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Although controlled biomedical terminologies have been with us for centuries, it is only in the last couple
of decades that close attention has been paid to the quality of these terminologies. The result of this
attention has been the development of auditing methods that apply formal methods to assessing whether
terminologies are complete and accurate. We have performed an extensive literature review to identify
published descriptions of these methods and have created a framework for characterizing them. The
framework considers manual, systematic and heuristic methods that use knowledge (within or external
to the terminology) to measure quality factors of different aspects of the terminology content (terms,
semantic classification, and semantic relationships). The quality factors examined included concept ori-
entation, consistency, non-redundancy, soundness and comprehensive coverage. We reviewed 130 stud-
ies that were retrieved based on keyword search on publications in PubMed, and present our assessment
of how they fit into our framework. We also identify which terminologies have been audited with the
methods and provide examples to illustrate each part of the framework.

� 2009 Published by Elsevier Inc.
1. Introduction

The quality of a controlled terminology can be characterized from
any of several different perspectives. The design of a terminology
can, from the outset, determine much about the future capabilities
of the terminology. Many aspects of terminology design have been
identified and characterized as desirable or undesirable [1,2]. Stan-
dards development organizations have paid much attention to cre-
ating guidelines for quality control in terminology development.
For example, the ISO/TC215 WG3 (Health Informatics – Semantic
Content) has been working on such guidelines,1 and the latest Amer-
ican National Standards Institute guidelines for designing controlled
terminologies (ANSI/NISO Z39.19-2005) serves as a comprehensive
reference [3]. In some cases, there is lack of consensus about desirabil-
ity of particular design features (for example, some desire multiple
hierarchy [1,2] while others feel it should be avoided [4]).

The structure of a terminology can be studied to determine
whether it supports or contradicts the stated design principles of
the terminology. For example, Logical Observation Identifiers
Names and Codes (LOINC) is designed to have meaningless identi-
fiers; its use of sequential integers with check digits satisfies this
requirement [5]. Similarly, the relationships in the Unified Medical
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Language System (UMLS) are designed to be reciprocal; the MRREL
file provides a mechanism for delivering this information, as
described in [6].

Finally, the content of a terminology can be assessed to determine
if is comprehensive and accurate from lexical and semantic (as
opposed to structural) standpoints. For example, the list of all labo-
ratory tests contained in LOINC can be evaluated to identify whether
it in fact contains all the terms used by hospital laboratories.

To illustrate these distinctions, consider the assessment of a
terminology with respect to multiple hierarchies. A terminology
can be designed to include multiple hierarchies, but can be found
to have a structural characteristic that interferes with true multiple
hierarchies, such as the tree addresses used in the Medical Subject
Headings (MeSH), as described in [7]. Even when the terminology
has a high-quality structure to support multiple hierarchies, its
content might be deficient if a term that should have two parents
is found to have only one.

A great deal of thoughtful planning is generally applied to
terminology design, construction and maintenance. Design deci-
sions (however controversial) are made with care, while the
structural integrity can generally be guaranteed through good
programming and database design. The quality of a terminol-
ogy’s content, on the other hand, is often not immediately obvi-
ous. However, well-intentioned, authoritative, and cautious a
terminology builder may be, there is always the chance for
errors of omission or commission.
lied to the content of controlled biomedical terminologies. J Biomed Inform
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At the very least, good quality assurance practices dictate that
assessment for errors should be a standard part of terminology
management [8]. However, these practices, collectively referred
to as auditing, can be challenging. Manual, expert review of a large
terminology may provide little confidence that all errors have been
detected. For example, any manual attempt to identify redundant
terms in a large (>100,000 term) terminology will likely require
memory that goes beyond human capacity.

To address this problem, informatics researchers and terminol-
ogy developers have devised a number of methods to audit termi-
nologies in systematic ways. Their methods often use knowledge in
the terminology itself to perform the assessment and use comput-
ers to support – and in some cases entirely automate – the assess-
ment. This paper reviews the major efforts in this area and
organizes them into a framework that considers the aspects of ter-
minology content that are audited, the methods used in the audits,
and the terminology content that is employed to actually support
the auditing process.

2. Quality factors to be audited

We first identify quality factors by which terminology content
can be assessed. We consider intrinsic quality factors that are
inherent to terminology content and that can be audited indepen-
dently from external reference standards. Intrinsic factors include
concept orientation, consistency, soundness, and non-redundancy.
We also consider extrinsic quality factors that are contingent on
comprehensive coverage of external user requirements, domain-
specific contextual needs, or other external reference standards.
Both types of quality factors can be further applied to the content
and knowledge structure of a terminology. We describe these fac-
tors below and summarize them in Table 1.

2.1. Concept orientation (intrinsic)

Concept orientation refers to the principle that the units of dis-
course in a controlled terminology should actually be the meanings
(or concepts), rather than the human-readable labels (that is, the
terms) that are enumerated in a terminology with the intention
of conveying the meanings. In some of the terminological literature
and documentation, the words ‘‘concept” and ‘‘term” are used
inconsistently or interchangeably. In this paper, we will generally
use ‘‘concepts” when we are referring to the meanings being con-
veyed and ‘‘terms” when we are referring to the character strings
that are names for concepts. In the case of the UMLS, where strings
are grouped together based on their meanings and the groupings
are called ‘‘concepts” and given unique identifiers, the distinction
between terms and concepts is less clear; we refer to these group-
ings as ‘‘UMLS concepts”.
Table 1
Quality factors and associated errors to be audited.

1. Concept orientation 1.1 Undefined concepts
1.2 Concept ambiguity

2. Consistency 2.1 Lexical inconsistency
2.2 Inconsistent classifications

3. Non-redundancy 3.1 Redundant concepts
3.2 Redundant classifications

4. Soundness 4.1 Incorrect classifications
4.2 Erroneous concept definitions

5. Comprehensive
coverage

5.1 Incomplete concept coverage
5.2 Incomplete synonym coverage
5.3 Incomplete concept definitions
5.4 Incomplete class hierarchies
5.5 Incomplete non-hierarchical semantic relationships

Please cite this article in press as: Zhu X et al. A review of auditing methods app
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While the precise intended meanings of terms in a terminology
may be difficult to audit directly, concept orientation at a mini-
mum requires that the items in a terminology must correspond
to at least one meaning (‘‘non-vagueness”) and to no more than
one meaning (‘‘non-ambiguity”) [1]. For example, Poison Ivy can
be used to refer to a disease or a plant [9], which can cause concept
ambiguity. Methods aimed at auditing concept orientation have
therefore sought to identify undefined terms and terms with mul-
tiple meanings (polysemy) that are nevertheless mapped to a sin-
gle term identifier (implying a single concept) [9–11].
2.2. Consistency (intrinsic)

Consistency refers to adherence to semantic and/or linguistic
rules for representing terms in a terminology. Linguistic inconsis-
tency may occur when the same lexical modifier applied to differ-
ent terms implies different relationships to the original terms. For
example, there is a hierarchical relationship between congenital
porphyria and porphyria, but a sibling relationship between con-
genital Addison’s disease and Addison’s disease (as provided by
SNOMED) [12].

