Nanotechnology Working Group

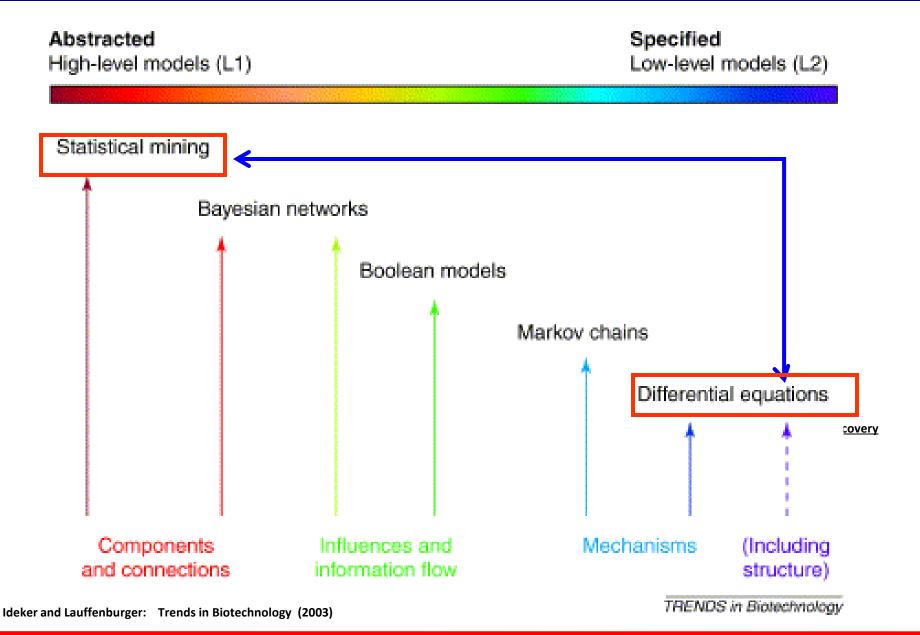
Informatics guided nanomaterial design

Krishna Rajan
Department of Materials Science and Engineering
Iowa State University

Outline

- ➤ QSAR type strategy for materials chemistry
- > Crystal chemistry and nanoscience
- > Descriptor development and data challenges
- Materials design and nanotoxicity

High Dimensional Data: materials functionality


Functionality =
$$\mathcal{F}(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)$$

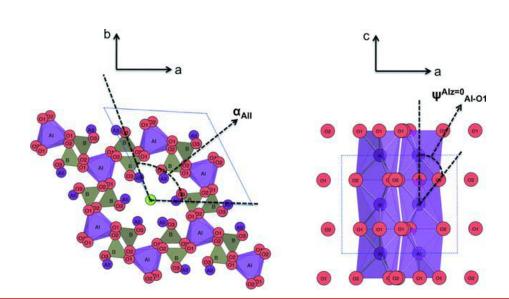
Issues:

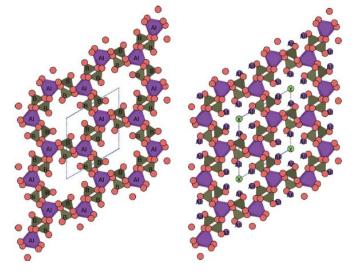
- how many variables?
- which variables are important?
- classify behavior among variables
- making quantitative predictions ...relate functionality to variables ...
 - traditionally we describe them by empirical equations:
 - •Quantitative Structure Activity Relationships (QSARs) are derived from data mining techniques not assuming a priori which physics is the most important

Need to build database with these variables

Omics in Materials Science

Nanomaterials- a crystal chemistry perspective- beyond size effects


Structure maps for $A_4^I A_6^{II} (BO_4)_6 X_2$ apatite compounds via data mining


