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Why computational modelling? 
• Experimental testing of chemicals for physicochemical, 

toxicological and environmental properties is time-consuming and 
expensive ~30,000 nano products by 2015 

• Increasing pressure to reduce or  
discontinue animal testing.  

• Computational methods like QSAR  
are becoming increasingly useful  
and reliable 

• Such tools will help regulators make 
 decisions about the risk nano- 
materials may pose 

• Computational modelling will complement, not replace the need 
for experimental assessment of the biological effects of 
nanoparticles 
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Problems we face – can we do anything? 

?? Complex, 
poorly understood 
processes: 
ingestion, uptake, 
interactions with 
proteins, 
transport, cell 
processes, light, 
dissolution etc 

Nanoparticle: 
intrinsic physical 
and molecular 
properties 

Potential 
detrimental 
effects on 
organisms 

Regime of QSAR 
methods Cell-based experiments 
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• Defining the biologically relevant entity (particle plus corona).  

• Choosing the right assays (in vitro that indicate in vivo).  

• Modelling of complex nanomaterials-biology interactions (descriptors).  

• A roadmap for the future (collaboration, ontologies, databases, funds). 

• Winkler et al. In silico strategies for safe management of manufactured 
nanomaterials, Toxicol. 2012 ASAP.  

 

 

COST nanotoxicity modelling workshop 
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Quantitative structure-activity modelling 
Quantitative structure-activity relationships modelling (QSAR) was 
developed by Hansch and Fujita in the early 1960s to model 
physicochemical and biological properties of drugs. 

In essence the method is deceptively simple. It is a supervised 
modelling method that describes the complex relationships between the 
molecular (microscopic) and physicochemical properties of molecules 
and their biological (macroscopic) effects 
 
      Biological response (BR) = F  (molecular properties) 

The method involves finding relevant mathematical descriptions 
(descriptors) for the microscopic (molecular) properties and the optimum 
form for the (nonlinear) function F =gcorona x huptake x jmechanism… 

It is essentially a kind of complex pattern recognition process 
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… and beware of correlation versus causation 
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Main steps in QSAR modelling 
QSAR is a supervised learning method that needs a data set of 
materials and their biological properties. There are four steps… 

1 Generate descriptors – this involves converting the molecular 
structure of the materials into a set of numbers that capture their 
microscopic and/or physicochemical properties in a relevant way. 
This is a major research need for nanoscience 

2 Select a sparse subset of descriptors in a context-dependent way 
(that is choosing a small subset of descriptors that have the most 
influence on the biological properties of the compounds) 

3 Deduce the potentially complex and nonlinear relationship between 
the descriptors and the biological response(s) 

4 Validate the model: robustness, predictivity, domain of applicability 

The model can then be used to estimate the biological properties of 
new molecules where these data are not known 
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There are many methods of varying sophistication 

Simple linear statistical regression methods like multiple linear 
regression 

BR = a + bx1 + cx2 + … 

Nonlinear regression methods using polynomials or kernel functions 
(e.g. Gaussians) 

BR = a + bx + cx2 + dx3 + …. 

BR = a + bφ1 + cφ2 + dφ3 + …. 

Nonlinear machine learning methods like neural nets 

 

Finding structure-activity relationships 
Slide courtesy of Prof. Alex Tropsha, UNC  
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Modelling complex, nonlinear properties 
 Slide courtesy of Prof. Alex Tropsha, UNC  

• Linear methods (e.g. multiple linear regression) generate good 
models.  

• However, the structure-activity relationship is often nonlinear.  
• Polynomial regression methods, nonlinear kernel methods, and 

neural network are methods of choice for QSAR modelling.  
• Neural networks are useful because they are nonlinear universal 

approximators - can generate poor models if care not taken. 
• Neural networks can also be overtrained, becoming better and better 

at predicting (memorizing) training data, and worse at predicting new 
data. Techniques exist to avoid overtraining.  

• Bayesian regularized neural nets automatically choose the optimum 
complexity of a QSAR model – achieving the best balance between 
bias and variance  
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Expectation maximization 
 Figure courtesy of Prof. Alex Tropsha, UNC  
Optimum QSAR Feature Selection using Sparse Bayesian Methods, Burden, Winkler QSAR Comb Sci. (2009) 28, 645  
 It is often important to choose a small number of variables that are most relevant to the 

problem at hand. We used sparse Bayesian feature selection methods based on an 
expectation (or likelihood) maximization(EM) algorithm.   
Regular Multiple Linear Regression( MLR) uses a Gaussian prior 
 
 
 
Where the w are the MLR coefficients. 
 
