Evaluation of Semantic Web Technologies and caBIG
Author: Joshua Phillips

Last Update: Jan. 22, 2009

41
Introduction

2
caBIG Strategic Goals and Methods
4
3
Data Integration in caBIG
6
3.1
Simple Case Study
8
3.2
Theoretical Alternatives
10
3.3
Necessary Enhancements to caBIG Technology
13
3.4
What are the barriers to data integration?
13
4
Why is Semantic Web technology appropriate for caBIG?
14
4.1
Resource Description Framework (RDF)
16
4.2
RDF, XML and XML Schema
18
4.2.1
Case Study Revisited
21
4.3
Resource Description Framework Schema (RDFS) and the Web Ontology Language (OWL)
24
4.3.1
Case Study Revisited
27
4.4
Semantic Web Rule Language (SWRL)
29
4.4.1
Case Study Revisited
30
4.5
SPARQL Query Language for RDF
31
4.5.1
Case Study Revisited
33
4.6
Semantic Web Pitfalls
38
5
Steps Forward (What about UML?)
38
5.1.1
Encouraging development of conceptual models in OWL
40
5.1.2
Support search and comparison of OWL models
40
5.1.3
Generate OWL models from UML models
40
5.1.4
Providing SW service plugin components
41
5.1.5
Providing SW infrastructure components
41
5.1.5.1
OWL Storage Service
42
5.1.5.2
Reasoner Service
42
5.1.5.3
OWL Storage Factory
43
5.1.5.4
Reasoner Factory Service
43
5.1.5.5
OWL Transformer Service
43
5.1.5.6
Access Control
44
6
References
44

1 Introduction

Data integration is crucial to the scientific enterprise. By combining heterogeneous data sets we can often identify implicit relationships in the data that result in new knowledge.
The caBIG program has been largely successful in achieving its strategic goals that relate to interoperability. However, the caBIG community still faces significant challenges when trying to execute important scientific use cases that involve data integration. These challenges appear to fall, at least partially, outside the definitions of interoperability, as defined in caBIG. Consequently, the caBIG infrastructure does not completely address them.
This document describes the limitations of the infrastructure, with respect to data integration, and how semantic web technologies could be used in conjunction with the existing infrastructure to facilitate integration of autonomous, heterogeneous data sources.
2 caBIG Strategic Goals and Methods

The caBIG strategic goals are as follows:

1. Connect cancer research communities through a shareable and interoperable infrastructure.

2. Deploy and extend standard rules and common language to more easily share information.

3. Build or adapt tools for collecting, analyzing, integrating, and disseminating information associated with cancer research.

These goals emphasize the need for interoperability and integration of cancer research information. According to the caBIG publications, interoperability requires syntactic and semantic interoperability, where syntactic interoperability enables systems to exchange data through shared interfaces, and semantic interoperability enables systems to "understand" the exchanged data. caBIG "compatible" systems are able to interoperate with other caBIG systems, where interoperability is defined as "the ability of the information system to both access and appropriately use data from a remote data source." [1]
To facilitate the development of caBIG compatible systems, the program provides tools, standards, and procedures for modeling the data that caBIG systems use and the application programming interfaces (APIs) through which the systems can be accessed. caBIG aims to develop a set of shared controlled vocabularies, common data elements (CDEs), information models, and APIs. Controlled vocabularies define the meanings of terms, often referred to as concepts. CDEs provide a mapping of concepts to representations. Information models define relationships among CDEs. APIs are defined to accept and produce message formats that conform to an information model.

caBIG tools and data sources are arranged into a service oriented architecture (SOA), where the focus is on providing location independence, interoperable message formats, and reuse of functionality as a service. caGrid is the SOAP-based, web services infrastructure which implements this SOA architecture. caBIG data sources and tools are exposed through SOAP-based APIs that exchange XML messages. These XML messages conform to W3C XML schema definitions that are registered in a common repository known as the Global Model Exchange (GME). The XML types are derived from Unified Modeling Language (UML) information models that are registered to common metadata repository, known as caDSR, which is based on the ISO 11179 metadata standard.

According to ISO 11179, the atomic unit of metadata interchange among systems is the data element. A data element maps an abstract concept to a concrete representation. When UML models are registered to the caDSR, attributes of individual UML classes are mapped to data elements. Data elements that are reused in multiple UML (information) models are CDEs. Multiple data elements can belong to the same object class, which roughly corresponds to a UML class. However, when XML schema are created from a UML model, classes usually correspond to XML complex types, and it is these complex types that are the atomic units of interchange among caBIG systems. Therefore, to achieve interoperability among caBIG systems it is usually not sufficient to reuse data elements. Rather, it is necessary to reuse full UML classes, or all the data elements of a particular object class.

So, according to caBIG's definition of interoperability, this approach to building systems has been successful. Syntactic interoperability has been achieved by exposing web service interfaces that accept shared XML types. These are the shared interfaces mentioned above. For example, there are quite a few microarray data sources that have been exposed through the caArray caGrid service interface. All of these data services can answer queries against the caArray information model and return XML documents with types that conform to a common XML schema. Furthermore, we can define analytical services that consume these XML types.

We can also feel more confident that these analytical services are correctly interpreting the exchanged message formats since the meaning of the data elements on which they are based has been mapped to controlled vocabulary. In this way, semantic interoperability has been achieved, in that the systems understand the exchanged data and "appropriately use data from a remote data source."[1] We can also logically correlate data from different data sources that may use different information models (and XML schemas) where those information models use common data elements (CDEs). The individual data values of these CDEs act as distributed join points among the data sets. This is only possible because the CDEs are both semantically and syntactically equivalent.

3 Data Integration in caBIG

However, data integration is still difficult in caBIG. Data integration is the problem of combing data residing at different sources, and providing the user with a unified view of these data [2]. It is extremely important in the life sciences, especially in "omics" scale studies [3] which require integration of large, diverse data sets. It has been shown that addition of new data sets can improve the results of investigative algorithms and techniques [4,5]. Common approaches to data integration include either data warehousing or federated query. In the data warehouse approach, data are extracted from each source, then transformed to fit into a unified model of all domains of interest. This approach suffers from scalability limitations as well as issues related to the "staleness" of data. In the federated query approach, the data integration system supports execution of a query against a mediated, "global" model. The query is then transformed as needed to retrieve data from the models of each source. In general, there are two approaches to designing the mediated model: Global-as-View (GAV) or Local-as-View (LAV). In GAV the mediated model is described as a set of views over the source models. In LAV, the mediated model is described independently of any source model, and the source models are described as views of the mediated model. The tradeoffs are that in GAV, queries are easier to answer, but the mediated schema is more difficult to design and maintain. In LAV, queries can be very difficult to answer, but new sources can be added without modifying the mediated schema. Various combinations of the two approaches have been proposed. [1,7,8,9].
The caBIG "cornerstones" are federation, open-development, open-access, and open-source. So, the official message can be understood to mean that a federated approach to data integration is favored in this community.
However, individual projects have implemented both data warehousing and federated query approaches. Projects such as caBIO and caIntegrator provide what are essentially data warehouses. Other projects, such as caB2B, caGrid Portal, and caTRIP have used the federated query approach. The caGrid project provides software components and standards that facilitate creation of remotely accessible data sources and execution of federated queries. The caBIG compatibility guidelines (https://cabig.nci.nih.gov/guidelines_documentation) require that each data source provide a UML model that has been annotated with concepts from a controlled, publicly avialable vocabulary (currently the NCI Thesaurus [NCIt]). These annotations/concepts provide some mapping
 from the data source's UML model to the description logic (DL)-based NCIt model. This approach is similar to the LAV approach, in that the sense that 1) UML models (the source models) are expressed as views over the NCIt (the mediated model), and 2) each UML model supports only an incomplete view of the NCIt model. Thus, this approach favors extensibility, in that new sources can be added easily, but federated query answering is very difficult. In fact, only very simple queries are possible because UML annotations do not provide any information about the relationships among UML classes.

While annotated UML models and caGrid components support a data integration system that is similar LAV-style federated query, it was not the explicit intent of the caBIG architectural design to do this. Instead, in caBIG, data integration is enabled by CDEs that serve as "join points" among models [6,10]. In this approach, the "shared caBIG model" consists of the combination of all UML models, where inter-UML model links are implemented by CDEs. For example, if UML Model A contains class X and UML model B contains class Y, and both X and Y contain an attribute that represents the same CDE, then we can (theoretically) correlate data about X and Y using values of this attribute. This approach is a bit more like GAV in that mappings from the mediated model (the set of interlinked UML models) to the source models is completely defined. Query answering is simply a matter of "unfolding" the query at each source. However, as new UML models are added or removed, the mediated model essentially changes, and existing federated queries must also change in order to make use of the new data sources.