Inconsistency may also occur among hierarchical relationships
in ways that are unrelated to lexical phenomena. Most terminolo-
gies include some kind of hierarchical relationship among their
terms. These may be in the form of is-a relationships, broader–nar-
rower relationships, part–whole relationship, or a mixture of
these; in some cases, the meanings are not explicitly or implicitly
determined [1]. We consider all of these representations to convey
some type of organization into groups of terms with similar prop-
erties – that is, classification – including the semantic type assign-
ments in the UMLS. Whatever the intent of such classifications
within a particular terminology, the consistent application of that
classification is a desirable quality. [13]. In the UMLS, for example,
‘‘adulthood” and ‘‘old-age” are assigned both semantic types ‘‘Idea
or Concept” and ‘‘Age Group”, while other terms, such as ‘‘child-
hood”, ‘‘juvenile”, and ‘‘young adults” are assigned only to the lat-
ter [9]. The UMLS is particularly sensitive to classification
inconsistencies, since it attempts to combine information from
multiple terminologies that may be consistent with themselves
but not with each other. For example in the Computer Retrieval
of Information on Scientific Projects (CRISP) terminology, ‘‘colo-
rectal neoplasm” is broader than ‘‘colon neoplasm”, while in
MeSH the relationship is reversed; the UMLS contains both rela-
tionships, such that the two terms appear to be each other’s par-
ent [14].
2.3. Non-redundancy (intrinsic)

Non-redundancy refers to the absence of unwanted repetitive
information. Typical redundancy errors include redundant terms,
where terms with the same meaning are represented with sepa-
rate, independent identifiers (rather than being linked as syn-
onyms). For example, in the UMLS the following pairs are
redundant [10]: C0000760: ABNORMAL PAP SMEAR, C0240660:
PAP SMEAR ABNORMAL, and C0002965: Angina, Unstable,
C0235466: ANGINA UNSTABLE.

Redundant classifications can also occur in a terminology.
Redundant is-a assignments can be found as assignments wherein
a term is indentified as being in two classes, with the first class
being a descendant of the second (the second assignment is im-
plied by the first assignment due to the transitivity of the is-a rela-
tionship between classes) [13,15]. For example, in the UMLS,
‘‘year” has two semantic types: ‘‘Temporal Concept” and ‘‘Idea or
Concept”, but the former is a child of the latter. Therefore, these
semantic type assignments are redundant.
lied to the content of controlled biomedical terminologies. J Biomed Inform
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2.4. Soundness (intrinsic)

Soundness refers to the accuracy of the knowledge represented
in a terminology. Typical terminology features that are audited for
their soundness include term classifications [16], and term names
and definitions [17]. There are 9296 UMLS concepts with the
semantic type ‘‘Pharmacologic Substance” that have as children
UMLS concepts of type ‘‘Clinical Drug”; however, the former refers
to chemicals and the latter refers to manufactured objects consist-
ing (in part) of chemicals [6]. This is an example of incorrect
classification.

2.5. Comprehensive coverage (extrinsic)

Comprehensive coverage is, in some ways, the converse of
soundness. While soundness refers to the accuracy of what a ter-
minology does contain, comprehensive coverage refers to what a
terminology should contain. Auditing for comprehensive coverage,
therefore, must be related to the terminology’s intended domain in
the world outside the terminology itself. Auditing methods assess a
number of different aspects of terminology coverage, including:

(1) Terms and synonyms. Some composite terms exist for which
the derivative terms are missing. In the UMLS, for example,
‘‘monitor for seizure activity” and ‘‘seizure activity not pres-
ent” exist, but ‘‘seizure activity” (an electroencephalographic
finding) is missing [18].

(2) Defining attributes. As an example of incomplete definitions,
the UMLS does not support formal definitions and includes
narrative definitions for only a small portion of its concepts.

(3) Hierarchical classification. In UMLS, ‘‘Inert Gas Narcosis” is
an ‘‘Injury or Poisoning”, but based on common sense, it is
also an ‘‘Occupational Disease”. The inference that ‘‘Injury
or Poisoning” is-descendant-of ‘‘Disease or Syndrome”
should be added to the Semantic Network. This is an exam-
ple of missing Ancestor–Descendant [6] in the UMLS Seman-
tic Network.

(4) Non-hierarchical semantic relationships. For example, ‘‘cleft
lip” is a ‘‘disease” but has no relation to ‘‘finding of appear-
ance of lip” in UMLS [19].

2.6. Mixed cases

Terminology errors may sometimes relate to multiple quality
factors. For example, as mentioned previously, Gu et al. [9] found
that the UMLS concepts ‘‘adulthood” and ‘‘old-age” were classified
as being of the semantic type ‘‘Idea or Concept” while other similar
UMLS concepts such as ‘‘childhood”, ‘‘juvenile”, and ‘‘young adults”
were not. This indicates inconsistent classification. At the same
time, these UMLS concepts referred to multiple meanings, for
example, the state of age and the group of people in that state,
which violates non-ambiguity of concept orientation.

3. Knowledge used to perform audits

Auditing a terminology can be considered a comparative pro-
cess, in which the content of terminology is compared to some
source of truth. There are numerous potential sources of knowl-
edge that can be used to audit the knowledge a terminology con-
tains, as both the literature and our own experience with
Columbia University’s Medical Entities Dictionary (MED) clearly
demonstrate [20]. In a certain respect, all of these sources lie out-
side of the actual targeted internal representation in the terminol-
ogy. However, for the purposes of this discussion, we define
Please cite this article in press as: Zhu X et al. A review of auditing methods app
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intrinsic knowledge as information derived from the classification
scheme, hierarchy, semantic relationships to other terms, or attri-
butes such as lexical information that are present within the termi-
nology itself. We define extrinsic knowledge as a comparative
standard deriving from an outside source, such as other terminol-
ogies, user requirements, or human expert knowledge. A recent
example of automated auditing using extrinsic knowledge can be
found in [21]. The National Cancer Institute Thesaurus (NCIt)’s
Gene hierarchy was audited for missing ‘‘has associated process”
relationships using two sources, the NCBI Entrez Gene database
and the NCIt’s Biologic Process hierarchy, to check hierarchical
relationships. A given audit process could potentially use intrinsic
knowledge, extrinsic knowledge, or a combination of both.

When a terminology seeks to maintain synchronization with
some other terminology, as is the case with the UMLS and the
MED, the external terminology itself becomes an extrinsic source.
Maintaining synchronization with source terminologies entails a
persistent ongoing audit to determine what has been added, chan-
ged or deleted. The UMLS must remain synchronized with over 100
standard source terminologies, while the MED must remain syn-
chronized with terminologies from multiple ancillary systems
(e.g., multiple laboratory, pharmacy, clinical documentation, and
radiology systems) on at least a weekly basis, as well as the annu-
ally updated set of ICD9 diagnoses and procedures [22–24].

Although a source terminology may provide sufficient informa-
tion for the auditing process, occasionally additional external
sources are required. For example, if a new laboratory test term
is to be added to a terminology such as the MED or LOINC, the ter-
minology maintainer must consult a trusted external information
source (whether published or based on his or her own knowledge)
to determine whether it should be assigned to an existing class in
the terminology or if a new class is needed.

External sets of clinical terms have frequently been used to as-
sess coverage, in what are known as coding exercises, which are
generally semi-automated or manual attempt to find terms. Tar-
gets for these studies have included SNOMED-CT [25], UMLS
[26,27] nursing taxonomies [28], Read Codes [29], and multiple
terminologies in large studies [30,31].

Expert user review is another external knowledge source for
audits. Whether by direct perusal of a terminology [32], post hoc
review to correctly classify and semantically link external data
(discussed above), or to review output of audits based on intrinsic
factors (discussed below), expert knowledge is the final arbiter in
many evaluations.

