

nanomaterial-biological interactions

An EZ Metric for Defining the A in nanoSARs

Stacey Lynn Harper, Ph.D. Environmental and Molecular Toxicology Chemical, Biological and Environmental Engineering

Model Organism Embryonic Zebrafish Model

General Attributes

Share molecular, cellular and physiological characteristics with other

vertebrates Develop rapidly Easy to maintain

Toxicity Evaluation

Large sample sizes Many routes of exposure Transparent - non-invasive evaluations Amenable to mechanistic evaluations Investigate genomic → whole animal responses in same organism Full suite of molecular signaling necessary and active early in development

Toxicity Screening

microinjection of nanoparticles

TOXICITY EVALUATIONS

24 hpf evaluations

- Mortality (**mort**)
- Developmental progression (dp)
- Spontaneous movement (sm)
- Notochord (nc)

120 hpf evaluations

- Mortality (mort)
- Yolk sac edema (YSE)
- Body axis (axis)
- Eye
- Snout
- Jaw
- Otic vessicle (otic)
- Pericardial edema (PE)
- Brain

- Somites
- Pectoral fin (pfin)
- Caudal fin (cfin)
- Pigmentation (pig)
- Circulation (circ)
- Trunk
- Swim bladder (swim)
- Motility (touch response, tr)

Controls

Pectoral Fin Malformation

Pectoral Fin Malformation No pectoral fins Pectoral Fin Malf.

Otic vessicle

Yolk Sac Edema Pericardial Edema Eye Malformation Curved Body Axis

Brain

Uninflated Swim Bladder

Curved Body Axis

Notochord malformations @ 24 hpf

Truncated Body Eye & trunk Malf. Pericardial Edema Brain

Mass on trunk

Somites

Eye Malformation cyclops Brain

Eye Malformation no eyes Brain

Truncated Body Yolk Sac Edema Pericardial Edema Eye & trunk Malf. Brain

Mass on trunk

Mass on trunk Jaw malf.

Pericardial Edema

Caudal Fin Malf.

Caudal fin Malformation

What is the EZ Metric?

Method of Data Compression:

A single metric representative of adverse effects (toxicity) in embryonic zebrafish screening-level assay

- 23 endpoints for each animal (N = at least 24)
- 7 exposure concentrations + control
- over 200 nanomaterials evaluated
- needed summary of overall effects
- consider mortality and morbidity

EZ Metrics for Nanomaterial Toxicity

Developed using OSU's

frequency of effect x hierarchical ranking EZ Metric

Normalized to scale 0-24; additive and weighted metrics

EZ Metric	toxic potential	interpretation
≤ 5	low	likely benign
5 to 15	moderate	suspect nanomaterial
> 15	high	requires further testing

Analytical Hierarchical Process For Weighted EZ Metrics

Web-based system to capture multiple expert opinions on weight of effects

	1	2	3	4	5	6	7	8	9	10	1 1	12	13	14	15				
1		0.33	3	5	5	5	5	5	7	7	9	7	7	7	9	1	120hr mortality		
2	3		5	5	5	7	9	9	9	9	9	9	9	9	9	2	24 hr mortality	•	40
3	0.33	.2		3	1	3	3	5	5	5	9	5	7	7	9	3	24hr dev prog	6	12
4	0.2	.2	0.33	3	1	1	1	1	3	3	7	5	7	7	7	4	axis	eye	snout
5	0.2	.2	1	1		5		5	5	7	7	7	7	9	9	5	brain	Importance	e of eye ove
6	0.2	14	0.33	3	.2		9	i	5	5	5	7	7	14	9	6	eye	1/9 1/7 1	/5 1/3 1 3
7	0.2	11	0.33	3	1	11		7	7		0.2	2 0	.11	9	9	7	heart	0000	0000
8	0.2	11).2	1	.2	33	14		3	1	3	1	1	1	3	8	jaw		In
9	0.14	11	ጋ.2	33	.2	.2	14	.33		1	3	1	1	1	3	9	notochord		
10	0.14	11).2	33	14	.2	1	1	1		3	1	1	1	3	10	otic		Next
11	0.11	11	.11	14	14	.2	5	.33	33	33		0.3	33	0.3	3	11	pectoral fin	D	own
12	0.14	11).2	2	14	14	9	1	1	1	3		<mark>).3</mark>	31	33	12	snout		
13	0.14	11	14	14	14	14	.11	1	1	1	3	3		1	1	13	somite	AHP Cal	culation
14	0.14	11	14	14	.11	7	11	1	1	1	3	9	1		3	14	trunk		
15	0.11	11	11	14	11	11	11	.33	33	33	1	3	1	33		15	trunk fin		