In practice, correlating data from different sources using CDEs only works if the CDEs represent some shared identifier. For example, many caBIG UML models have some class that represents genes. Each of these UML classes has an attribute named "id", which maps to the same CDE, "Gene Identifier", that has a public ID of 2223838. However, this CDE cannot be used to correlate data because it actually represents a data source's internal identifier for the gene. On the other hand, an attribute such as "symbol", which maps to CDE 2223841 can be used to correlate data because it represents a shared identifier. The caBIG program is well aware of the problem of shared identifiers and is working to develop standards for creating and maintaining universal identifiers.

Still, in some cases, a single CDE is not sufficient. For example, a UML class named Gene may represent an annotation, rather than the Gene itself. Multiple annotations may have the same value for "symbol" but represent the occurrence of the gene in different organisms. In that case, the organism must also be considered. While we may be able to resolve issues like these by ensuring that models are conceptually consistent, the current situation requires that we consider CDEs that represent shared identifiers and possibly multiple CDEs, in order to correlated data from multiple sources.

Even if we can potentially correlate data using CDEs, the current set of caBIG technologies limits us in two ways. First, the federated query language that is supported by caBIG data services does not provide any support for actual correlation of data in the way that one might use the SQL SELECT clause and joins to correlated data from different relational tables Therefore, multiple queries are needed to create correlated data sets. Second, the caBIG compatibility requirement that W3C XML Schema (alone) must be used to define the contents of all messages that are exchanged among caBIG services makes it difficult to actually correlate diverse data sets.

A simple case study is used to explain these limitations.

3.1 Simple Case Study

In this case study, a researcher has a set of genes of interest and would like to retrieve information about the pathways each gene is involved in, the SNPs associated with each gene, and the splice variants of the genes transcribed RNA and the sequence and sequence variants of each of the proteins they encode. Using the LexEVS and caGrid's Discovery API, we can easily locate all models that have Gene, Pathway, SNP, Protein and ProteinFeature (splice and sequence variants). We would like to be able to use the following object-oriented, pseudo-query:

select

gene.symbol, pathway.name, snp.*, protein.name,

spliceVariant.*, sequenceVariant.*

from

Gene as gene

join gene.pathways as pathway

join gene.physicalLocations as physicalLocation

join physicalLocation.snp as snp

join gene.proteins as protein

join protein.spliceVariants as spliceVariant

join protein.sequenceVariants as sequenceVariant

order by

gene.symbol, pathway.name, protein.name;

If we had a complete mapping
 of UML models to the NCIt, we could potentially translate this query into a distributed CQL query DCQL (or rather, multiple CQL queries), but since there is no such complete mapping, we cannot. The alternative is to manually formulate queries against each source UML model. Suppose that we want to use caBIO and gridPIR. We can formulate the following query to get all proteins that are encoded by our genes of interest.

<ns1:CQLQuery xmlns:ns1="http://CQL.caBIG/1/gov.nih.nci.cagrid.CQLQuery">

 <ns1:Target name="gov.nih.nci.cabio.domain.Protein">

 <ns1:Association name="gov.nih.nci.cabio.domain.Gene" roleName="geneCollection">

 <ns1:Group logicRelation="OR">

 <ns1:Attribute name="symbol" predicate="EQUAL_TO" value="gene1"/>

 <ns1:Attribute name="symbol" predicate="EQUAL_TO" value="gene2"/>

 <ns1:Attribute name="symbol" predicate="EQUAL_TO" value="gene3"/>

 </ns1:Group>

 </ns1:Association>

 </ns1:Target>

</ns1:CQLQuery>

The results will look something like this:

<ns1:CQLQueryResults targetClassname="gov.nih.nci.cabio.domain.Protein" xmlns:ns1="http://CQL.caBIG/1/gov.nih.nci.cagrid.CQLResultSet">

 <ns1:ObjectResult>

 <ns2:Protein name="Breast cancer type 1 susceptibility protein" primaryAccession="P38398" uniProtCode="BRCA1_HUMAN" id="3038" xmlns:ns2="gme://caCORE.caBIO/4.0/gov.nih.nci.cabio.domain"/>

 </ns1:ObjectResult>

 <ns1:ObjectResult>

 <ns3:Protein name="Breast cancer type 1 susceptibility protein homolog" primaryAccession="P48754" uniProtCode="BRCA1_MOUSE" id="3039" xmlns:ns3="gme://caCORE.caBIO/4.0/gov.nih.nci.cabio.domain"/>

 </ns1:ObjectResult>

</ns1:CQLQueryResults>

The problem is that from these results, we cannot tell which proteins are associated with which genes. This is primarily because CQL can only return data from one type (UML class - that is either gene or protein, but not both), so we cannot create something like a SQL SELECT clause which selects data from multiple, joined tables. Also, most caBIG data services do not return XML that includes keys that could be used to correlate data. So, the only solution is to execute multiple queries and then "manually" correlate the data (in practice, you would write code to do this). The basic approach in our scenario would be to loop through the list of genes, and retrieve the proteins associated with each gene by constructing a query that looks like the following.

<ns1:CQLQuery xmlns:ns1="http://CQL.caBIG/1/gov.nih.nci.cagrid.CQLQuery">

 <ns1:Target name="gov.nih.nci.cabio.domain.Protein">

 <ns1:Association name="gov.nih.nci.cabio.domain.Gene" roleName="geneCollection">

 <ns1:Attribute name="symbol" predicate="EQUAL_TO" value="gene1"/>

 </ns1:Association>

 </ns1:Target>

</ns1:CQLQuery>

But this is only a workable solution for very small data sets because the number of queries that must be executed increases exponentially with the size of the data. For example, retrieving SNPs for our genes using the query of this case study is impractical because it would take too long to complete. So, at this point, the "simple" case study basically fails, and we need to start considering more theoretical alternatives.
3.2 Theoretical Alternatives

The next version of CQL (CQL2) will allow us to indicate what associations away from the target UML class should be populated. For example, in the caBIO model, Gene is related to Protein by an association where the role on the side of the association that connects to Gene is named geneCollection. So, we could formulate something like the following query, which is similar to the previous CQL query, except here we are selecting genes that have a symbol of “gene1”, “gene2”, or “gene3”.
<ns1:CQLQuery xmlns:ns1="http://CQL.caBIG/2/gov.nih.nci.cagrid.cql.Components">

 <ns1:CQLTargetObject className="gov.nih.nci.cabio.domain.Protein">

 <ns1:CQLAssociatedObject className="gov.nih.nci.cabio.domain.Gene"

 sourceRoleName="geneCollection">

 <ns1:CQLGroup logicalOperator="OR">

 <ns2:BinaryCQLAttribute name="symbol"

 xmlns:ns2="http://CQL.caBIG/2/gov.nih.nci.cagrid.cql.Attribute">

 <ns2:Predicate>EQUAL_TO</ns2:Predicate>

 <ns2:AttributeValue>

 <ns2:StringValue>gene1</ns2:StringValue>

 </ns2:AttributeValue>

 </ns2:BinaryCQLAttribute>

 <ns2:BinaryCQLAttribute name="symbol"

 xmlns:ns2="http://CQL.caBIG/2/gov.nih.nci.cagrid.cql.Attribute">

 <ns2:Predicate>EQUAL_TO</ns2:Predicate>

 <ns2:AttributeValue>

 <ns2:StringValue>gene2</ns2:StringValue>

 </ns2:AttributeValue>

 </ns2:BinaryCQLAttribute>

 <ns2:BinaryCQLAttribute name="symbol"

 xmlns:ns2="http://CQL.caBIG/2/gov.nih.nci.cagrid.cql.Attribute">

 <ns2:Predicate>EQUAL_TO</ns2:Predicate>

 <ns2:AttributeValue>

 <ns2:StringValue>gene3</ns2:StringValue>

 </ns2:AttributeValue>

 </ns2:BinaryCQLAttribute>

 </ns1:CQLGroup>

 </ns1:CQLAssociatedObject>

 </ns1:CQLTargetObject>

 <ns2:AssociationPopulationSpecification

 xmlns:ns2="http://CQL.caBIG/2/gov.nih.nci.cagrid.cql.AssociationPopulationSpec">

 <ns2:NamedAssociationList>

 <ns2:NamedAssociation roleName="geneCollection"/>

 </ns2:NamedAssociationList>

 </ns2:AssociationPopulationSpecification>

</ns1:CQLQuery>

The NamedAssociationList element describes what associated information should be included in the results. Here we are saying that for each Protein that is returned, also include the Gene that encodes it in the resulting XML document.