The intrinsic knowledge that can be used in auditing processes
includes hierarchical relationships, the non-hierarchical semantic
relationships between terms, and the lexical knowledge about
terms. We start with an example from the experience of two of
the authors (D.M.B. and J.J.C.). Because the MED is integrated with
a live clinical information system, updating content is a multistage
process, in which changes are first entered into an editing environ-
ment, then a test environment, and finally to the production envi-
ronment. During each editing cycle, there are more than 25
automated audits that test for primary violations of terminology
rules and structure [33]. These audits are inextricably tied to the
initial design. Some use hierarchical information rules (‘‘cannot re-
move the last parent – all terms must have a parent”, ‘‘there can be
no hierarchical cycles”, ‘‘a term should not have two hierarchically
related parents”), some use semantic relationships rules between
terms (‘‘all semantic slots must have a reciprocal”, ‘‘no redundant
semantic relationships”), and some use rules combining classifica-
tion and semantics (‘‘a term cannot have two hierarchically related
values in the same semantic slot; the more specialized value
should be used – i.e., refinement is enforced”). This is a short sam-
pling of the checks on more commonly identify errors.
lied to the content of controlled biomedical terminologies. J Biomed Inform
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A number of distributed biomedical terminologies have been
assessed for similar adherence to design rules or terminological
principles using intrinsic knowledge. These include assessment
for adherence to basic ontological principles of SNOMED-CT [34]
and the Foundational Model of Anatomy (FMA) [35], assessment
for internal consistency in terminologies such as the READ Thesau-
rus [36,37], and various approaches to removing cycles in the
UMLS [38,39]. Outside the domain of biomedicine, a set of formal
consistency checking rules based on intrinsic hierarchical and
semantic inputs has been proposed for the WordNetTM 1.5 lexical
database [40] that share similarities with the routine MED audits.

Intrinsic knowledge can be used for more than highlighting vio-
lations of design principles; it has also been used in a variety of
interesting ways to correct or suggest correction to content. In gen-
eral the correction of content using intrinsic knowledge involves
the additional input of extrinsic knowledge, often in the form of
an expert to manually review items brought to light by an auto-
mated process [41].

A repeating theme in the literature is the application of seman-
tic relationship patterns to partition a terminology into more man-
ageable pieces for manual review. Occurrence of concepts having
identical relationships (or associations to other concepts) and hier-
archy are then brought to the attention of human reviewers. Using
intrinsic knowledge for this kind of partitioning has been applied
to the MED [42,43], SNOMED [44–46], and the NCIt [8] to reveal is-
sues such as missing classifications and redundancy.

Another example of this approach is to use knowledge in the
UMLS to derive a metaschema for the UMLS Semantic Network
by grouping semantic types with identical relationship sets
[47,48]. In [13,49], assignment of UMLS concepts to multiple UMLS
semantic types, especially when those types are considered to be in
different groups of semantic types of a metaschema [9,50] or
mutually exclusive [10], has been used to suggest classification er-
rors, ambiguity and inconsistency. These methods almost always
use expert manual review as a follow-up knowledge source. The
MED regularly uses internal semantic relationships to determine
classification; Cimino et al. [51] described an algorithmic approach
to enrich hierarchical structure in the MED and determine the cor-
rect location in the hierarchy for newly added terms.

Lexical information embedded in terminologies has also been
used for auditing processes. In the simplest case, lexical informa-
tion is used to fix lexical targets, such as spelling errors and
uniqueness of term names, an audit performed with every MED
update. Lexical information has also been applied to reveal other
quality issues. For example, Campbell et al. used term substrings
in SNOMED to suggest classification omissions [52]. In other work,
synonymous terms in the UMLS were used to compile a list of key-
word synonyms that, in combination with semantic types, was
used to detect redundancy [10].

Consistent use of linguistic phenomena, such as adjectival mod-
ifiers, has been used to assess potential inconsistency in the UMLS
and SNOMED. In one study by Bodenreider et al. [12], the intrinsic
characteristics of lexical usage of adjective pairs such as ‘‘acute”/
”chronic” and ‘‘primary”/”secondary” were reviewed in the context
of known, extrinsic knowledge to reveal inconsistencies. In another
lexical study, drug descriptions from four leading pharmacy sys-
tem knowledge base vendors were compared across each field to
determine lexical consistency of usage in the pharmacy domain
[53]. In yet another application of intrinsic lexical knowledge, all
terms, synonyms and headings contain the conjunctions ‘‘and” or
‘‘or” in SNOMED were assessed compared to editorial board policy
on usage, which specifies that ‘‘and” should imply logical AND
(both must be present), ‘‘and/or” when one or both must be pres-
ent and ‘‘either_or” should be used when one but not both must be
present. Usage in this regard was found to be inconsistent [54].
Please cite this article in press as: Zhu X et al. A review of auditing methods app
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4. Auditing methods

The knowledge described in previous sections can be applied to
the content of controlled biomedical terminologies in different
ways. We summarize auditing methods into four major categories.
The most straightforward but probably most labor-intensive meth-
od is manual review (with or without the support of a computer-
ized user interface), by which a terminology reviewer (often a
domain expert) audits the terminology with respect to certain
quality factors. Automated systematic methods involve implement-
ing knowledge into rule-checking programs that scan the terminol-
ogy for potential problems with respect to particular quality
factors, usually in a ‘‘batch” mode, to identify errors and inconsis-
tencies. The automated systematic methods are generally repro-
ducible and reduce the need for detailed, costly manual review.
Automated heuristic methods involve use rules that make inferences
about terminology content and then seek to identify those infer-
ences that lead to illogical or inconsistent conclusions.

For the above three categories, we classify published reports
based on the terminology attributes being audited:

� Terms and concepts – we pool all quality factors related to terms
and concepts under this category, including orthographic accu-
racy, comprehensive coverage, non-vagueness, non-ambiguity,
and non-redundancy.

� Semantic classification – we define semantic classification as a
terminology’s taxonomic scaffold (with or without ‘‘is-a” struc-
ture), for which classes the terms of the terminology are
assigned.

� Semantic relationships – we define semantic relationships as
relations (either hierarchical or non-hierarchical) between
terms that convey meaning.

In addition to the above three major categories, we discuss sep-
arately some high-level change management methods that deal
with logistics issues involved in auditing terminologies.

In the following subsections, we examine examples of each of
these methods from the published literature and our own experi-
ence, with consideration of the terminology attributes audited
and the knowledge used to support the processes.

4.1. Manual auditing methods

4.1.1. Terms and concepts
Because controlled medical terminologies are typically in a con-

stant state of development, expansion and refinement, a formal
representation and taxonomy were proposed by Cimino and Clay-
ton [22,24,55] to characterize changes in a terminology, based on
its syntactic properties (i.e., addition, deletion, name change, and
code change) in order to characterize the semantic changes they
represented. For example, a name change could represent a change
in meaning (major name change) or not (minor name change).
Once the semantic changes were characterized, they could be dealt
with formally to maintain concept orientation and concept perma-
nence. For example, a major name change would generally require
the retirement of an existing concept (corresponding to the previ-
ous version of the term) and creation of a new one (corresponding
to the new version). Those changes were reconciled through man-
ual review by domain experts.

Subsequently, Fischer [40] developed formal rules to check
redundancy and consistency in a lexical database. Later, Wroe col-
laborated with Cimino and Rector [56] to model and integrate dif-
ferent drug formulation terminologies based on formal definitions
that were manually created using the OpenGalen knowledge rep-
lied to the content of controlled biomedical terminologies. J Biomed Inform
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resentation scheme. Terms in each terminology could be compared
to corresponding ones in other terminologies based on the defini-
tions, to identify inconsistencies between the two. Recently, Smith
et al. presented a case study of applying similar formal principles
to the Gene Ontology (GO) [16].

Several other manual auditing methods involved the coding of
clinical records with terminologies, with their adequacy and accu-
racy judged by experts. For example, Chute et al. [30] assessed var-
ious clinical terminologies for their content coverage by parsing
14,247 words into 3061 distinct concepts. These concepts were
grouped into Diagnoses, Modifiers, Findings, Treatments and Pro-
cedures, and Other. An attempt was made to manually code each
concept in ICD-9-CM, ICD-10, CPT, SNOMED III, Read V2, UMLS
1.3, and NANDA, with the result scored as ‘‘no match”, ‘‘fair match”,
and ‘‘complete match”. Coding consistency was assured by a sec-
ondary reviewer.