Multiple Linear Regression with expectation maximisation (MLREM)2 uses a Laplacian 
prior whose sparsity properties are well known 
 
 
 
We have modified this to provide tuneable sparsity to obtain a minimal number of 
descriptors consistent with desired performance 
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Optimal self-pruning neural network 
  
An optimal self-pruning neural network that performs nonlinear descriptor selection for QSAR, Burden, Winkler, 
QSAR Comb. Sci. (2009) 28, 1092. 

 Again using a Laplacian prior in a backward propagation artificial neural network 
(BPNN) we wish to minimise. 

 

 

By assigning non-informative priors to α and β and integrating them out we are left 
with maximising the loss function L . 

 

 

which was introduced into our Bayesian Regularised Artificial Neural Network 
algorithm (BRANN)1 creating BRANNLP. 

Unnecessary weights are driven to zero and if all the weights associated with a 
particular descriptor are driven to zero then the descriptor is discounted in the model. 
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Optimal self-pruning neural network and nonlinear 
descriptor selection  
 Slide courtesy of Prof. Alex Tropsha, UNC  
Robust QSAR Models Using Bayesian Regularized Artificial Neural Networks, Burden, Winkler, J. Med. Chem., 42; 3183 (1999).  
Optimum QSAR Feature Selection using Sparse Bayesian Methods, Burden, Winkler, QSAR Comb Sci. 28, 645, (2009) 

Again using a Laplacian prior in a regularized backpropagation artificial neural 
network (BPNN) we wish to minimise. 

 

 

By assigning non-informative priors to α and β and integrating them out we are 
left with maximising the loss function L . 

 

 

The Laplacian prior (LP) was introduced into our Bayesian Regularised Artificial 
Neural Network algorithm (BRANN)1 creating BRANNLP. 

Unnecessary weights are driven to zero and if all the weights associated with a 
particular descriptor are driven to zero then the descriptor is discounted in the 
model. 
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These sparse Bayesian feature selection methods can very effectively deliver a 
relatively small number of relevant features very efficiently.   

Figeuiredo, IEEE Trans Patt Anal Mach Intell , 25, 1150 (2003) 

Burden, Winkler, QSAR Comb Sci. 28, 645-653, (2009) 

 

 

Feature selection using expectation maximization 
 Slide courtesy of Prof. Alex Tropsha, UNC  

Feature 
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How well does it work? QNTR examples 

MIO nanoparticle induced apoptosis (Shaw/Weissleder, 
Harvard) 
MIO nanoparticle cellular uptake (Shaw/Weissleder, 
Harvard) 
Carbon nanotube protein binding and toxicity (Yan, St 
Jude’s) 
In vitro-in vivo models  
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Examples of QNTR modelling 

Stanley Shaw Mass General 
Hospital, Boston 
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Shaw et al. tested 51 coated nanoparticles in-vitro in 4 cell lines 
using 4 assay types at 4 concentrations (51x64 data matrix). Carried 
out ~24,000 experiments with replicates and controls. 

•dextran coated cross-linked iron oxide (CLIO)-based  (23 NPs) 

•polymer coated pseudocaged nanoparticle (PNP)-based (19 NPs)  

•dextran coated monocrystalline iron oxide nanoparticle (MION)-based (4 NPs) 

•quantum dot-based with a CdSe core, a ZnS shell, and a  polymer coating (3 NPs) 

•two other iron-based MNPs: Feridex IV (approved for in vivo imaging) and Ferrum 
Hausmann (approved for iron supplementation) 

Shaw et al. Perturbational profiling of nanomaterial biologic activity. PNAS, 2008, 105, 
7387-7392 

 

 

 

MIO nanoparticle induced apoptosis  
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4 cell lines x 4 assays x 4 concentrations 

•Cell Lines: Vascular cells (endothelial), Vascular cells (smooth 
muscle cells), Monocytes, Hepatocytes. 

•Assays: ATP content, Reducing equivalents, Caspase-mediated 
apoptosis, Mitochondrial membrane potential. 