The results would then look like this:

<ns1:CQLQueryResults targetClassname="gov.nih.nci.cabio.domain.Protein" xmlns:ns1="http://CQL.caBIG/1/gov.nih.nci.cagrid.CQLResultSet">

 <ns1:ObjectResult>

 <ns2:Protein name="Breast cancer type 1 susceptibility protein" primaryAccession="P38398" uniProtCode="BRCA1_HUMAN" id="3038" xmlns:ns2="gme://caCORE.caBIO/4.0/gov.nih.nci.cabio.domain">

 <ns2:geneCollection>

 <ns2:Gene symbol="gene1" .../>

 </ns2:geneCollection>

 </ns2:Protein>

 </ns1:ObjectResult>

 <ns1:ObjectResult>

 <ns3:Protein name="Breast cancer type 1 susceptibility protein homolog" primaryAccession="P48754" uniProtCode="BRCA1_MOUSE" id="3039" xmlns:ns3="gme://caCORE.caBIO/4.0/gov.nih.nci.cabio.domain">

 <ns2:geneCollection>

 <ns2:Gene symbol="gene2" .../>

 </ns2:geneCollection>

 </ns2:Protein>

 </ns1:ObjectResult>

</ns1:CQLQueryResults>

This feature could potentially allow us to retrieve all of the associated data that we desire, but still only from a single data source. In this case study, we want to also pull information about protein features (splice variants of RNA and sequence varients of protein) from gridPIR. But, we could not just include protein data from gridPIR into this document because the caBIO XML schema has not been designed with extension elements that would permit this. So, including this data would create an invalid XML document
. One approach to solving this problem would be to require all XML schemas to be defined with extension elements so that XML types from other namespaces could be easily nested within any document. This would allow validation of both the base content as well as the content that is nested in the extension element. There are also many problems with that approach, including that fact that it is unclear what is meant by nesting elements in an extension element. Does it mean they are the same, or that they are related?

But let us assume that we could update all XML schemas so that all XML types support extension elements. We could then correlate data from multiple sources by nesting it in within these extension elements. Integration of additional data produces an ever-growing tree structure. However, since the logical structure of the data is a graph, these documents are likely to contain quite a bit of duplication. This problem could be solved by designing XML schemas (and serializers) to make use of ID and IDREF data types to allow references within a document.

So, making several assumptions about how we can extend CQL, query processors, XML schema, and serializers, we have a situation where we could potentially correlate data from multiple data sources through a single, federated query. But, often it is still impractical to produce the desired data set through a single query. Instead, we often want to extract several intermediate data sets through multiple queries, and then perform some additional queries over these intermediate data sets.

First, we have to decide how to store these intermediate data sets. We could directly load the XML documents into an XML database, and then use an XML query language to query them. The benefit here is that we can easily add new documents to such a database without needing to design a new schema. The drawback to using an XML query language is that the queries will be highly dependent on the tree structure of these documents. This tree structure is determined by how we chose to retrieve the data from the data sources rather than the semantics of the source UML model. So, we could potentially produce two sets of documents that represent equivalent data sets, but require different XML queries to answer the same questions. We could also transform the data into a common structure, but again, each transformation will depend on how the data was retrieved.

Ideally, we want to be able to query against some unification of the logical models of each of the data sets. To enable this, we could create a new relational database schema that supports this unified logical model and then store all the data there. The drawback to this approach is of course that the database schema may need to be modified whenever new data sets from sources with different models are added.

3.3 Necessary Enhancements to caBIG Technology

When considering the introduction of a new technology, it is useful to be able to compare the potential costs of introducing the new technology with the cost of extending existing technologies. The previous section has identified several enhancements that would be necessary to facilitate data integration. Among those enhancements are the following:

· Extending CQL and CQL query processors to enable retrieval of associated data and then deploying them to all caBIG data sources.

· Enforcing XML schema design rules to support extension and use of references within documents and then upgrading all XML schemas.

· Modification of serializers to support references.

· Providing support for integrating and querying intermediate data sets.

Furthermore, to support query of caBIG data sources through a mediated model we would need to update all existing UML models to provide complete mappings to the mediated model.

3.4 What are the barriers to data integration?
The caBIG community has applied software engineering best practices to provide open APIs, information models, and message formats. The problem is that these best practices per se are not sufficient to enable data integration in the caBIG community as it has developed.

UML is useful for designing software components for applications in that are focused in a particular domain. It is especially apt for designing object-oriented programming (OOP) systems where the appropriate combination of data and behavior is necessary to build maintainable systems. The Model-driven Architecture (MDA) provides a mechanism to prevent UML models from becoming out-of-sync with the components they model, thereby better utilizing the investment in creating those models. Requiring the UML model to be annotated with concepts from public, electronically available terminologies ensures that the UML models are semantically defined with universally agreed upon definitions. The caDSR enables these models to be discovered and retrieved both at design-time and at run-time, further increasing their value. This ability to find and use UML models is extremely valuable for building interoperable systems. But it is not as useful for integrating data.

In the caBIG community, where data sources are autonomous and scientific knowledge is always changing/increasing, we have to anticipate that we will need to combine different information about common entities. UML classes define entities in terms of a set of fixed attributes and associations. This is appropriate in the context of an application that relies on a fixed interpretation of the world. However, when our goal is to combine data from multiple sources, we need to accommodate new information (same object, but different attributes and associations) about that same entity. It is difficult to combine UML classes, or the programming languages constructs they model, from different domains.

In caBIG, model reuse consists of importing some portion of one model into another model. This is actually still not an entirely straightforward process. It also doesn’t ensure automatic interoperability. XML Schemas generated from these shared models are usually in a different namespaces and can’t be interpreted by systems expecting the original namespace. Furthermore, the OOP language constructs generated from the new model are incompatible with constructs generated from the original model. Part of the problem here relates to the fact that UML model elements are not universally addressable (e.g. with a URI). So, one UML model cannot simply refer to another model. More importantly, though, UML domain models and OOP languages are designed to work in a fixed representation of the world.

Furthermore, while XML-based Web Services provide location and platform independence and the use of XML Schema may be absolutely necessary for transactional systems that need to validate content before beginning a transaction, the use of these technologies alone does not enable data integration. In fact, as was described earlier, strict XML Schema design can make it nearly impossible to combine data of different formats (See page 11).

The main point of this section is that while UML, OOP, and XML Schema are important and valuable in the context of software engineering, alone they are not sufficient to enable data integration. What is needed is a technology that is designed specifically for data integration in an environment like the caBIG community.
4 Why is Semantic Web technology appropriate for caBIG?

The creators of caBIG recognized that enabling researchers to share data and applications would have a synergistic effect in the cancer research community. So, the caGrid infrastructure is designed to enable this sharing. As more institutions become grid-enabled, the value of the data increases and creates incentive for more institutions to become grid-enabled. In the evolution of the World Wide Web, this phenomenon is known as the "network effect." Participation in the web grows and increases in value organically due to a feedback loop between publishing and consuming content.[11]

The Semantic Web activity is an effort undertaken by the W3C to apply the same principles that made the Web of HTML documents successful to data. That is, Semantic Web (SW) technologies are used to support a Web of data [12]. In this way, the SW activity and caBIG have similar goals. So, SW technology might be used to address some of the data integration challenges that have been encountered in caBIG.

In order to understand SW technology and how it can be used in caBIG it is necessary to understand the features of distributed web of data. These are enumerated in [13] as:

· The AAA Slogan

· The Open World Assumption

· The Non-unique Naming Assumption

In order to enable the network effect, and due to the autonomous nature of distributed databases, we have to allow (and expect) that, anyone can say anything about any topic. This is the AAA slogan. It has multiple implications. First, we have to anticipate contradictions and handle data that does not conform to our expectations. This presents problems for traditional schema languages such as W3C XML Schema, relational database schemas, and even object-oriented class definitions. Second, we need a way to refer to things in a global scope. On the Web, URLs provide globally scoped names. We also cannot assume that we have complete information. In a global Web of data where anyone can say anything about any topic, we may not yet have gathered all information about a particular topic. This is the Open World Assumption.

The implication of the Open World Assumption is that we cannot assume that something is false just because it hasn't been asserted to be true. It could be true or false. Another important implication of the AAA slogan is that we have to anticipate that any topic could have multiple names, since we cannot prevent someone from asserting a new alias at any point. This is the Non-unique Naming Assumption. It is important to note that while we can use SW technology to accommodate non-unique names, we still need to ensure that the same name is not used to refer to different topics. That's where URLs come in.

Again, the AAA slogan is what allowed the Web to become a success, and it implies the need for both the Open World and Non-unique Naming assumptions. Since caBIG has the same goal as the Semantic Web, namely to create a network of data, caBIG will need to address these same assumptions if it is to attempt to emulate the success of the Web.

The remainder of this document introduces SW technologies and describes how they could be integrated with caGrid technology. The technologies that will be considered are RDF, RDFS, OWL, SPARQL, and SWRL.

4.1 Resource Description Framework (RDF)

RDF defines a simple data structure that is designed to describe resources that are available on the Web. A resource is anything that can be identified with a URL. So, RDF can also be used to describe data from caBIG data sources. Furthermore, RDF can be integrated with XML technology, including XML Schema. This section provides a brief introduction to RDF and then describes how it can be integrated with the caBIG approach to XML messages and XML Schema.[14]

The RDF data structure consists of a subject, predicate, and object. These three components constitute a statement known as a triple. For example, the following two triples indicate the title and author of a web page.

<http://www.eg.com/some/page.html>
 <http://purl.org/dc/elements/1.1/title> "Some Page" .