To audit attributes of controlled clinical terminologies, such as
completeness, term definitions, ‘‘clarity” (represented as the in-
verse of the rate at which the same data might be coded in dupli-
cate ways), consistency in clinical taxonomy, and administrative
mapping, a Computer-based Patient Record Institute (CPRI) work-
group [31] assembled 1929 source records based on an initial ex-
pert evaluation and an organized consensus discussion within
the workgroup. The source records were coded in each terminology
scheme by an investigator and checked by the coding scheme own-
er. The coding was then scored by an independent panel of clini-
cians for acceptability on a Likert scale. The investigator for each
scheme exhaustively searched a sample of coded records for
duplications.

Many studies have been conducted to audit comprehensive cov-
erage of a terminology in different settings. Humphreys et al. [27]
carried out a distributed national experiment using the Internet
and the UMLS to determine the extent to which a combination of
existing machine-readable health terminologies covered the terms
and concepts needed for a comprehensive controlled terminology
for health information systems. Several studies were performed
within specific clinical information system settings: Wasserman
and Wang [57] evaluated the breadth of terms and concepts for
the coding of diagnosis and problem lists by clinicians within a
physician order entry system; Kushniruk et al. [32] conducted an
observational study to identify concepts missing from an outpa-
tient information system.

As Rector [58] argued, explicit information is key to most exist-
ing coding and classification systems, and different types of con-
tent must be separated based on their conceptual, linguistic,
inferential and pragmatic correctness. Many research studies have
evaluated comprehensive coverage of different domain-specific
terminologies. Cieslowski et al.[59] and Moss et al. [60] worked
on nursing terminology integration and evaluation. Chiang et al.
[61] extracted ophthalmology concepts from patient reports and
manually reviewed their coverage in five terminologies. Warnekar
and Carter [62] assessed HIV term coverage of a commercial termi-
nology. Smith and Kumar [63,64] audited semantic appropriate-
ness of term names and definitions of the GO terms. While
combining laboratory data sets across terminologies, Baorto et al.
[65] used the LOINC knowledge model to identify missing concepts
and synonyms. Zhu et al. [66] created a terminology model for the
missing acupuncture terms in the UMLS.

4.1.2. Semantic classification
By examining violations of ontological semantics, Kumar and

Smith [64] were able to assess the appropriateness of semantic
classification of GO terms. Similarly, Schulze-Kremer et al. [67] ap-
plied five ontological principles to audit knowledge classification
in the UMLS Semantic Network, and Smith et al. [16,63] applied
a set of ontological principles against GO to audit the assignment
Please cite this article in press as: Zhu X et al. A review of auditing methods app
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of hierarchical relations. Several years later, Mendonça et al. [54],
Spackman and Reynoso [68] used formal ontological definitions
to audit mis-classification in SNOMED, and Bodenreider et al.
[34] investigated subsumption in large description logic-based bio-
medical terminologies based on unique ontological principles.

Specifically, these ontological principles specified that all rela-
tionships of a parent class must either be inherited by each child
or refined in the child, and refinement from parent to child should
uniquely result in every case either from refinement of the value of
a common role or introduction of a new role.

In a similar way, a qualitative, rather than a quantitative analy-
sis of the NCIt was performed by Ceusters et al. [17] in order to as-
sess NCIt’s ontological principles. Using an OWL-representation,
their inspection of the system was performed breadth first, top
down, entry-by-entry to detect inconsistencies with respect to
the term-formation principles used, the underlying knowledge
representation, and missing or inappropriately assigned textual
and formal definitions.

4.1.3. Semantic relationships
Schulz and Hahn [69] proposed a semi-automatic knowledge

engineering approach for converting the human anatomy and
pathology portion of the UMLS Metathesaurus into a terminologi-
cal knowledge base. Their approach consisted of an integrity check
of the emerging taxonomic and partonomic hierarchies, and elim-
ination of terminological cycles and inconsistencies. They used
LOOM to represent the Metathesaurus followed by a medical ex-
pert review. In detecting missing and incorrect is-a, part-of, and
has-part relations, special attention was paid to the proper repre-
sentation of part–whole hierarchies, while running experiments
on 164,000 UMLS concepts and 76,000 relations in the terminolog-
ical knowledge base. Their approach provided a formal descrip-
tion-logic framework to support taxonomic and partonomic
reasoning. Consequently, Arts et al. [70] used a semi-automated
method to evaluate the structure of diagnoses terms used in inten-
sive care. A description-logic reasoner was designed to find incor-
rect relations, along with manual review of relations performed by
domain experts.

Table 2 summarizes the quality factors and knowledge sources
in studies that applied manual auditing methods to various
terminologies.

4.2. Automated systematic auditing methods

4.2.1. Terms and concepts
To assure unambiguous concept representation, Schulz et al.

[37] encoded simple rules into a system used to manage Read
Codes, in order to control the uniqueness of concept identifiers
(primary keys) and assure that each concept had a unique pre-
ferred name. Cimino [10] processed the UMLS concept strings
and created an index consisting of normalized and synonymous
lexical tokens to search equivalent and possibly duplicate UMLS
concepts; the specificity was further improved by applying con-
straints based on semantic types. For example, ‘‘Angina, Unstable”
and ‘‘ANGINA UNSTABLE” were found to be duplicates with differ-
ent concept identifiers. Starting with a similar approach, Hole and
Srinivasan [80] introduced more sophisticated algorithms for nor-
malizing terms and enriching the lexicon of synonymous tokens so
as to increase the sensitivity of their methods for identifying dupli-
cate UMLS concepts.

Ceusters et al. [19] identified duplicate concepts in SNOMED-CT
by using a commercial medical ontology, LinKBase, and its associ-
ated search algorithm based on flexible string matching and ontol-
ogy relation traversal; SNOMED-CT terms that mapped to the same
LinKBase concept were considered redundancy-prone. For frame-
based terminologies (again using Read Codes as a case study),
lied to the content of controlled biomedical terminologies. J Biomed Inform



Table 2
Quality factors and knowledge sources in manual auditing methods.

Quality factors Typical errors Knowledge sources

Extrinsic Intrinsic

Terminology Info Knowledge Hierarchy Relationship Lexicon

1. Concept orientation 1.1 Undefined concepts [22,24] [71]
1.2 Concept ambiguity [7,22,24] [7] [7,54,71] [72]

2. Consistency 2.1 Lexical inconsistency [22,24] [54]
2.2 Inconsistent classifications [7,22,24,31,73] [7] [7,17,32] [38,40,68,69] [34,38]

3. Non-redundancy 3.1 Redundant concepts [7,31] [7] [7,72]
3.2 Redundant classifications [40]

4. Soundness 4.1 Incorrect classifications [16,32,63,67,71,72] [64,68] [67,74]
4.2 Erroneous concept definitions [22,24,31] [58] [32] [34] [63,64]

5. Comprehensive
coverage

5.1 Incomplete concept coverage [7,22,24,27,29–31,
44,56,57,59–
62,73,75–77]

[7,44,61,
75–77]

[7,29,32,61,65,71,
75–78]

[65]

5.2 Incomplete synonym coverage [7,27,30,60,61,75,76] [7,61,76] [7,61,72,75,76]
5.3 Incomplete concept definitions [66] [66] [17,66]
5.4 Incomplete class hierarchies [7,44,73] [7,44] [7,32,71,75] [79] [79]
5.5 Incomplete non-hierarchical semantic
relationships

[7,44,73,75,76] [7,44,75,76] [7,32,71,75,76,79] [79] [79]
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Schulz et al. [37] searched concepts with identical definitions
(attribute-values) and considered them possible duplicates.