Expert Opinion Documentation

Submit by Email

Oregon State University Oregon Nanoscience and Microtechnologies Institute Corvallis, Oregon 97331 Ph: 541-737-2691 Fax: 541-737-786 www.oregonstate.edu/hbi

Gain consensus on relative weight of effects

Captures experience with model system and considerations for ranking

Useful to understand variability

EXPERT OPINION DOCUMENTATION

Date: _____

Contact Information

lame:
osition:
ffiliation:
ddress:
ity/State:
ip Code:

Qualifications

Institution and location	Degree	Year	Field of Study							
Area of Specialty:										
Experience with Zebrafish:										
Prioritization Considerations (e.g. developmental effects focused, considered long-term impacts on survivability):										
Can we list your documentation on the NBI knowledgebase website? Yes 🔲 No 🔲										
May we contact you for further comment regarding prioritization of effects? Yes 🗌 No 🥅										

EZ Metric - Dendrimers

EZ Metrics - Dendrimers

EZ Metrics - Dendrimers

EZ Metrics – Viral Nanoparticles

Effect of Size

Effect of Charge

Effect of Shape

Effect of Shape

Erbium (III) Oxide Reactivity

nanomaterial-obiological interactions

SEM analysis performed at CAMCOR

Comparative Nanotoxicology – EZ Metric

EZ metric provides accurate, rapid indication of toxic potential of nanomaterials and nanomaterial solutions

EZ metric was consistent with other statistical evaluations

No biological response from vast majority of dendrimers, amine groups concerning

Viral capsids elicited minimal biological response

Toxicity of metal oxide nanoparticles dependent on composition, reactivity or shape, not charge or size distribution

Iterative Testing to Inform Nanomaterial Design

Precisely Engineered AuNPs

Harper, S.L., J.L. Carriere, J.M. Miller, J.E. Hutchison, B.L.S. Maddux and R.L. Tanguay. 2011. Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays. ACS Nano 10.1021/nn200546k.

EZ Metrics – AuNP Exposure

Quantification of AuNP Dose

Instrument Neutron Activation Analyses

Neutron activation \rightarrow excited state

Unique half-life of the radioactive nucleus \rightarrow identify and precisely quantify original elements.

Quantification of Au in Individual Embryos

nanomaterial-obiological interactions

Exposure of Gold Nanoparticles concentration (ppm), size (nm) and surface functionalization Uptake and Elimination Rates

Time Intervals for Uptake Calculations

Uptake of AuNPs

Hours of Exposure

Comparative Nanotoxicology - EZ Metric

Core size, charge and purity affect biological response to AuNPs

- Positively-charged (TMAT⁺) had higher toxic potential than negative or neutral
- Positively-charged taken up more readily
- Positively-charged remained in animals longer

AuNPs provide a good platform to define nanoSARs

- Precisely engineered
- Large library (congeneric series)
- Green synthesis and purification
- Quantification with INAA

C Graphs 🖲 Color Codes

EZMNT -- concentration

■1 ■4 ■7 ■8 ■11 ■12 ■15 ■18 ■19 ■20 ■25

nbi.oregonstate.edu

Family: metal Core: Au Structure: TMAT Description: TMAT-functionalized AuNPs have N,N,Ntrimethylammoniumethanethiol surface groups. They are positively charged and spherical in shape. Related Links: NIOSH InterNano http://ncl.cancer.gov/ http://www.nanohub.org/home ICON SAFENANO

HS