<http://www.eg.com/some/page.html>
 <http://purl.org/dc/elements/1.1/author> <http://www.eg.com/people/George> .

The meaning of these two triples is "the page http://www.eg.com/some/page.html has the title 'Some Page' and author George."

Subjects, predicates, and objects may be resources. Subjects and predicates must be resources, while objects may be either resources or literal values
. In the first triple, http://www.eg.com/some/page.html is the subject, http://purl.org/dc/elements/1.1/title is the predicate, and "Some Page" is a literal object. In the second triple, http://www.eg.com/people/George is an object that is also a resource. Any resource that is the subject of one triple can be the object of another, and vice versa. Predicates should not be the subject or object of any triple. For example, the following triple provides the email address of George.

<http://www.eg.com/people/George>
 <http://xmlns.com/foaf/0.1/mbox> <mailto:george.o.jungle@eg.com> .

Triples are linked together to form a graph structure. For example, the first two triples form the following simple graph.

[image: image1.jpg]
Figure 1: Graph formed from two triples.
Notice that subjects and objects constitute nodes while predicates constitute edges. Also note that subjects or objects that have the same URL are merged into a single node. This feature is know as RDF Merge and is the mechanism for constructing graphs from triples. RDF Merge provides the basis for data integration on the Semantic Web. For example, the first two triples above may be contained in one data source (Web page or database) while the third triple may be contained in another data source. However, these two data sets are logically linked through the use of URLs. When the triples are considered together (either through aggregation or federated query), they are merged into a single graph structure like the following.

[image: image2.jpg]
Figure 2: Merged graph created from separated documents.
In fact, the primary logical model of RDF is a graph structure where subject and object resources are nodes and predicate resources are edges.

RDF also provides some very basic support for describing class membership. For example, we can indicate that George is a person as follows.

<http://www.eg.com/people/George>
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .

One can also indicate that literals have a particular datatype. The following indicates that the title of a web page is of type string, as defined by XML Schema.

<http://www.eg.com/some/page.html>
 <http://purl.org/dc/elements/1.1/title>
 "Some Page"^^<http://www.w3.org/2001/XMLSchema#string> .

RDF supports all XML Schema datatypes.

There are many serialization formats for RDF. The various formats exist because the are each suited for different purposes, but they must all be interpreted in the same way - as a graph. The format used above is called N-Triple, which is best suited for expressing large data sets. There is an XML serialization, known as RDF/XML, which is suitable for exchange over Web-based protocols and integration with other XML technologies.

In order to simplify the following discussion, another RDF serialization format is introduced here, called N3, without much explanation. The RDF/XML notation is introduced later in with regard to using RDF with XML Schema. The following is an N3 representation of the graph that we have been discussing.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix eg: <http://www.eg.com/people/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://www.eg.com/some/page.html>

 dc:title "Some Page"^^xsd:string;

 dc:author eg:George .

eg:George

 a foaf:Person;

 foaf:mbox <mailto:george.o.jungle@eg.com> .

Notice several things here. First, one can use an abbreviated syntax by introducing prefixes. Second, a period terminates a triple, while a semi-colon is use to make multiple assertions about a subject, without repeating the subject. Finally, the letter "a" is shorthand for rdf:type.

4.2 RDF, XML and XML Schema

As stated previously, Semantic Web technology makes the "open-world assumption", according to which one cannot infer that something is true or false simply because it is not asserted. This is necessary to allow these technologies to work with incomplete data and to allow assertions about resources to be made by anyone. An implication of this is that data constraints, such as those expressed in W3C XML Schema, are not really possible or desirable.

The fundamental difference between XML and RDF is that RDF is a knowledge representation format, while XML is a message format[3]. XML validation is clearly valuable for constraining the contents of messages. For transactional services, it may be absolutely necessary to be able to validate an incoming message before beginning processing. RDF can be serialized to look like traditional XML message formats that conform to an XML schema. This allows us to have the best of both worlds. Data integration oriented applications that are RDF-aware can use RDF Merge to combine heterogeneous data sets or use reasoning services (described later) to infer new information, while non-RDF-aware applications can still validate these messages. Following is an example excerpt from a caBIG XML schema.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="gme://caCORE.caBIO/4.0/gov.nih.nci.cabio.domain"

 targetNamespace="gme://caCORE.caBIO/4.0/gov.nih.nci.cabio.domain"

 elementFormDefault="qualified">

...

 <xs:element name="Gene" type="Gene"/>

 <xs:complexType name="Gene">

 <xs:sequence>

...

 <xs:element name="proteinCollection" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Protein" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="bigid" type="xs:string"/>

 <xs:attribute name="clusterId" type="xs:long"/>

 <xs:attribute name="fullName" type="xs:string"/>

 <xs:attribute name="id" type="xs:long"/>

 <xs:attribute name="symbol" type="xs:string"/>

 </xs:complexType>

A document that conforms to this schema looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<Gene xmlns="gme://caCORE.caBIO/4.0/gov.nih.nci.cabio.domain"

 id="123"

 symbol="gene123"

 >

 <proteinCollection>

 <Protein id="234" name="protein234"></Protein>

 </proteinCollection>

</Gene>

An RDF version of this document would look like this:

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:cbd="gme://caCORE.caBIO/4.0/gov.nih.nci.cabio.domain"

 xmlns:xml="http://www.w3.org/XML/1998/namespace"

 xml:base="urn:some-data"

 >

 <Gene xmlns="gme://caCORE.caBIO/4.0/gov.nih.nci.cabio.domain"

 rdf:ID="gene123"

 cbd:symbol="gene123"

 >

 <proteinCollection>

 <Protein rdf:ID="protein234" cbd:name="protein1234"/>

 </proteinCollection>

 </Gene>

</rdf:RDF>

The additional items are bolded. First, a RDF container element has been added, and the rdf, cbd, and xml namespaces are introduced so that we can use attributes from those namespaces. Also, rdf:ID attributes replace the id attributes on the Gene and Protein elements. The reason for the rdf:ID attributes is that in RDF, resources (including predicates) are uniquely identified by URIs. This is what allows creation of graph structures through linking. The rdf:ID attribute is of XML data type ID, so its values must be unique in a document, and it must be a legal XML name. So, that's why the value of the Gene id attribute had to change from 123 to gene123. When RDF is parsed, the value of the rdf:ID attribute is concatenated with the value of the xml:base attribute to create a URI for the resource. In this case, the URI of this gene would be urn:some-data#gene123. Also notice that the symbol attribute on the Gene element needs to be prefixed to associate the target namespace of the XML schema with it. This is only necessary when properties are represented as XML attributes. If the property had been represented as a child element, the prefix would not be necessary.

To enable caBIO XML to be expressed as RDF, the caBIO XML schema needs to be modified to allow attributes in the RDF namespace (e.g. rdf:ID and rdf:about). However, we have already discussed the XML Schema changes that would be needed to allow data integration without using RDF. Those changes are far more extensive (and potentially problematic) than the modifications needed to support RDF.
To enable the use of RDF XML serialization that can be validated with XML Schema, a certain design pattern, known as "striping", needs to be used.

<Node>

 <predicate>

 <Node>

 <predicate>

 <Node/>

 </predicate>

 </Node>

 <predicate>

</Node>

Fortunately, this design pattern is already used in most caBIG XML schemas.

4.2.1 Case Study Revisited

For example, let’s take the query from our case study. A researcher has a set of genes of interest and would like to retrieve information about the pathways each is gene is involved in, the SNPs associated with each gene, and the splice variants of the genes transcribed RNA and the sequence and sequence variants of each of the proteins they encode. At this point, we wanted to correlate data from caBIO and gridPIR. The following XML/RDF represents protein data from gridPIR.

 <Protein rdf:ID="protein1" gp:name="protein1">

 <proteinFeatureCollection>

 <ZincFingerRegion rdf:ID="zincFingerRegion1"

 gp:begin="1" gp:end="3" gp:description="some desc"/>

 </proteinFeatureCollection>

 </Protein>

The graph representation of this data is as follows.

[image: image3.jpg]
Figure 3: Protein data from gridPIR
Here, protein1 is associated with zincFingerRegion1, which as a begin of 1 and an end of 3 and a description of “some desc.” The type association from protein1 to Protein indicates that protein1 is of type Protein. Similarly, zincFingerRegion1 is of type ZincFingerRegion.

We also have some genomic data from caBIO.

<Gene rdf:ID="gene1" cbd:symbol="gene1">

 <proteinCollection>

 <Protein rdf:ID="protein1" cbd:name="protein1"/>

 </proteinCollection>

 <pathwayCollection>

 <Pathway rdf:ID="pathway1" cbd:name="pathway1"/>

 </pathwayCollection>

 </Gene>

The graph representation of this is as follows.

[image: image4.jpg]
Figure 4: Genomic data from caBIO
Here we can see that protein from the gridPIR data and the caBIO data have the same name. Let’s assume that this means they logically represent the same protein, but gridPIR is providing some additional data about one of the protein’s features, namely the ZincFingerRegion. We would like to be able to use RDF Merge to create a unified view of ALL this data like the following.