Rogers et al. [81] proposed a method that translated Read Codes
into a description logic (DL)-based representation and applied a DL
reasoning program to audit the formal definitions of the terms;
problems such as missing attributes in the definitions and missing
inherited attributes from parent terms to child terms were found.
Similarly, Cornet and Abu-Hanna [82,83] audited the formal
definitions of the Diagnoses for Intensive Care Evaluation (DICE)
terminology by translating its frame-based representation into
DL and applied a DL reasoning engine to check for problems such
as redundant and ambiguous terms.

To audit DL-based terminologies (using the NCIt as a case
study), Min et al. [8] proposed a method to partition a terminol-
ogy’s classification into networks containing terms with identical
DL-roles (e.g., has initiator process), organized into single-rooted
sub-networks. In particular, their method assumed that smaller
sub-networks of networks with few sub-networks were highly
error-prone. The underlying idea is that concepts with a rare com-
bination of DL-roles and classification are highly error-prone. Using
their approach, they were able to find missing synonyms, missing
concepts, and duplicate terms. For auditing more complicated
DL-based terminologies such as the multi parented Specimen hier-
archy of SNOMED-CT, Wang et al. [45] advanced Min’s method by
refining the procedure of generating single-rooted sub-networks,
explicitly differentiating whether each DL role of the sub-networks
is inherited or newly introduced. They also added the assumption
that sub-networks containing many DL-roles but few terms (i.e.,
semantically specific) and the assumption that sub-networks with
multiple inherited roles (i.e., semantically heterogeneous) are
error-prone [46] or overlapping sub-networks [84]. They found
inaccurate concept naming and incorrect synonyms, in addition
to missing synonyms, missing concepts, and duplicate terms.

4.2.2. Semantic classification
Cimino [10] checked UMLS concepts assigned to mutually

exclusive semantic types, assuming those classifications are er-
ror-prone. For example, if a UMLS concept is classified both as
‘‘Animal” and as ‘‘Plant”, then one of the semantic type assign-
ments should be wrong. Implementing the above principle from
a preventive perspective (which can be considered pre-release
auditing), Schulz et al. [37] imposed restrictions in Read Codes to
Please cite this article in press as: Zhu X et al. A review of auditing methods app
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disallow assigning a term to semantically exclusive classes. Geller
et al. [13] and Gu et al. [49] advanced Cimino’s method with an
algorithm that refined the UMLS Semantic Network into pure and
intersected semantic types so that incorrect, redundant, and miss-
ing classifications were more easily exposed. Similar to Geller, Gu
et al. [9,50] grouped the semantic types into broader meta-types
[47,48] first and then checked meta-type intersections with small
number of UMLS concepts, assuming that rare combinations be-
tween the different semantic groups strongly imply erroneous
classification.

Another method proposed by Cimino [6,10] for auditing errone-
ous UMLS semantic type assignments was based on the principle
that the hierarchical relation between two semantic types should
be consistent with the parent–child relations of the UMLS concepts
assigned to the types, i.e., a child UMLS concept should always be
assigned a semantic type no broader than the semantic type of its
parent UMLS concept. For example, the concept ‘‘Lys–Lys” should
not be classified as the semantic type ‘‘Organic Chemical”, because
its parent ‘‘Dipeptides” is classified as the semantic type ‘‘Amino
Acid, Peptide, or Protein”, which is the child of type ‘‘Organic
Chemical”. This expected consistency was used to automatically
identify suspicious concepts needing manual auditing in the extent
(set of concepts) assigned a given semantic type [85].

Applying a similar principle, Peng et al. [15] audited redun-
dant semantic type assignment for UMLS concepts that were as-
signed to both a particular semantic type and a parent (or
ancestor) of that type, taking the parent type as redundant
according to the rule of semantic type assignment specificity
[86]. Fan et al. [87] built automatic classifiers using lexical fea-
tures from the UMLS concept strings and contextual features
from a PubMed corpus to reclassify the UMLS concepts into
broad classes. Their method found erroneous and missing classi-
fications by checking the disagreement between their broader
classification and the original semantic types.

4.2.3. Semantic relationships
Schulz et al. [36] audited the hierarchical relationships in the

Read Codes by automating two rules: (1) the attributes of a child
term should be the same as or more detailed than that of its parent
term (this helps audit the correctness of the is-a relations) and (2) a
term with more detailed attributes than another term should be
considered a child of that term (this helps audit the completeness
lied to the content of controlled biomedical terminologies. J Biomed Inform
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of the is-a relations). Campbell et al. [52] examined the problem of
missing hierarchical and non-hierarchical semantic relations in
SNOMED by using lexical algorithms to suggest the existence of
relationships between terms with common substrings.

Ceusters et al. [19] used two algorithms to audit incorrect and
missing relations in SNOMED-CT: (1) a DL-based classification
algorithm and (2) a search algorithm that estimated semantic dis-
tance by implying correct subsumption relations.

The methods by Cimino [6,10] mentioned above that examine
consistency of semantic classification of UMLS concepts was used
simultaneously to audit erroneous parent–child relations between
them. Cimino [10] also suggested inferring non-hierarchical
semantic relations between UMLS semantic types from the rela-
tions between the terms specified by source terminologies to im-
prove the completeness of the semantic relationships.

Bodenreider et al. [34] audited the hierarchical relations of
SNOMED-CT by automatically checking against four ontological
principles: (1) each hierarchy must have a single root, (2) each
class (except for the root) must have at least one parent, (3) non-
leaf classes must have at least two children, and (4) each child
must differ from its parent and siblings must differ from one
another.

Due to the partition of a hierarchy of DL-based terminology
such as NCIt and SNOMED-CT into sub-networks of identical
DL-roles, [8,45] support detecting of wrong and missing roles. Fur-
thermore, a more refined partition of those sub-networks into
single-rooted sub-network helps to highlight wrong and missing
hierarchical relationships.

The following table (Table 3) summarizes the quality factors
and knowledge sources in studies that applied automated system-
atic auditing methods to various terminologies.

4.3. Automated heuristic auditing methods

4.3.1. Terms and concepts
Cimino and Barnett [94] created frame-based definitions manu-

ally, and automated a translation method for comparing a source
term with all terms in each of the other target terminologies. The
approach was applied to cardiac procedures in ICD9-CM, MeSH,
SNOMED and CPT, with a score produced based on semantic dis-
tance. The scores were then ranked and manually reviewed.

To identify synonymy and near-synonymy, Barrows et al. [95]
explored lexical and morphologic text matching techniques to
Table 3
Quality factors and knowledge sources in automated systematic auditing methods.

Quality factors Typical errors Knowledge sour

Extrinsic

Terminology I

1. Concept orientation 1.1 Undefined concepts
1.2 Concept ambiguity [

2. Consistency 2.1 Lexical inconsistency [26]
2.2 Inconsistent classifications

3. Non-redundancy 3.1 Redundant concepts
3.2 Redundant classifications

4. Soundness 4.1 Incorrect classifications [20] [

4.2 Erroneous concept definitions

5. Comprehensive
coverage

5.1 Incomplete concept coverage [25,26]
5.2 Incomplete synonym coverage [25]
5.3 Incomplete concept definitions
5.4 Incomplete class hierarchies [21]
5.5 Incomplete non-hierarchical semantic
relationships

[20] [
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map clinically useful terms into a controlled medical terminology.
Hole and Srinivasan [80] attempted to discover missed word and
phrase synonyms in a large concept-oriented metathesaurus
through lexical matching, selective algorithms, and expert reviews.

