.
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Take home messages

« QSAR/QNTR is a simple method that can be very useful when used
carefully. In the hands of a skilled practitioner it can yield very good
results

 Models are easy to build but also very easy to get wrong. Many
published QSAR studies have serious errors

« Data quality, quantity, diversity, range, relevance are paramount

 QSAR methods can capture complex relationships between structure
and biological activity, even for multiple modes of action

« Descriptor generation and selection is the key step in QNTR

 New mathematical and machine learning methods have made model
building more robust.

 The methods are very fast and can deal with very large data sets.
 We are seeking data to model from experimental groups
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Nanoparticle-induced smooth muscle apoptosis

Performance of the smooth muscle apoptosis assay nonlinear model
derived from data for 31 nanoparticles. Each point is an individual
nanoparticle. Axes are in units of biological response Linear model
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Epa et al. Nature Nano 2012 submitted

In silico modelling of biological effects of nanoparticles | Dave Winkler @



Nanoparticle cellular uptake

Performance of PaCa2 model for training set (black dots) and test
set (red triangles). Each point represents a different surface-
modified nanoparticle. r,,,;,>=0.77, r..,*=0.79, SEE= 0.19, SEP=0.24
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Epa et al. Nature Nano 2012 submitted
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Quantitative structure-property relationships

Quantitative structure-property relationships modelling (QSPR) is an
extension of the QSAR method developed by Hansch and Fujita in the early
60s to model physicochemical and drug biological properties

In a sense it involves modelling emergent (global) properties of systems using
a mathematical description of the properties of components.

P = Ax)

The method involves finding relevant mathematical descriptors (x;) for the

microscopic (molecular) properties and the optimum form for the (nonlinear)
function .7

For complex materials, development of optimal descriptors is challenging.
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