[image: image5.jpg]
Figure 5: Merge caBIO and gridPIR data
However, RDF Merge requires that URLs be the same in order to merge nodes. Here we have two different URLs representing the same protein:

· urn:cabio-data#protein1
· urn:gridpir-data#protein1
So, RDF Merge cannot be used alone to correlate the data. But, because of the RDF structure and the AAA slogan, we can use other SW technology to make explicit statements about when two nodes (resources) should be considered the same, even if their URLs are different. The following sections will provide alternative approaches.

4.3 Resource Description Framework Schema (RDFS) and the Web Ontology Language (OWL)

As was pointed out in the first paragraph of this document, the true value of data integration is that it allows us to discover new knowledge by uncovering implicit relationships in heterogeneous data sets. While RDF provides the basic structure that enables data integration, it is RDFS and OWL that provide a basis for reasoning about data in a way that enables us to infer new knowledge.

These languages provide vocabularies that allow us to describe the meaning of RDF data. In the Semantic Web, meaning is defined by the kinds of inferences that we can make. RDFS and OWL define a set of resources (terms) that when used in a particular pattern, allow certain inferences to be made. Essentially, these are rules. These rules are expressed in formal logic. This enables the use of general purpose reasoning software to draw inferences from the data. Inferred data is expressed as new triples in the RDF graph.

RDFS and OWL can be thought of as schema languages in that they describe other data, but they are not the same as XML Schema, relational data base schemas, or OOP languages. Specifically, RDFS and OWL are not used to validate message formats, enforce integrity constraints, or encapsulate implementation of behavior. Rather, they provide a declarative, formal language that defines the set of inferences that can be made about data.

RDF provided the rdf:type property, which allowed us to categorize data into sets, or classes. RDFS introduces additional classes and properties that allow use to organize class and properties into hierarchies and describe basic characteristics of properties.

For example, the example from the RDF section above looked like this.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix eg: <http://www.eg.com/people/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://www.eg.com/some/page.html>

 dc:title "Some Page"^^xsd:string;

 dc:author eg:George .

eg:George

 a foaf:Person;

 foaf:mbox <mailto:george.o.jungle@eg.com> .

We see that eg:George is a foaf:Person. foaf:Person happens to be defined as an RDF class in the FOAF RDFS/OWL vocabulary, but we could have used any resource to define type of eg:George. Using RDFS, we can define a sub class of foaf:Person and other classes.

eg:Customer rdf:type rdfs:Class;

 rdfs:subClassOf foaf:Person .

eg:Employee rdf:type rdfs:Class;

 rdfs:subClassOf foaf:Person .

We can also define properties like so.

eg:purchaseAmount rdf:type rdfs:Property;

 rdfs:domain eg:Customer;

 rdfs:range xsd:float .

eg:hireDate rdf:type rdfs:Property;

 rdfs:domain eg:Employee;

 rdfs:range xsd:date .

The definition of eg:purchaseAmount means that if a resource is the subject of this predicate, then we can infer that the subject is a eg:Customer. Similarly, it means that if a resource is the object of this predicate, then we can infer that the objects is of type xsd:float. For example, from the following assertion, we can conclude that eg:Bill is a eg:Customer even though we have not explicitly asserted that.

eg:Bill eg:purchaseAmount “2.50” .

Similarly, we can infer that the string “2.50” has datatype xsd:string, even though we did not include the explicit type on the literal resource (i.e. ^^xsd:string). However, as previously stated, RDFS does not define validation rules.

eg:Bill eg:purchaseAmount “two dollars and fifty cents” .

From the above statement, a reasoner
 would simply infer that the string “two dollars and fifty cents” has a datatype of xsd:date. It would not produce an error message.

At this point, we know (i.e. our knowledge base contains the triples) that eg:Bill is a eg:Customer hand has two values for the eg:purchaseAmount property. Suppose that we encounter the following assertion from another data source.

eg:Bill eg:hireDate “2009-01-01” .

Now we can infer that eg:Bill is also a eg:Employee. So, essentially, eg:Bill has a new type. It is both a eg:Customer and an eg:Employee. This kind of dynamic typing is impossible in OOP languages, but is a crucial requirement for environments that are characterized by incomplete information. We cannot assume that eg:Bill has a fixed type if the very next data source that we encounter provides information that indicate eg:Bill is of another type.

In addition to reasoning about data, we can also reason about classes. Suppose encounter the following assertions.

eg:TruckDriver rdf:type rdfs:Class .

eg:assignedInventory rdf:type rdfs:Property;

 rdfs:domain eg:Employee;

eg:drivesTruck rdf:type rdfs:Property;

 rdfs:subPropertyOf eg:assignedInventory;

 rdfs:domain eg:TruckDriver .

From this we can infer that eg:TruckDriver is a sub class of eg:Employee, because eg:drivesTruck is a sub property of eg:assignedInventory and the domain of the sub property must be a sub class of the domain of the super property.

But the kinds of inferences that are possible to define in RDFS are simple and limited. For example, we cannot describe inferences in terms of cardinality or value constrains on properties or compliments of classes. This is what OWL enables.

For example, we can make the following assertions.

eg:Employee rdf:type owl:Class .

eg:hasTitle rdf:type owl:DatatypeProperty .

eg:VicePresident owl:subClassOf eg:Employee;

 owl:equivalentClass [

 a owl:Restriction;

 owl:onProperty eg:hasTitle;

 owl:hasValue “VP”] .

This means, a eg:VicePresident is a eg:Employ and has “VP” as the value of its eg:hasTitle property. So, given the following assertion:

eg:Victoria eg:hasTitle “VP” .

We can infer the following triple:

eg:John rdf:type eg:VicePresident.

Or, given the following assertion:

eg:Lewis rdf:type eg:VicePresident .
We can infer the following triple:

eg:Lewis eg:hasTitle “VP” .

While RDFS and OWL cannot be used to validate data per se, we can check if data is logically consistent with our model. For example, suppose the company has a rule that employees cannot also be customers. This rule can be expressed as follows.

eg:Employee owl:disjointWith eg:Customer .

Then, if we were to encounter the following assertion:

eg:Lewis eg:purchaseAmount “5.75”^^xsd:float .

The reasoner would infer the following triple:

eg:Lewis rdf:type Customer .

But, we already know that eg:Lewis is a eg:Employee and we’ve just stated that an instance of eg:Employee cannot also be an instance of eg:Customer. Therefore, the reasoner would indicate that the model is inconsistent. In this way, OWL can be used to ensure that data is logically consistent with the models that it is aware of.

4.3.1 Case Study Revisited

We’ve seen how RDFS and OWL reasoners can be used to infer new knowledge. This capability also facilitates data integration. For example, we can define OWL axioms that indicate when two pieces of data should be considered the same. This enables us to merge graphs from different sources even though the URLs of the nodes may differ.

cb:name a owl:DatatypeProperty .

gp:name a owl:DatatypeProperty;

 owl:equivalentProperty cb:name;

 a owl:InverseFunctionalProperty .

The assertion is an OWL axiom, which states that gp:name is inverse functional and equivalent to cp:name. If a property is function, then it can have at most one value for any individual. That means, for example a Protein has only one name. But, here we are saying that the gp:name property is inverse functional. That means, any two Proteins that have the same name are the same Protein. And, the owl:equivalentProperty property allows us to say that cb:name and gp:name mean exactly the same thing.

The result of this axiom is that any two Proteins from caBIO or gridPIR that share a name will be merged. The graph before such a merge is as follows.

[image: image6.jpg]
Figure 6: caBIO and gridPIR data without axiom
Here, we can clearly see that the Protein instances from caBIO and gridPIR are related by their name, but the two instances are distinct. So, we haven’t yet integrated protein feature information from gridPIR with gene information from caBIO. However, after applying the axiom and invoking a reasoner, we get the following graph.

[image: image7.jpg]
Figure 7: caBIO and gridPIR data with axiom
Here we see a connection between the two Protein individuals. This means that they are now merged through the owl:sameAs predicate. Also notice that the Protein individual from caBIO is directly linked with the ZincFingerRegion individual from gridPIR. At this point, we have actually integrated the two data sets.

However, there is a problem with this approach. The cb:name property is also used by Pathway individuals from caBIO. By using the OWL axiom, we have asserted that cb:name is inverse function wherever it may be used. This may not be correct, if two pathways can have the same name but actually be distinct. Unfortunately, using OWL axioms alone, it would be difficult to constrain the scope of the inverse functional characteristic of this property to only its use on Protein individuals. Instead, we will need to use a more sophisticated rule language, called SWRL, to define these fine-grained constraints.

4.4 Semantic Web Rule Language (SWRL)

SWRL is a rule language that is designed to work with OWL (actually only, OWL DL and OWL Lite sub languages)[15]. It allows one to express concepts that are impossible to express using OWL axioms alone. An example that is provided by the SWRL W3C submission is that it is impossible to express the concept of uncle in OWL. But, it is straightforward to do so in SWRL:

parent(?x, ?y) ^ brother(?y, ?z) -> uncle(?x, ?z)

This rule states that if y is the parent of x, and z is the brother of y, then z is the uncle of x.