Tulipano et al. [96] used manually created knowledge-based
descriptions to represent molecular imaging terms, which were then
automatically mapped to GO. This process was created to address is-
sues related to synonymy, redundancy, and ambiguity in concepts
mapping. Recent work from Huang et al. [97] introduced ways to
generate new synonyms. Terms with multiple words were decom-
posed into single words. Synonyms for single words were identified;
these provided the basis for new multiword-terms to be recon-
structed. In [98], techniques for limiting the combinatorial explosion
caused by substituting WordNet synonyms for the single words of
multiword-terms are introduced. Patel and Cimino [99] used net-
work analysis to support decompositional terminology translation
in order to identify, using a clustering coefficient, those primitive
concepts that should be related to more complex concepts.

Bodenreider et al. [12] assessed the systematic use of linguistic
phenomena for both lexical and semantic features in SNOMED and
the UMLS Metathesaurus. Frequently co-occurring adjectival mod-
ifiers were identified syntactically and studied in combination with
the contexts of each modifier. Bodenreider et al. [14] also evaluated
the content coverage of the UMLS with an attempt to find exact
matches first, followed by normalization and semantic incompati-
bility checking. Five broad classes of UMLS concepts were ex-
tracted using their system (LocusLink) and mapped to the UMLS
Metathesaurus. The search also covered contents of gene products,
phenotypes, molecular functions, biological processes, and cellular
components.

4.3.2. Semantic classification
Cimino et al. [100] automated term subsumption, using manu-

ally created knowledge, followed by manual review of the system’s
suggestions for subclass partitioning, that is, the creation of new
subclasses and inclusion of terms in those subclasses. The sub-
sumption rules suggested partitioning large classes based on char-
acteristics of subsets within the class, for example, chemical tests
could be separated into subsets such as hormone tests, lipid tests,
drug tests, etc. Semantic definitions for the new terms were cre-
ated and added to the knowledge base through a combination of
automatic and manual means. For instance, in order to partition
the large class ‘‘Chemistry Laboratory Tests”, the system found that
ces

Intrinsic

nfo Knowledge Hierarchy Relationship Lexicon

43] [43] [9,36,37,48,88] [36,48,82,83,88] [48,88]

[82]
[81] [6,36–39,47,

50,89,90]
[8,10,36,47,51,90,91]

[36,37,45,88] [8,10,36,45,82,83,88,92] [80,88,92]
[15] [13,82]

20] [20,81] [9,36,45,50,84,89,90] [8,10,13,36,45,51,82,84,85,
90–92]

[84,85,87]

[84,90] [84,90,92] [46,84]

[45] [8,45]
[45] [8,45] [80]

[84] [92] [13] [52,87]
20] [20,81,84] [36,45,93] [8,10,36,45,82,83,92,93] [52]
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many children had a ‘‘substance measured” relation to a drug term,
while many others had relations to non-drug chemical terms. The
system therefore proposed a new semantic class ‘‘Drug Measure-
ment Tests” to subsume the former, as a new subclass of ‘‘Chemis-
try Laboratory Tests”. The same group [101] also built a rule-based
terminology management system prototype in an object-oriented
(OO) environment to check the inconsistency in classification.

Gu et al. [49,102] further experimented with OO modeling
through the development of an OO database schema, using visual-
ization techniques to identify places in the UMLS where errors and
inconsistencies of semantic type assignments occurred. A different
OO modeling [42,43] was applied to the MED yielding a upper level
schema, which helped highlighting ambiguity and inconsistency in
the MED modeling. Moreover, to enhance comprehensibility and
usability of a terminology system, Gu et al. [103] developed an
OO representation that provided an abstract or skeleton view,
using a theoretical paradigm and a methodology that partitioned
schemas into manageably sized fragments (they refer to this as a
‘‘forest subschema”). A set of rules was applied sequentially to sim-
plify classification schemes such that OO classes were grouped into
partitions that were relatively independent of each other and con-
tained highly interrelated UMLS concepts. Classification errors
could be detected by this step-wise heuristic model. Subclass hier-
archy was refined by a medical domain expert in conjunction with
a computer.

Recent work from Gu et al. [9,50] included a combination of an
auditing technique and an expert review that determined the pure
intersections of meta-semantic types of the metaschema [47], which
yielded a compact abstract view of the UMLS Semantic Network.
Ambiguity, incorrect classification, and inconsistencies were readily
identified in the pure intersections that were examined. New conju-
gate and complex semantic types are suggested in [104] to better
capture the semantics of concepts assigned multiple structurally
viewed chemical semantic types. For such concepts the proper
semantics expresses a chemical reaction or mixture rather than
the typical conjunctive semantics of multiple semantic types.

4.3.3. Semantic relationships
Zhang and Bodenreider [35] provided an operational definition

of 15 ontological principles and investigated the degree to which a
large ontology of anatomy complied with them. Three rules were
proposed to detect incompatible relationships. One such rule was
Table 4
Quality factors and knowledge sources in automated heuristic auditing methods.

Quality factors Typical errors Knowledg

Extrinsic

Terminolo

1. Concept orientation 1.1 Undefined concepts [101,110]
1.2 Concept ambiguity [96,98]

2. Consistency 2.1 Lexical inconsistency [98]
2.2 Inconsistent classifications [41,89,94,

96,101]

3. Non-redundancy 3.1 Redundant concepts [14,73,96,9
101,110]

3.2 Redundant classifications [89]

4. Soundness 4.1 Incorrect classifications [28,41,101

4.2 Erroneous concept definitions

5. Comprehensive
coverage

5.1 Incomplete concept coverage [14,25,94,9
101,110]

5.2 Incomplete synonym coverage [25,95,98,9
5.3 Incomplete concept definitions [116]
5.4 Incomplete class hierarchies [28,116]
5.5 Incomplete non-hierarchical semantic
relationships

[110]
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that two terms cannot stand both in taxonomic and partitive rela-
tions, that is, for every pair of terms x and y, x and y do not have
both IS-A and PART-OF relationships. For example, ‘‘Myocardium
proper of right atrium” has both ‘‘REGIONAL PART OF” and ‘‘IS-A”
relations with ‘‘Myocardium”, which are considered to be incom-
patible relationships.

Since redundant hierarchical relations are generally semanti-
cally consistent, semantic inconsistency detected in redundant
hierarchical relations could be used as an indicator of potential
mis-classification of one or both terms, and to trigger a review of
these terms by editors of biomedical terminologies. Bodenreider
[89] calculated an index of redundancy between pairs of hierarchi-
cally related terms to detect errors such as multiple pathways. Bur-
gun and Bodenreider [105] proposed a method for assessing the
semantic and hierarchical relationships between MeSH terms that
co-occurred in literature citations. Zhang et al. [93,106,107]
expanded the UMLS Semantic Network into a multiple subsump-
tion structure with a directed acyclic graph IS-A hierarchy, which
allows a semantic type to have more than one parent. They argued
that parent–child relations in the Metathesaurus implied the same
in the Semantic Network, and finding the name of one type con-
tained in the other implied the latter was a refinement of the for-
mer. New is-a relations were added to the Semantic Network, and
new semantic types were created to support the multiple sub-
sumption framework, from which new connected groups could
be derived for the meta-semantic types of the metaschema for
the expanded Semantic Network [108]. Two methodologies were
applied to identify and validate new is-a relations: a lexical-based
string matching process (involving names and definitions of vari-
ous semantic types in the Semantic Network) and a process for
converting the partition’s disconnected groups of the Semantic
Network [109] into connected ones.

Table 4 summarizes the quality factors and knowledge sources
in studies that applied automated heuristic auditing methods to
various terminologies.