•Concentrations: 0.01, 0.03, 0.1, 0.3 mg/ml Fe for iron-based 
nanoparticles 

 

 

 

 

MIO nanoparticle induced apoptosis  
Shaw et al. Perturbational profiling of nanomaterial biologic activity. PNAS, 2008, 105, 7387-7392 
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Frank Burden  
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Only 3 of 16 cell/assays contain signal 
 



BR = 2.26(±0.72)–10.73(±1.05) IFe2O3–5.57(±0.98) 
Idextran –3.53 (±0.54) Isurf.chg  

 

r2train =  0.79, r2
test = 0.90, SEE = 2.8, SEP=  2.9 

 

IFe2O3, Idextran, and Isurf.chg are indicator variables for the 
identity of the core materials, surface coating, and 
charge of the surface functionalizing groups (+, -, or 
neutral). 

However, we need to include more nanoparticle core 
and surface functionality to generate models with 
greater generality 

 

 

Surprisingly simple QNTR model explains 
data 
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Weissleder et al. (Nat. Biotechnol., 2005, 23 (11), 1418-1423) investigated 
whether the multivalent attachment of small organic molecules on a same NP can 
modify its binding affinity to certain cells. 109 NPs with same core (CLIO) but 
different  compounds bound to surface. 

 

 

MIO nanoparticle cellular uptake 
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PaCa2: Pancreatic cancer cell 
HUVEC: human umbilical vein endothelial cell 
U937: Macrophage cell line 
GMCSF: Activated primary human macrophages 
RestMph: Resting primary human macrophages 

Unlike the other cell lines, the 
PaCa2 pancreatic cancer cells 

and HUVEC cells showed 
diverse cellular uptakes for 

different nanoparticles.  



Metal 
Core 

FITC (fluorescein 
isothiocyanate) 

Small organic 
compounds 
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CLIO – cross-linked iron oxide core 
 



Vidana Epa 
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Uptake SAR of functionalized nanoparticles 
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Only two cell types have uptake that is sensitive to the surface chemistry.  The 
macrophages and macro-phage-like cell lines do not take up nanoparticles in a 
manner that is modulated by the surface functionalization. As these are ‘universal 
phagocytes’ perhaps this is not unexpected 

QNTR models of nanoparticle uptake 
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Performance of PaCa2 model for training set (left) and test set 
(right). Each point represents a different surface-modified 
nanoparticle.  

 

QNTR models of nanoparticle uptake 
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Uptake increases exponentially with 
nanoparticle size. Zeta potential in 
biological fluids is usually small and 
negative. 

 

Beduneau A, Ma Z, Grotepas CB, 
Kabanov A, Rabinow BE, et al. 2009 
Facilitated Monocyte-Macrophage 
Uptake and Tissue Distribution of 
Superparmagnetic Iron-Oxide 
Nanoparticles. PLoS ONE 4(2): e4343. 
doi:10.1371/journal.pone.0004343 

 

Uptake on CLIO nanoparticles by 
macrophages 
 



Swiss Med Wkly. 2010;140:w13081 
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Many types of nanoparticles are designed primarily to 
image tumours by preferential accumulation or cell 
specific targeting. Higher uptake by PaCa cells is therefore 
not unexpected 

Uptake on CLIO nanoparticles by PaCa cells 
 



How well does it work? QNTR examples 

MIO nanoparticle induced apoptosis (Shaw/Weissleder, 
Harvard) 
MIO nanoparticle cellular uptake (Shaw/Weissleder, 
Harvard) 
Carbon nanotube protein binding and toxicity (Yan, St 
Judes) 
In vitro-in vivo models  
 

Bing Yan St Jude’s 
Hospital, Memphis now at 

Shandong University 
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Synthesis of functionalized nanoparticles 

Zhou et al, Nano Lett. 3, 859 (2008) 
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Synthesis of functionalized nanoparticles 

Zhou et al, Nano Lett. 3, 859 (2008) 
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• A set of 77 ‘physically interpretable’ descriptors was computed 
for each structure using ADRIANA and DRAGON.  

• These were used with CSIRO_SM_BioModeller to construct linear 
(MLREM) and non-linear (BRANNGP and BRANNLP) models.  

• The training set (selected by clustering) had 67 molecules while 
the test set contained 16 molecules.  

• The protein adsorption data was modelled as the logarithm of 
the ratio of the fluorescence intensities of the functionalized 
MWNT to that of the pristine one.  

• Zhou et al, Nano Lett. 3, 859 (2008) 

 

 

Modelling of functionalized nanoparticles 
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Binding of functionalized nanotubes to haemoglobin, data set split 
80:20% into training set used to build model and test set used to 
estimate prediction accuracy. Binding data logit transformed. 