4.4.1 Case Study Revisited

From our case study, we want to be able to assert that two Proteins individuals from be considered the same, if they have the same name. And, we do not want to make that assertion apply wherever the name property is used. The following SWRL rule achieves this.

swrlb:equal(?p1_name, ?p2_name) ^

cb:Protein(?p1) ^ cb:name(?p1, ?p1_name) ^

gp:Protein(?p2) ^ gp:name(?p2, ?p2_name)

-> sameAs(?p1, ?p2)

This rule says that p1 and p2 are Protein objects and the values of their name properties are equal, then they are the same Protein instance.

After applying this rule, we get the following graph.

[image: image8.jpg]
Figure 8: caBIO and gridPIR data merged with rule
Here we can see that the data has been merged as desired, and that the rule applied only to the use of the name property with proteins and not with pathways.

4.5 SPARQL Query Language for RDF

RDFS, OWL, and SWRL provide powerful language constructs to facilitate data integration and discovery of new knowledge. However, to use reasoners, we need to combine data into a single data store. This may not be desirable or feasible, for example due to size or legal constraints. In this case, a federated query approach to data integration is preferable. SPARQL is a W3C recommendation that enables federated query of RDF data sources [16], and does not require the use of OWL or reasoners.

So, how could SPARQL be used in caBIG? Of course, caBIG already has a federated query language. If we want to consider using SPARQL, we need to consider our options. We could continue to enhance CQL to support our data integration needs. Or, we could adopt another language that already has features that support those needs, and achieves the same goals as CQL. CQL is designed to support queries against the object-oriented models that caBIG data sources expose. It is supported by all currently deployed caBIG data services, and it has the support of the caCORE SDK development tools. So, an alternative language must support object-oriented queries, be widely adopted, and have active tool support. There must also be some path that would allow the existing set of caBIG data services to support the language without excessive additional effort.

The crucial limitation of CQL is the inability to include associated data. That is, a query against Gene will return only the attributes of Gene objects and not of any related objects, such as the proteins they encode. Theoretically, this associated information can be retrieved by executing additional queries. However, the performance implications of that approach are unacceptable. This limitation greatly diminishes the value of data sources that are only accessible through the CQL language. Furthermore, CQL does not support inheritance. That is, queries are restricted to the concrete type that is referenced in the query. Instances of sub types are excluded from the results. Separate queries for each sub type must be formulated in order to retrieve a complete data set. CQL2 will support population of associated data, but the resulting data will be an XML tree structure, rather than a graph, which makes it difficult to integrate with other data sets. Another drawback of using CQL is that it has a relatively small community of support. CQL is rarely used outside of caBIG and therefore caBIG cannot benefit from the community support of other widely used technologies.

On the other hand, SPARQL is widely implemented, and has strong community support. It could be used to achieve the same goals as CQL and also overcome CQL's limitations. But, the obvious question is, "how can an RDF query language be used to query caBIG data that is described as UML?" The answer is that we can use SPARQL only if we could represent those UML models in RDF (OWL) and use middleware to translate SPARQL into a query language of the underlying data storage system, which in the case of caBIG is usually SQL. Fortunately, we can do both. We can translate UML models into OWL, and we can use existing middleware components to translate SPARQL into SQL. More about how we can do this is provided elsewhere in this document. This section focuses on why SPARQL features are useful.

SPARQL provides various query "forms". Only the SELECT and CONSTRUCT forms are of interest here. The SELECT form is very similar to an SQL SELECT clause, in that it returns a set of tuples that match the conditions in the WHERE clause.
SPARQL has similar expressivity to SQL, but while SQL is designed to work with relational data structures, SPARQL is designed to work with graphs. The SPARQL WHERE clause can be used to specify constraints on graph structure which the data being queried must have. SPARQL has several query forms. Only the SELECT and CONSTRUCT forms are discussed here. The SELECT form is similar to an SQL SELECT clause in that this query form will return a set of tuples as indicated by this clause. The CONSTRUCT form returns a graph structure. The result graph can be a copy of a sub graph in one of the source graphs, or it can be a completely new graph. Thus the CONSTRUCT form allows us to easily retrieve associated data and correlate data from multiple source graphs, while still maintaining type information about the data.

For example, the following query returns the title, author, email address of the author for all web pages known by data sources that are being queried.

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?title ?author ?email

WHERE {

 ?page dc:title ?title .

 ?page dc:author ?author .

 ?author foaf:mbox ?email .

}

This query returns the following tuple.

[image: image9.jpg]
The CONSTRUCT form allows construction of a new graph based on a template.

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX eg: <http://www.eg.com/terms/>

CONSTRUCT {

 ?page eg:hasAuthorWithEmail ?email .

}

WHERE {

 ?page dc:title ?title .

 ?page dc:author ?author .

 ?author foaf:mbox ?email .

}

This query returns the following graph.

[image: image10.jpg]
Figure 9: CONSTRUCT output of SPARQL query.
The W3C has also produced two related specifications:

 - SPARQL Protocol for RDF: A remote protocol for issuing SPARQL queries.

 - SPARQL Query Results XML Format: An XML serialization format for SELECT results.

These specifications provide a basis for creating SPARQL endpoints; i.e. remote services capable of exposing RDF data sets.

4.5.1 Case Study Revisited

Previously, we used OWL axioms and SWRL rules to create a unified view of data from caBIO and gridPIR. Now, we want to query the two sources and create a unified view of the data, without using axioms or rules. A SPARQL CONSTRUCT query can do this very elegantly.

CONSTRUCT {

 ?gene cbd:symbol ?symbol;

 rdf:type cbd:Gene;

 cbd:proteinCollection ?protein;

 cbd:pathwayCollection ?pathway .

 ?pathway cbd:name ?pathwayName;

 rdf:type cbd:Pathway .

 ?protein gp:proteinFeatureCollection ?zfr;

 rdf:type gp:Protein .

 ?zfr gp:description ?desc;

 rdf:type gp:ZincFingerRegion .

}

{

 GRAPH <urn:data/cabio> {

 ?gene cbd:symbol ?symbol;

 rdf:type cbd:Gene;

 cbd:proteinCollection ?cbdProtein;

 cbd:pathwayCollection ?pathway .

 ?cbdProtein cbd:name ?cbdProteinName;

 rdf:type cbd:Protein .

 ?pathway cbd:name ?pathwayName;

 rdf:type cbd:Pathway .

 } .

 GRAPH <urn:data/gridpir> {

 ?protein gp:proteinFeatureCollection ?zfr;

 rdf:type gp:Protein;

 gp:name ?proteinName .

 ?zfr gp:description ?desc;

 rdf:type gp:ZincFingerRegion

 } .

 FILTER(?proteinName = ?cbdProteinName) .

}

The CONSTRUCT clause describes the desired graph. Here, the protein feature information from gridPIR is merged with the gene information from caBIO. The FILTER clause, at the bottom of the query, ensures that the protein name is used as the “join”. The two GRAPH clauses indicate where the data should come from and what constraints are placed on those source graphs.

The resulting graph looks like this.

[image: image11.jpg]
Figure 10: Merge caBIO and gridPIR data
Another important thing to notice about this query is the use of the GRAPH clause. Often, a SPARQL query will execute against a single data set. In this case, it is not necessary to identify the data set using the GRAPH keyword. In fact, one of the major benefits of using RDF is that multiple graphs can be automatically merged into a single data set. However, in some cases, it is not practical to merge graphs, for example, because of size or access restrictions. In this case, we can the GRAPH keyword to apply queries to separate, potentially remote data sets.

So, in this way, federated query is “built-in” to SPARQL. The ARQ SPARQL engine, from the Jena project, uses this feature to supports federated query execution. GRAPH keywords identify remote SPARQL endpoints that speak the SPARQL protocol (which is another W3C recommendation). This, in itself, is very useful. However, sophisticated query planning algorithms are still needed to minimize the amount of data that is moved across the network. One such query planner is DARQ (http://darq.sourceforge.net/), which is built on ARQ. Another effort is Distributed SPARQL (http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IFI/AGStaab/Research/DistributedSPARQL), which is built on Sesame2.

NB: I have implemented a WSDL 1.1 and WSRF compliant SPARQL endpoint using the caGrid Introduce toolkit. It would be useful to modify ARQ to work with these SPARQL services.

But, CQL is supposed to work with object-oriented models. And, ideally, CQL should allow use to query against super types and retrieve all sub types. But, because of limitations in the designs of most caBIG XML schemas and capabilities of common XML data binding toolkits, CQL does not support this. Does SPARQL? Well, SPARQL is an RDF query language, and supports only very simple entailment (inference). So, on it’s own, SPARQL cannot infer the transitive closure of a sub type hierarchy. However, there are two options. One option is to use a SPARQL extension called regular paths (similar to XPath, but for graphs). But, the more common option is to express the source graph in a language like RDFS or OWL-DL. These languages have defined semantics. This allows a reasoner to compute the inferred-graph, which includes explicit assertions about type. For example, we can make the following additional assertions about the data from gridPIR (expressed in N3).