4.4. High-level change management methods

The auditing of contemporary biomedical terminologies often
involves feedback from multiple users with different requirements.
If we consider a temporal axis to auditing methods (i.e., auditing a
terminology at different time points), it appears to be a dauntingly
e sources

Intrinsic

gy Info Knowledge Hierarchy Relationship Lexicon

[111] [110,111]
[49,104,112,113] [42,104,111,113] [111,113]

[114] [12] [35,53]
[12,115] [49,89,102,

104,107,113]
[35,41,50,89,
101,104,113]

[106,113]

8, [112,113] [100,111,113] [80,110,
111,113]

[47,89] [89]

,110] [103,115] [49,102,104,
107,113]

[41,42,50,
101,104,113]

[110,113]

[115] [53]

8, [101,114] [12,101,103] [49] [100,111] [53,110,111]

9] [100] [97]
[116]

[105] [107] [106,116]
[101,105] [101] [113] [100,113] [110,113]
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complex task that deserves robust management techniques to han-
dle the vast amount of changes made during the auditing process.
Those high-level change management methods are different from
the methods directly auditing terminology content. Research clo-
sely related to change management of terminologies has been
found in the literature on ontology evolution and versioning. A typ-
ical method used in ontology evolution (or versioning) is to log the
‘‘who”, ‘‘what”, ‘‘when”, and ‘‘why” concerning the changes made.
A benefit of detailed logging is the reversibility of changes if they
are later found to be erroneous.

The circular evolution process by Stojanovic et al. [117] pro-
vides a framework for considering the methods involved in change
management. The six phases in their framework are: (1) Change
capture (deciding what changes to be make; this corresponds to
the output of the manual, automated systematic, and automated
heuristic methods covered in the previous subsections), (2) Change
representation (e.g., extract_superconcept is a change that occurs
when a single concept is split into several subconcepts, with distri-
bution of properties among them and their associated metadata;
e.g., auditor, timestamp, and reason_for_change), (3) Semantics of
change (e.g., to spot inconsistencies that could be introduced by
certain change operations), (4) Change implementation (referring
to both pre-implementation proofreading and the implementation
itself), (5) Change propagation (applications or other terminologies
that depend on the changed terminology need to be updated cor-
respondingly), and (6) Change validation (referring to field-testing
and retracting inappropriate changes based on the result of the
testing).

The methods reviewed in the previous subsections are generally
to be performed at certain fixed time points. However, considering
Stojanovic’s framework, failing to characterize potential risks at
Phase 3 would unwittingly allow illegal changes to the terminol-
ogy; in Phase 5, either failing to propagate correct changes or prop-
agating incorrect changes would spoil the terminology.
Additionally, if an error occurs in Phase 3 and is propagated in
Phase 5, a subsequent Phase 1 can identify corrections to be made
in a subsequent Phase 2.

Tools have been developed or augmented to support change
management of auditing terminologies. Stojanovic and Motik
[118] evaluated three generic ontology editors (Protégé, OntoEdit,
and OilEd) and found that they satisfy some functions related to
the temporal processes related to auditing, each with individual
strength and weakness. The KArlsruhe ONtology Management
Infrastructure (KAON) [117,119] is another ontology editor that
supports change management functions such as evolution strate-
gies, consistency checking, and transparency of actions. Noy et al.
[120] developed the CHange and Annotation Ontology (CHAO) to
facilitate collaborative change management, with emphasis on
functions such as controlling access privileges and resolving con-
flicts in a multi-editor environment. CHAO was implemented as a
set of plugins to Protégé and has been tested on the NCIt. The
usability of such collaborative editing tools can be generalized to
multi-auditor tasks. Oliver and Shahar [23] proposed the CONCOR-
DIA (CONcept and Change Operation Representation for DIAlects)
model to address synchronization and logging requirements pecu-
liar to maintaining a local terminology that diverges from an origi-
nal shared terminology.
5. Discussion

Rogers has presented a framework for quality assurance meth-
ods applied to logic-based biomedical ontologies. He concludes
that there are four aspects: philosophical validity, meta-ontologi-
cal commitment, content correctness, and fitness for purpose
[121]. Our review extends beyond ontologies to include all forms
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of controlled biomedical terminologies and characterizes the ac-
tual methods used to assess such properties. We find that most
of the methods are focused on content correctness, in one form
or an other, and assume that good quality content implies fitness
of purpose and vice versa.

Our framework divides terminology auditing methods into
manual, systematic and heuristic methods. Some of these methods
are best suited for assessing the terms and concepts in a terminol-
ogy, while others are better suited for assessing semantic classifi-
cation and relationships. Some methods can be used to audit
multiple terminology attributes at the same time, e.g., simulta-
neously auditing problematic semantic type assignments and hier-
archical relations between terms [10]. On the other hand, different
methods can be used to audit the same terminology attribute and
cross-validate each other, e.g., identifying the mis-assignment of
‘‘Lys–Lys” to the semantic type Organic Chemical (see Section
4.2.2 could be found through either the by a rule-based [10] or
an automated reclassification [87] approach.

Each of these methods makes use of some knowledge. Most
interesting are those that use knowledge that is intrinsic to the ter-
minology itself, making the auditing process an exercise in intro-
spection [7]. The disadvantage of such an approach is that it
relies on ‘‘extra” knowledge that might not normally be present
in a terminology. This may require terminology developers to exert
effort beyond basic terminology construction (that is, enumerating
and arranging the terms) to add such knowledge. The advantage of
this approach is that automated auditing methods can be created
that can operate independently from human expertise. Despite
the added effort, many modern terminologies, such as LOINC,
RxNorm, the FMA, and SNOMED, as well as the UMLS Metathesau-
rus, now include formal definitional information that can be
exploited by auditing techniques. Thus, methods that rely on
intrinsic knowledge are becoming increasingly practical.

Also interesting are the methods that are largely automated,
since many terminologies are too large for complete comprehen-
sion by individual human auditors. Systematic methods (such as
referential integrity) are already being incorporated directly into
the terminology maintenance processes being used by standards
development organizations. The methods described in this review
offer additional ways to assure that terminologies are following
their own rules.

Most interesting, in our opinion, is the combination of the use of
intrinsic knowledge with heuristic methods. These methods can
identify terminology errors that might escape deterministic auto-
mated methods and human-centered manual methods. Inherent
in the nature of heuristic approaches is their imperfection, resulting
in false positive findings. However, as Min et al. [8] point out, a mod-
est false positive rate is an acceptable trade-off when attempting to
identify the parts of a terminology that should be scrutinized by hu-
man reviewers, especially when the availability of such reviewers is
limited by resources or the limits of human attention.

As this review shows, there is now a rich tradition of formal audit-
ing methods for controlled terminologies that has largely arisen in
the last decade or so. Although much of the work began with theo-
retical approaches on limited data sets, the growing presence of rich
biomedical ontologies is providing a fertile ground for further devel-
opment of practical, usable auditing procedures. Indeed, much of the
work presented here has resulted in feedback to UMLS, SNOMED,
ICD9, MeSH and GO, leading to their improvement. Our own audit-
ing methods are applied daily to the MED at Columbia University
to support clinical, administrative and research information systems
at New York Presbyterian Hospital. At the same time, the apprecia-
tion of high-quality controlled biomedical terminologies is currently
on the rise, providing impetus for the actual use of such procedures
to improve the terminologies that, in turn, are being increasingly re-
lied upon to improve biomedicine.
lied to the content of controlled biomedical terminologies. J Biomed Inform
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This paper summarizes a wealth of terminology auditing meth-
ods and provides only the briefest descriptions of the work of many
creative researchers. We hope that the framework we present
serves to guide those who seek to develop their own auditing
methods based on work that has come before. At the same time,
the absence of entries in Tables 2–4 points to many heretofore
unexplored opportunities for exploiting the rich knowledge in
modern terminologies to support their improvement.