Prasanna V. Balachandran and Krishna Rajan*

Acta Crystallographica Section B

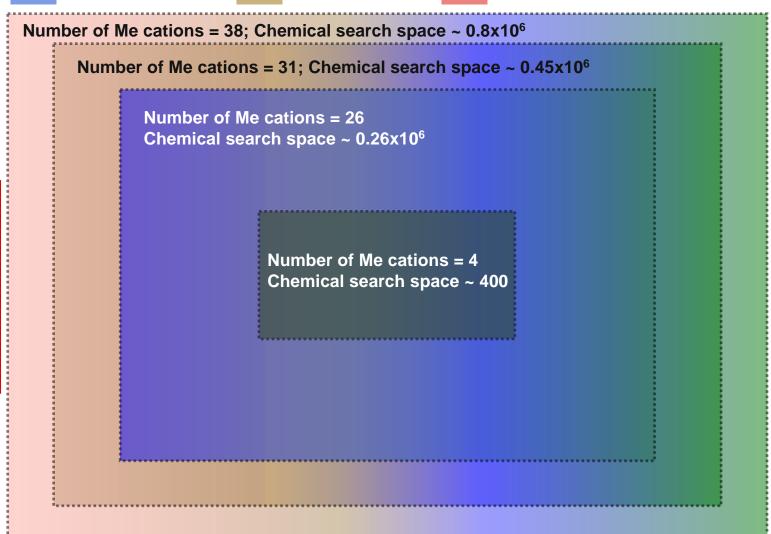
Structural

Science Acta Cryst. (2012). B68, 24–33

Chemical search space for informatics

Stoichiometric space: xBi(Me1pMe2qMe3r)O₃-(1-x)PbTiO₃

Number of Me cations = 38

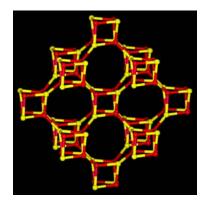

4bundant

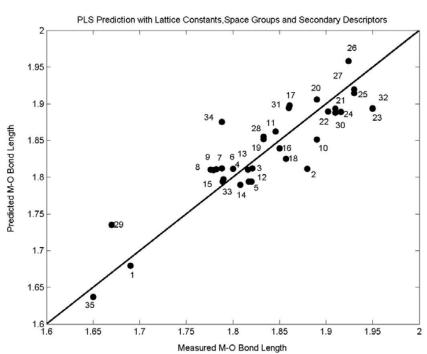
Limited availability future risk to supply

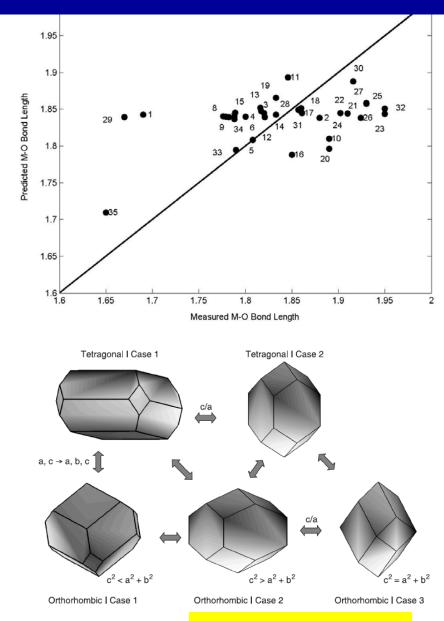
5 Rising threat from increasing use

Serious threat in next 100 years

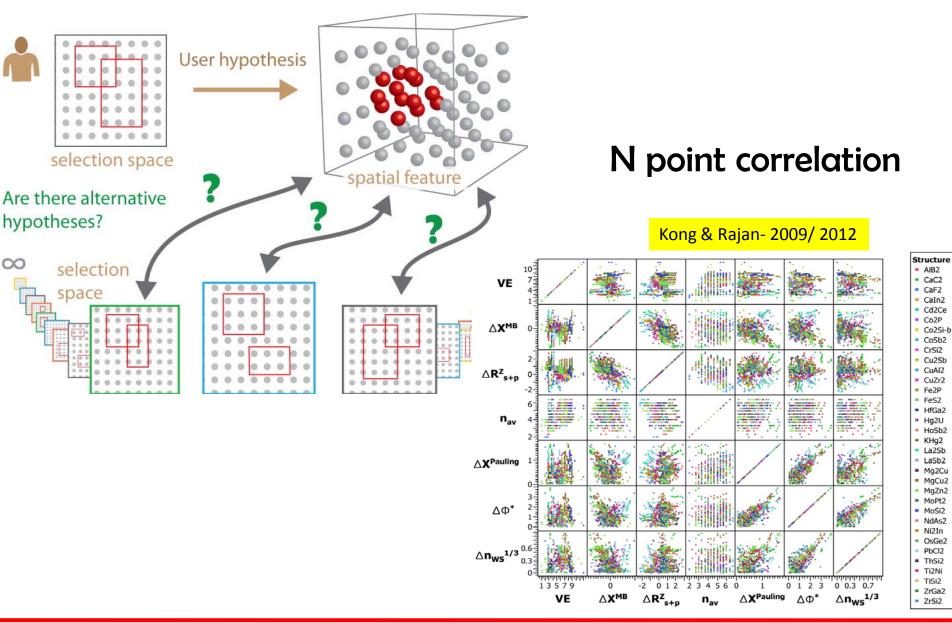
The schematic shows how the chemical search space shrinks, when we account for the scarcity information.