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix gp:
<gme://caCORE.caCORE/3.2/edu.georgetown.pir.domain#> .

@prefix gpd: <urn:gridpir-data#> .

gp:Protein a owl:Class .

gp:ProteinFeature a owl:Class .

gp:ZincFingerRegion a owl:Class;

 rdfs:subClassOf gp:ProteinFeature .

gp:SomeOtherFeature a owl:Class;

 rdfs:subClassOf gp:ProteinFeature .

gpd:otherFeature1 rdf:type gp:SomeOtherFeature;

 gp:begin "5";

 gp:end "7";

 gp:description "some other interesting feature" .

gpd:protein1 gp:proteinFeatureCollection gpd:otherFeature1 .

Here, I am saying that Protein, ProteinFeature, and ZincFingerRegion are OWL classes, and that ZincFingerRegion is a sub class of ProteinFeature. I’m also introducing a new class name SomeOtherFeature, which is also a sub class of ProteinFeature. Finally, I’m asserting an instance of SomeOtherFeature with a URI of gpd:otherFeature1 and adding it to the collection of features of gdb:protein1. The resulting graph looks like this (without inference).

[image: image12.jpg]
Figure 11: gridPIR data as OWL

(It should be noted that we were able to make assertions in one document about data in another document and then easily merge the two graphs even though they were using different syntaxes. This is an important advantage that RDF has over XML.)

If SPARQL supported inference, we would be able to run the following query, and retrieve the features that are associated with this protein.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX gp: <gme://caCORE.caCORE/3.2/edu.georgetown.pir.domain#>

CONSTRUCT {

 ?proteinFeature gp:description ?desc;

 rdf:type ?type .

}

{

 ?protein gp:name "protein1";

 gp:proteinFeatureCollection ?proteinFeature .

 ?proteinFeature gp:description ?desc;

 rdf:type ?type .

 ?type rdfs:subClassOf gp:ProteinFeature .

}

But this doesn’t retrieve anything, because the graph only asserts that zincFingerRegion1 is of type ZincFingerRegion and otherFeature1 is of type SomeOtherFeature. We need a reasoner to infer that if x has type X and X is a sub class of Y, then x also has type Y. Fortunately, there are several open-source reasoners that perform quite well for doing this kind of inference. Running this query produces the following graph.

[image: image13.jpg]
Figure 12: Data retrieved from inferred graph
This section has shown that SPARQL achieves all of the goals of CQL and more. It allows retrieval of typed data, associated data, sub type hierarchies, and federated query.

4.6 Semantic Web Pitfalls

Due to time limitations, this section is very brief. Much of the content is adapted from [13].

A major pitfall for software engineers that come from a OO or relational database background when the use SW technology is that while RDFS and OWL paradigms appear to resemble OO and relational paradigms, they are not the same. In fact, the requirements of OOP systems are at odds with Semantic Web assumptions: AAA, Open World, and Nonunique Naming.

 - We can't restrict the use of a property to individuals a particular type.

 - because AAA forbids this

 - because of Open World it is possible that we just don't know that the object is of the correct type

 - We can't enforce minimum cardinality constraints through error conditions.

 - because of Open World, we have to assume that we have incomplete information.

 - on the other hand, if we use complete class descriptions, we can check if the object is classified as a particular type.

 - We can't enforce minimum cardinality constraints through error conditions.

 - because of Nonunique Naming assumption, we need to ensure that individuals are different from each other before we can count.

If software engineers fail understand these differences, they are likely to make mistakes.

5 Steps Forward (What about UML?)
Previously, we saw that RDF could be used in conjunction with XML Schema to simultaneously fulfill different requirements. On the one hand, RDF facilitates data integration, while on the other hand, XML Schema supports message format validation. Similarly, OWL should be used to describe data in a way that is highly sharable, reusable, and supportive of logical inference and model constancy checking. UML should be used to model the behavior of software components and support MDA approaches to keep software and configuration artifacts synchronized with the system model.

The Object Management Group (OMG) recognized the limitations of UML for expressing conceptual models. The Ontology Definition Metamodel (ODM) is an OMG specification that is designed to address these limitations and enable ontology engineering and MDA practices using UML-based tools. From the ODM specification:

OWL concepts, particularly those of OWL DL, represent an implementation of a subset of traditional first order logic called Description Logics (DL), and are largely focused on sets and mappings between sets in order to support efficient, automated inference. UML class diagrams are also based in set semantics, but these semantics are not as complete; additionally, in UML, not as much care is taken to ensure the semantics are followed sufficiently for the purposes of automatic inference. This can potentially be rectified with OCL, which is part of UML 2.0. [...]

The lack of reliable set semantics and model theory for UML prevents the use of automated reasoners on UML models. Such a capability is important to applying Model Drive Architecture to systems integration. A reasoner can automatically determine if two models are compatible, assuming they have a rigorous semantics and axioms are defined to relate concepts in the various systems.
While the specification points out that the Object Constraint Language (OCL) could potentially be used specify precise semantics, the ODM actually does not use it, citing the following limitations.

Unfortunately, just as UML lacks a formal model theoretic semantics, OCL also has neither a formal model theory nor a formal proof theory, and thus cannot be used for automated reasoning (today). Common Logic, on the other hand, has both, and therefore can be used either as an expression language for ontology definition or as an ontology development language in its own right.
So, how should OWL be used in conjunction with UML? Ultimately, all caBIG data models should be expressed in OWL. Since OWL was designed for sharing and reuse over the Web and supports logical inference and model consistency checking, it is clearly superior to UML for the interoperability requirements of caBIG. The ODM defines several metamodels and profiles that allow mappings from OWL to UML and Entity-Relationship based models. These enable the use of MDA approaches for generated software and configuration artifacts in the same way that the caCORE SDK currently works. As a long-term goal, caBIG should begin developing infrastructure and tools to support OWL-based conceptual models and MDA based on the ODM.

But, in the mean time, how do we leverage the current investment in caBIG data services that are expressing their models as UML? Ideally, we would want all institutions that have already invested in caBIG technology to be able to automatically reap the benefits of using SW technology without additional cost. The following are steps that we can take to achieve this.

· Encourage development of new conceptual models in OWL.

· Support search and comparison of OWL models.

· Generate OWL models from UML models, making use of semantic annotations.

· Provide SW service plug-in components.

· Provide SW infrastructure components.

Each of these steps is described in more detail below.

5.1.1 Encouraging development of conceptual models in OWL

caBIG should provide mentoring, training, and tool support for ontology engineering. Use of open-source tools like Protégé should be encouraged. Workspace mentors should guide the caBIG community in ontology-engineering best practices and approaches to model reuse. The Open Biomedical Ontologies (OBO) Foundry project (http://www.obofoundry.org/) defines a set of principles for defining ontologies. These should be used to inform our efforts.

5.1.2 Support search and comparison of OWL models

Since OWL was designed for the Web, it is quite simple to publish an OWL model without the need of some repository technology such as caDSR or LexEVS. Linking among OWL models is also simple since references can be resolved using URLs and HTTP. However, when designing a new ontology, it is useful to be able to search for and compare ontologies so that one can determine how to reuse existing ontologies as much as possible.

5.1.3 Generate OWL models from UML models

It is possible to generate OWL models from UML models. These generated models are not necessarily optimal though because, for example, it is difficult to make use of hierarchical properties
. However, since OWL models can refer to one another, it is relatively easy to augment generated model with additional abstractions, for example, by composing similar properties into a hierarchy or asserting equivalence between a class in one model with a class in another model.

caGrid and NCRI are already collaborating to develop an approach to generating OWL models from UML models in a way that takes advantage of the semantic annotations that have been included in caBIG UML models [17,18]. In this approach, the NCIt is used as an upper-level ontology that is imported into the lower-level ontology that is generated from any single UML model. The advantage of this approach is that it enables use to reason about these UML models using concepts from the NCIt. In theory, we could use these models to translate semantic queries that were expressed in terms of the NCIt into queries against individual data sources. However, because the UML models are not completely mapped to the NCIt (in particular, UML class associations are not mapped to NCIt object properties) it is unlikely that this will be possible in the near future.

However, data integration through federated query is not the only option. Data aggregation is still a valuable option, and sometimes it is the only practical solution. Expressing caBIG data as individuals in an OWL ontology enables a powerful form of data integration, independently of federated query.

But if caBIG data sources are to express information models in OWL, they should also be able to answer queries over those models. Therefore, we need to provide query processors that to handle these queries without requiring caBIG participants to re-architect or re-deploy their existing services. The next section describes how we can do that.