Zhou et al, Nano Lett. 3, 859 (2008) 

 

 

Haemoglobin QNTR model  

SEE = 0.082 
r2 train = 0.71  
SEP = 0.093 
r2 test = 0.69  
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Binding of functionalized nanotubes to carbonic anhydrase, data 
set split 80:20% into training set used to build model and test set 
used to estimate prediction accuracy. Binding data logit 
transformed. 

Zhou et al, Nano Lett. 3, 859 (2008) 

 

 

Carbonic anhydrase QNTR model  

SEE = 0.156 
r2 train = 0.55  
SEP = 0.157 
r2 test = 0.59  
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Binding of functionalized nanotubes to chymotrypsin, data set split 
80:20% into training set used to build model and test set used to 
estimate prediction accuracy. Binding data logit transformed. 

Zhou et al, Nano Lett. 3, 859 (2008) 

 

 

Chymotrypsin QNTR model  

SEE = 0.131 
r2 train = 0.61  
SEP = 0.146 
r2 test = 0.73  
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Modelling of functionalized nanoparticles 
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How well does it work? QNTR 
examples 

MIO nanoparticle induced apoptosis (Shaw/Weissleder, 
Harvard) 
MIO nanoparticle cellular uptake (Shaw/Weissleder, 
Harvard) 
Gold nanoparticle AChE inhibition and non-specific protein 
binding(Yan, St Judes) 
Carbon nanotube protein binding and toxicity (Yan, St 
Judes) 
In vitro-in vivo models  
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Predicting in vivo toxicity from in vitro assay 
S. Lee et al. / Toxicology and Applied Pharmacology 246 (2010) 38–48 
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What can QSAR/QNTR not do? 
• Replace the need for experimental measurement. Models are 

synergistic with measurements. 

• Generate good predictive models without understanding modelling 
process and without remaining skeptical until models are validated. 

• Build predictive models with very small data sets, poor quality data. 

• Generate good models with bad descriptors or data sets with low 
diversity, or low dynamic range of biological activities. 

• Make reliable predictions that are well outside the property space in 
which they are trained.  

• Convince regulators and other science professionals that they are 
useful unless their predictivity is tested experimentally 

• Molecular details of the mechanism of action are often not 
accessible from the model. 
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Take home messages 
• QSAR/QNTR is a simple method that can be very useful when used 

carefully. In the hands of a skilled practitioner it can yield very good 
results 

• Models are easy to build but also very easy to get wrong. Many 
published QSAR studies have serious errors 

• Data quality, quantity, diversity, range, relevance are paramount 

• QSAR methods can capture complex relationships between structure 
and biological activity, even for multiple modes of action 

• Descriptor generation and selection is the key step in QNTR 

• New mathematical and machine learning methods have made model 
building more robust. 

• The methods are very fast and can deal with very large data sets.  

• We are seeking data to model from experimental groups 
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Neural Network 

 
Connections of  

variable weights 

Input Neuron Layer 

Hidden Neuron Layer 

Output Neuron Layer 

Input Data 



Performance of the smooth muscle apoptosis assay nonlinear model 
derived from data for 31 nanoparticles. Each point is an individual 
nanoparticle. Axes are in units of biological response Linear model 
rtrain

2=0.81, rtest
2=0.86, SEE= 3.6, SEP=3.3 

 

Nanoparticle-induced smooth muscle apoptosis 

48 

Epa et al. Nature Nano 2012 submitted 
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Performance of PaCa2 model for training set (black dots) and test 
set (red triangles). Each point represents a different surface-
modified nanoparticle. rtrain

2=0.77, rtest
2=0.79, SEE= 0.19, SEP=0.24 

(logs) 

 

Nanoparticle cellular uptake 

49 

 
Epa et al. Nature Nano 2012 submitted 
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Quantitative structure-property relationships 

Quantitative structure-property relationships modelling (QSPR) is an 
extension of the QSAR method developed by Hansch and Fujita in the early 
60s to model physicochemical and drug biological properties 
In a sense it involves modelling emergent (global) properties of systems using 
a mathematical description of the properties of components. 
 

P = F(xi) 

The method involves finding relevant mathematical descriptors (xi) for the 
microscopic (molecular) properties and the optimum form for the (nonlinear) 
function F  

For complex materials, development of optimal descriptors is challenging. 
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