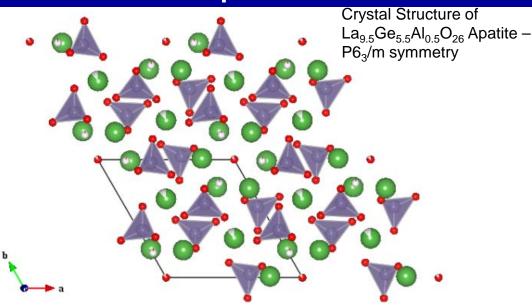

Krishna Rajan


Materials parameters and nanotoxicty

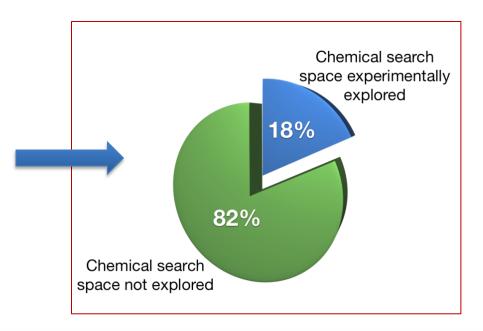

Descriptor	Brief description Lattice constant of the hexagonal unit cell	
(Å)		
(Å)	Lattice constant of the hexagonal unit cell	
a	Variable axial ratio (no unit)	
ı (Å)	Shannon's ionic radii of A ^I -site ion (nine-coordina tion)	
(Å) _{II} (Å)	Shannon's ionic radii of B-site ion	
ıı (Å)	Shannon's ionic radii of A ^{II} -site ion (seven-coordination for F ⁻ and eight-coordination for Cl ⁻ an	
()	Br ⁻ ; Đordević <i>et al.</i> , 2008)	
(Å) v CR (Å)	Shannon's ionic radii of X-site ion	
v CR (A)	Average crystal radius = $[(r_{AI}x4) + (r_{AII}x6) + (r_{B}x) + (r_{O}x24) + r_{X}x2)]/42$	
$_{\rm EN}-{ m O}_{\rm EN}$	Electronegativity difference A atom and O atom	
$_{\rm EN}-{ m O}_{\rm EN}$	Electronegativity difference B atom and O atom	
$_{\rm EN}-X_{\rm EN}$	Electronegativity difference A atom at A^{II} site and atom	
$_{\rm EN}-B_{\rm EN}$	Electronegativity difference A atom at A^{I} site and atom	