5.1.4 Providing SW service plugin components

When using the caCORE SDK to develop caBIG data services, the developer must define an object-relational (OR) mapping that is used to map object-oriented queries against the UML model into SQL queries against a relational model. This information, plus information about the deployed service, is sufficient to both generate a simple OWL model and mappings that can be used to translate a SPARQL query into SQL. Therefore, we could provide a “plugin” to existing caBIG data services that have been generated using the caCORE SDK. This plugin could be simply dropped into an existing application server and turn the data service into a SPARQL endpoint, allowing it to participate in the Semantic Web.

There are a several products available for translating SPARQL to SQL. Many support a mapping language that enables a mapping from OWL or RDFS to relational tables. A list of such produces is provided here: http://esw.w3.org/topic/RdfAndSql
5.1.5 Providing SW infrastructure components

While we may be able to incorporate many existing caBIG data sources into a semantic web of data by creating a SW service plugin, that plugin must still be deployed. Furthermore, while such a plugin would support SPARQL queries against the asserted (mapped) RDF graph structure, it would not automatically enable us to reason over that data, remotely. Reasoning over large data sets requires significant computing power and it is unlikely that the machines that are currently hosting caBIG data sets have the necessary capacity to support that.

Therefore, we should provide infrastructure components that support temporary storage of data that has been extracted from caBIG data sources, either from a SPARQL endpoint or CQL-based service. In the latter case, we would need translation services to transform caBIG XML dialects into OWL. Following is a brief description of the required infrastructure components.

5.1.5.1 OWL Storage Service

Since caBIG recognizes the value of rich metadata and strongly typed data, we should be exposing OWL data, rather than just RDF. However, since OWL is expressed in a RDF and it often useful to query OWL instance data without need to do any reasoning during query processing, the basic OWL store can be represented through RDF-based interfaces. This service provides a set of interfaces for querying and modifying its content. It also provides metadata (in the form of a resource that is published to the index service) describing its capabilities, such as the languages it supports, the extension features for each language it supports, etc. This service should also advertise the terminology service metadata. It may also expose the contained ontology (TBox) as a UML model, and support the CQL query language. The RDFStoreQueryEndpoint and RDFStoreEndpoint interfaces will also support bulk data transfer (caGrid transfer, ws-enum, etc.).

Interfaces:

 - RDFStoreQueryEndpoint: Non-transactional, read-only data service

 - tripleQuery(query, language)

 - Takes some supported query language (e.g. SPARQL)

 - RDFStoreEndpoint: Transactional, read-write data service

 - store(data)

 - Adds triples to the store. This could include instance data, class, axioms, or rules.

 - update(expression, language)

 - Initially, this would support the SPARQL Update language, but the interface may be refined to support more granular operations.

Components:

 - SPI Framework: Service provider interfaces will be specified, and the service will assemble components using Spring to allow various implementations to be easily integrated.

5.1.5.2 Reasoner Service

The Reasoner service will implement interfaces expose OWL-based reasoning functionality. There are already standards in the community for interacting with reasoning services (DIG 1.0, 1.1, 2.0 or OWLLink). This service will provide WSDL 1.1 bindings for these standards. Reasoner services will advertise metadata about the vendor, the OWL features supported, reasoning profiles, and the query languages supported. The interfaces will also support bulk-data transfer and access control through additional interfaces.

Interfaces:

 - OWLLinkEndpoint (Transactional)

 - Not yet finalized

 - DIG1_0Endpoint (Transactional)

 - DIG1_1Endpoint (Transactional)

 - OWLQueryEndpoint (Non-transactional)

 - owlQuery(query, language)

Components:

 - SPI Framework: Service provider interfaces will be specified, and the service will assemble components using Spring to allow various implementations to be easily integrated.

5.1.5.3 OWL Storage Factory

caBIG users should be able to negotiate allocation of OWL storage resources. This interface would allow the user to request various features such as supported languages, storage space, bulk-transfer, length of allocation, renewal process, etc. The factory must publish metadata that indicates what features are supported.

5.1.5.4 Reasoner Factory Service

caBIG user should be able to negotiate allocation of reasoning resources. This interface will be similar to the OWL Store Factory service interface, but will include reasoning specific features.

5.1.5.5 OWL Transformer Service

In order to use OWL as a data integration format, we will need services that can transform XML to OWL. These transformer services should advertise metadata provides a set of mappings from XML namespaces to OWL namespaces indicating the types of transformations that they can perform. One way to configure these services would be to implement SAWSDL or GRDDL agents.

These services should support the use of ws-enumeration or caGrid transfer for moving data sets to and from transformers.

5.1.5.6 Access Control

In general, we will need a way to dynamically control access to OWL storage and reasoner services. This interface will support a simple set of policy expressions.

Interfaces:

 - AccessPolicyEnabledEndpoint

 - setPolicy(policy)

 - Takes some policy language describing who has access to the data.

 - getPolicy()

6 References
1. “caBIG Core Concepts.” last modified 08-28-2008 02:46 PM. caBIG Website. <https://cabig.nci.nih.gov/overview/caBIG_core_concepts>.

2. Maurizio Lenzerini (2002). "Data Integration: A Theoretical Perspective". PODS 2002: 233-246.

3. Wang, Xiaoshu, Gorlitsky, Robert, Almeida, Jonas S. “From XLM to RDF: how semantic web technologies will change the design of 'omic' standards.” Nature Biotechnology. Vol. 23, Num. 9. (2005): 1099-1103.

4. Gudivada, Ranga C, Qu, Xianyan A, Chen, Jing, Jegga, Anil G, Neuman, Eric K, Aranow, Bruce J. “Identifying disease-causal genes using Semantic Web-based representation of integrated genomic and phenomic knowledge.” J of Biomed Inform. Vol 41. (2008): 717-729.

5. Giallourakis C et al. “Disease gene discovery through integrative genomics.” Annu Rev Genomics Hum Genet. Vol. 6. (2005): 381-406.

6. The CAP cancer protocols – a case study of caCORE based data standards implementation to integrate with the Cancer Biomedical Informatics Grid.

7. Lenzerni, Maurizio. “Data integration is harder than you thought.” Presentation. CoopsIS. 2001. Trento, Italy.

8. Xu, Li, Embley, David. “Combining the Best of Global-as-View and Local-as-View for Data Integration.” ISTA. http://www.deg.byu.edu/papers/PODS.integration.pdf
9. Andrea Cali, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. “On the expres-

sive power of data integration systems.” In Proc. of ER 2002.
10. Oster, S, Langella, S, Hastings, S, Ervin, D, Madduri, R, Phillips, J, Kurc, T, Siebenlist, F, Covitz, P, Shanbhag, K, Foster, I, Saltz, J. “caGrid 1.0: An Enterprise Grid Infrastructre for Biomedical Research.” J Am Med Inform Assoc. 2008 Mar–Apr; 15(2): 138–149.
11. “Architecture of the World Wide Web, Volume One.” < http://www.w3.org/TR/webarch/>.

12. “W3C Semantic Web Activity.” < http://www.w3.org/2001/sw/ >.

13. Allemang, Dean, Hendler, Jim. “What is the Semantic Web.” Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL. Elsevier: New York. 2008. 1-13.

14. “RDF Vocabulary Description Language 1.0: RDF Schema.” < http://www.w3.org/TR/rdf-schema/ >.

15. “SWRL: A Semantic Web Rule Language

Combining OWL and RuleML.” < http://www.w3.org/Submission/SWRL/>.

16. “SPARQL Query Language for RDF.” < http://www.w3.org/TR/rdf-sparql-query/>.

17. Phillips, Joshua. “Ontology-Based Queries in caGrid.” Presentation at Arch & VCDE October 27-29 Face to Face Meeting. < https://gforge.nci.nih.gov/docman/view.php/357/14806/OntoBasedQueriesInCaGrid_ArchVCDEF2F_Oct2008.ppt>.

18. Gonzalez Beltran, Alejandra, et. al. “ONIX Semantic Federated Query Infrastructure:
Data Service Ontologies Engineering.” Presentation at Arch & VCDE October 27-29 Face to Face Meeting. < https://gforge.nci.nih.gov/docman/view.php/357/14810/caBIGXCWS-F2FMeeting-October2008-AGB.ppt>.

� In caGrid parlance, services are roughly grouped into two sets: data services and analytical services. Essentially, data services implement a standard query operation and expose metadata about the information model that the service supports. Analytical services are all services that are not data services.

� The mapping is from UML class to NCIt concept. No information about UML class-to-class associations is provided. So, as is pointed out later, the mapping from a UML information model to the NCIt is incomplete.

� Again, this means mapping of UML class and associations to NCIt classes and object properties.

� At this point, in caBIG, each class in a UML model maps to exactly one XML complex type.

� A literal is the object of a predicate and is not a resource (i.e. it doesn’t have a URI). See also: http://www.w3.org/TR/rdf-primer/

� Throughout this document, the term reasoner refers to a software component, not a human.

� In OWL, predicates are referred to as properties. Properties can be arranged in sub type hierarchies. Since we have no mapping from UML class associations to properties in NCIt, we cannot make use of hierarchical properties.

PAGE
1