6. Conclusions

The last 20 years have been witness to a proliferation of termi-
nology auditing methods that employ a variety of creative methods
Please cite this article in press as: Zhu X et al. A review of auditing methods app
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and exploit a variety of terminological knowledge to better evalu-
ate and improve the terminologies that are emerging today as
important components of biologic, clinical and public health sys-
tems. Much of the work has gone beyond the experimental stage
to become key components of standards development and infor-
mation system maintenance.
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Appendix A

Publications of Auditing Methods Applied to Controlled Biomedical Terminologies.
Terminologies
 Publications
Clinical Terms Version 3
 [29]

CPT-4 (Current Procedural Terminology)
 [7,30,61,94,122]

DICE (Diagnoses for Intensive Care Evaluation)
 [70,82,83,123]

Proprietary Drug Terminologies
 [53,56]

FMA (Foundational Model of Anatomy)
 [35,124]

GALEN
 [58,81,122,124]

GO (Gene Ontology)
 [16,63,64,96,124]

HHCC (Home Health Care Classification)
 [59]

ICD-9-CM
 [7,22,24,30,61,88,94,111,115,122,125]

ICF (The International Classification of Functioning,

Disability, and Health)

[71]
LOINC (Logical Observation Identifiers Names and
Codes)
[59,61,65,124]
MED (Medical Entities Dictionary)
 [22,24,32,33,42,43,51,59,61,75,76,88,95,100,101,103,110,124,126]

MEDCIN
 [62]

MeSH
 [3,7,94,115,122,125]

MorphoSaurus (a large multilingual thesaurus for

clinical medicine)

[112,114]
NCIt (National Cancer Institute Thesaurus)
 [8,17,21]

NDF (National Drug File)
 [124,127]

Nursing Terminologies
 [28,30,59,60,79,124]

Read
 [27,29–31,36,37,81]

SNOMED
 [7,12,19,25,30,31,44–46,52,54,57,61,68,78,84,91,92,94,95,115,122,124,128]

UMLS (Unified Medical Language System)
 [3,6,7,9–15,18,26,27,30,31,38,39,41,47–

50,64,66,67,69,72,73,75,76,80,85,87,89,93,97–102,104–109,115,124,125,129]

VOSER
 [130]
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Glossary

Ambiguity: Doubtfulness or uncertainty as regards interpretation of a term. Open to
or having several possible meanings. See also Polysemy and Vagueness.

Attribute: A quality or characteristic inherent in or ascribed to a term. For example,
a disease term (such as ‘‘pneumonia”) might have an attribute such as ‘‘site-of-
disease” (which, in this case, might have the value ‘‘lung”).

Audit: To examine, verify, or correct errors for good quality assurance in a
terminology.

Automated heuristic auditing: Involves using rules that make inferences about ter-
minology content and then seeking to identify those inferences that lead to i-
llogical or inconsistent conclusions. For example, a term with many attributes
might actually have multiple meanings (that is, it might be ambiguous).

Automated systematic auditing: Involves implementing knowledge into rule-check-
ing programs that scan the terminology for potential problems with respect to
particular quality factors, such as soundness or consistency. For example, if the
term ‘‘lung disease” has the value ‘‘lung” for its ‘‘site-of-disease” attribute, then
all terms in the class ‘‘lung disease” should also have that attribute and value (or
some more specific value).

Class: A set, collection, or group containing concepts regarded as having certain t-
raits in common; also, a term whose meaning corresponds to such a set.

Classification: The assignment of terms or concepts to defined classes (usually orga-
nized into hierarchies).

Comprehensive coverage: The extent or degree to which the terms needed to de-
scribe concepts in a particular domain of discourse contained in a terminology.

Concept: A general or abstract notion derived or inferred from specific instances or
objects; concepts are associated with a corresponding representative terms in a
terminology.

Consistency: Adherence to structural, semantic and/or linguistic rules for represent-
ing terms and their underlying concepts in a terminology. In a terminology with
consistency, a term appears the same (and has the same attributes and chil-
dren) no matter how it is arrived at through traversal of a hierarchy.

Extrinsic knowledge: Knowledge derived from an outside source, such as other ter-
minologies, user requirements, or human expert knowledge; for example, the
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knowledge of a domain of discourse (which is helpful for auditing comprehen-
sive coverage).

Hierarchy: The system of levels (usually classes) according to which a terminology
is organized.

Intrinsic knowledge: Knowledge about concept derived from the classification sche-
ma, hierarchy, and semantic relationships among terms, or term attributes such
as lexical information present within a terminology itself.

Lexical: A linguistic knowledge with information about the morphological varia-
tions and grammatical usage of words.

Multiple hierarchy: An arrangement of terms and their underlying concepts in which
one term or concept can belong to more than one class. It is also called polyhier-
archy, directed acyclic graph (DAG), lattice, or partially ordered set (poset).

Non-ambiguity: A quality pertaining to a terminology wherein each distinct term in
the terminology corresponds to a single concept.

Non-redundancy: A quality pertaining to a terminology wherein each distinct term
in the terminology corresponds to a concept that is distinct from those concepts
to which other terms in the terminology correspond.

Non-vagueness: A quality pertaining to a terminology wherein each term in the ter-
minology must correspond to a well-formed concept.

Orthographic accuracy: Spelled correctly.
Partition: To divide the terms in a terminology into parts or sections based on some

characteristics of the terms. For example, a terminology might be partitioned
into groups that have common attributes.

Polysemy: A type of ambiguity wherein a term corresponds to multiple different
concepts.

Redundancy: A quality pertaining to a terminology wherein multiple terms with
synonymous meanings are included as distinct terms, implying that they refer
to distinct concepts.

Relationship: A connection or association existing between terms or concepts
Please cite this article in press as: Zhu X et al. A review of auditing methods app
(2009), doi:10.1016/j.jbi.2009.03.003
Schema: A systematic orderly representation of the elements of a terminology that
permits an abstract overview of the terminology; for example, the partitioning
of a hierarchy into smaller subhierarchies.

Semantic: Pertaining to or arising from the meanings of terms in a terminology.
Semantic classification: A classification scheme based on the meaning of the terms

(that is, their corresponding concepts) in the classification (as opposed, for
example, to one based on alphabetization).

Semantic Network: A graphical arrangement of nodes (in which nodes correspond
to terms or classes of terms) and semantic relationships between the nodes.

Semantic relationship: A connection or association between terms that conveys
knowledge about the relationships between the concepts to which the terms re-
fer. A semantic relationship (sometimes referred to as a role) may be hierarchi-
cal or non-hierarchical.

Soundness: Accuracy of the knowledge represented in a terminology. Typical termi-
nology features audited for soundness include term names, definitions and
classifications.

Structural: As opposed to semantic and lexical, pertaining to or showing the inter-
relation or arrangement of terms in a terminology system, or the data struc-
tures of the terms themselves (such as their identifiers and attributes).

Synonym: A word or phrase having the same or nearly the same meaning as other
words or phrases in a terminology. In some terminologies, all synonyms are
considered terms related to the same concepts, possibly with on synonym con-
sidered to be the ‘‘preferred term”, while in other terminologies, the preferred
synonym is considered the ‘‘term” and the remaining ones are referred to sim-
ply as ‘‘synonyms”. Unrecognized synonymy in a terminology leads to
redundancy.

Term: A word or phrase that corresponds to a particular underlying concept
Vagueness: A type of ambiguity wherein a term does not clearly correspond to a

well-defined concept.
lied to the content of controlled biomedical terminologies. J Biomed Inform
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