Descriptor	Brief description	
A^{I} -O1 (Å)	Distance between A ^I and O1 atom	
A^{I} -O1 $^{AIz = 0}$ (A)	Distance between A^{I} and O1 atom with the constraint $z = 0$ at A^{I}	
	Difference in the lengths A^{I} —O1 and A^{I} —O2	
$\Delta_{\text{AI}-\text{O}} \left(\mathring{\mathbf{A}} \right) \\ \Delta_{\text{AI}-\text{O}}^{\text{AI}z=0} \left(\mathring{\mathbf{A}} \right)$	Difference in the lengths A^{I} —O1 and A^{I} —O2 with the constraint $z = 0$ at A^{I}	
$\psi_{ m AI-O}$ (°)	The angle that the A^{I} —O1 bond makes with respect to c	
$\psi_{\text{AI}-\text{O}}^{\text{AI}z=0}$ (°)	The angle that the A^{I} —O1 bond makes with respect to c with the constraint $z = 0$ at A^{I}	
$\delta_{ m AI}$ (°)	Counter-rotation angle of A ^I O ₆ structural unit	
$\varphi_{\mathrm{AI}}\left(^{\circ}\right)$	Metaprism twist angle $(\pi/3 - 2\delta_{AI})$	
α_{AI} (°)	Orientation of $A^{I}O_{6}$ unit with respect to a	
$\langle B-O\rangle$ (Å)	Average B—O bond length	
$\langle \tau_{\mathrm{O}-B-\mathrm{O}} \rangle$ (°)	Average $O-B-O$ bond-bending angle	
$\rho_{\Lambda\Pi}$ (Å)	$A^{\mathrm{II}} - A^{\mathrm{II}}$ triangular side length	
$A^{\Pi} - X(A)$	Distance between A^{II} and X atom	
$lpha_{ m AII}$ (°)	Orientation of $A^{II} - A^{II} - A^{II}$ triangles with respect to a	
A^{II} – O3 (Å)	Distance between A^{II} and O3 atom	
$\Phi_{\mathrm{O3-AII-O3}}$ (°)	$O3-A^{II}-O3$ angle	
E_{total} (eV)	Total energy calculated from ab initio calculations	

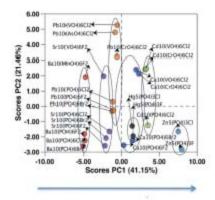

Designing Molecular Architecture


Dimensionality and Complexity

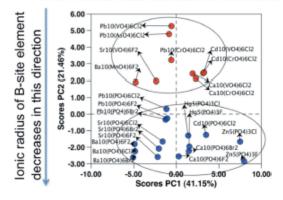
Searching an informatics based combinatorial space

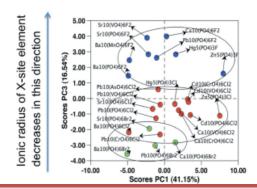

Stoichiometric Space: A^IA^{II}BO

of (A) La-site substitutions=22
of (B) Ge-site substitutions=18

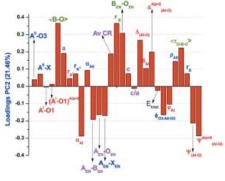

Total possibilities:

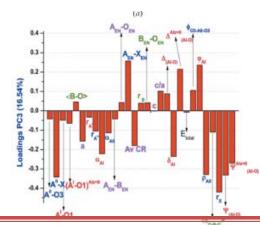
 $\sim 10,000$ chemical compositions

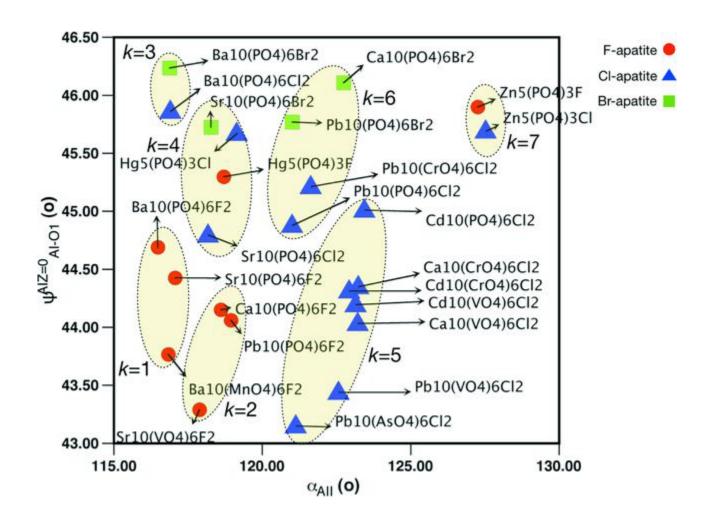


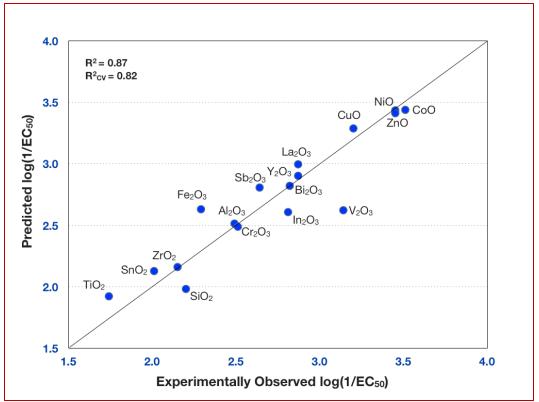

Blachandran & Rajan (2012)

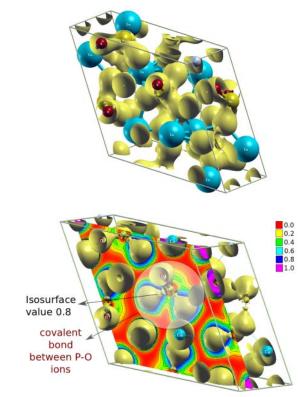
Classification: Structure-Chemistry relationships



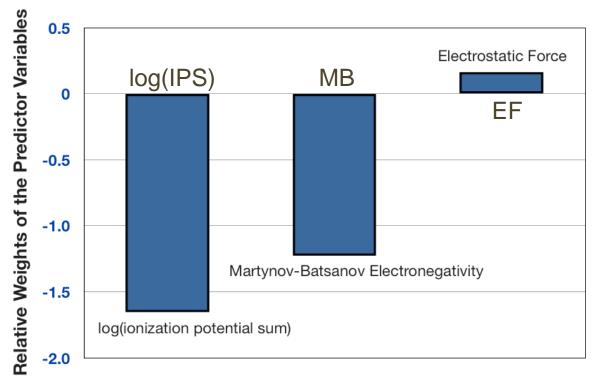

Ionic radius of A-site element decreases in this direction







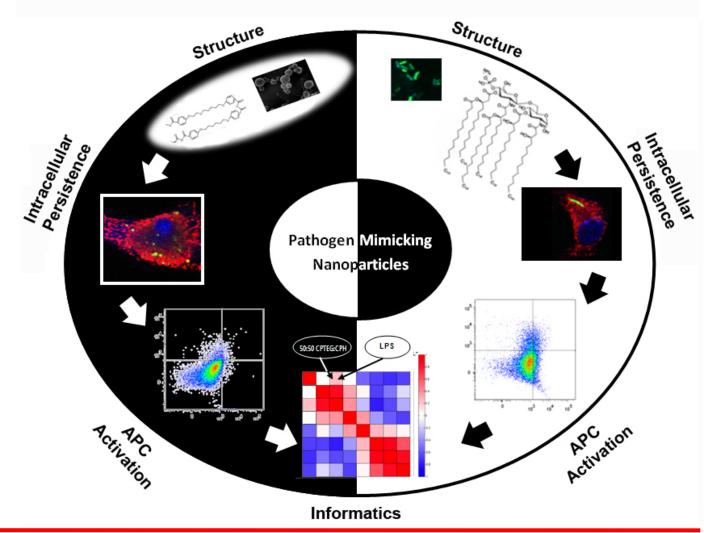
Chemical design


Predictive Nanotoxicology

Nanochemistry	Predicted log(1/EC ₅₀)	Classification
CeO ₂	2.197	Harmful
FeO	3.45	Extremely Toxic
(Zn _{0.95} Al _{0.05})O [§] (Cu _{0.95} Al _{0.05})O [§]	3.355	Extremely Toxic
-(Zn _{0.9} Fe ³⁺ _{0.1})O*	3.241	Very Toxic
Sc ₂ O ₃	3.016	Very Toxic
MnO	2.741	Toxic
MnO ₂	3.477	Extremely Toxic
	1.807	Harmful

Linking length scales

- ❖ log(IPS) describes the difference between enthalpy of formation of gaseous cation and enthalpy of sublimation [1].
- ❖ MB electronegativity describes bonding associated with the relative ability of an atom in a nanoparticle to attract valence electrons [2].
- ❖ EF describes the force exerted by the effective nucleus of metal cation on the valence electrons [3]


Rational Design of Drug Delivery Materials

Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants

Ideal vaccine will mimic the way in which a naturally occurring infection induces a robust immune response yet avoid the undesirable effects of disease

Ulery et.al (2012)

Summary

- Data driven design of materials chemistry
- ➤ Nano-QSAR---linking chemistry to structure
- Nanotoxicity: chemical sequestration and chemical transport

Structure Matters!!