Conformance Profiles for Services
Introduction
Profiles are a mechanism used to constrain broader service capabilities to meet specific functional needs identified within a domain or locality. Through the creation of profiles (and service instances may be able to concurrently support multiple profiles), the communities defining, specifying, or using services may precisely elaborate conditions and stipulations on that service as it pertains to a given context or need.

Rather than defining a list of mandatory and optional elements, profiles provide a mechanism by which features can be grouped together and indicated as supported or otherwise. This increases interoperability and lessens the number of variations of implementations of services, and also provides clarity to potential service consumers.

All interoperability assertions should be conformance-profile based. In other words, a software system is not conformant with “Service XXX”. However, it is conformant with “Service XXX <profile name>”.
It is recognized that implementations of profiles as deployed in an organizational context may need to be discoverable and could leverage infrastructure such as UDDI directories. These are implementation and deployment decisions and are beyond the scope of the specifications themselves.

Definition/Structure

[image: image1.emf]Information

Viewpoint

Information

Model

Semantic

Datagraphs

(aka CIMs)

-

Computational

Viewpoint

Subset of

Functions

Version

Submitter

Name

Metadata Metadata

It is necessary to precisely and rigorously define the constitution of a Comformance Profile. Figure 1, preceding, illustrates a Conformance Profile and its key elements. Note that there are four constituent elements comprising a conformance profile:

Semantic Profile:
Describes the content domain, formalism, and information model(s) supported within the profile. This should include enumerated information constructs supported by the service (semantic datagraphs, or constrained information models), and mapping them to a specific operation or set of operations used in a specific service implementation). The semantic datagraphs could be standards based, e.g. HL7 RIM, National or specific to an Organization.
Functional Profile: A list of the subset of the operations defined within this specification which must be supported to conform to the profile. This surfaces as named subsets of the operations of the Service (often so that they may be exposed as a business proxy). Note – the same operation can appear in multiple functional profiles. A profile must not change the externally observable behavior of any operation other than information specific validation driven by the associated Semantic profiles.
Usage Context:
Usage context allows a profile author to convey an intended fitness-for-purpose for the profile being specified. It may enumerate constraints, pre-conditions, organizational/ geopolitical/ temporal boundaries, or other pertinent contextual information. Usage context is an informative section and is not usually part of compliance evaluation.
Metadata:
Information designating details about the profile itself, such as its name, version number, registering organization, registration authority, and so on.
Profiles become instrumental as interoperability is considered, where they become the foundational building-block for interoperability assertions, testing, and conformance.

A Conformance Profile is precisely defined for the purpose of asserting and testing conformance. They refine the definition of a more generic service to meet specific needs.

Conformance profiles may be created as normative standards, created via derivative functional work (via subsequent balloted, normative Profile standards), established in technical specification work, or defined by organizations using the standards at design time (such as enterprises, organizations, or geo-political realms).

The following rules apply for a Conformance Profile to be considered “well-formed”:
	Profile Element
	Profiling Rules
	Explanation

	Profile Identifier
	Profile should have a unique identifier.
	Identification would typically be influenced by a profile registry.

	Profile Name
	Short name for the profile.
	-

	Version Number
	Profiles should be versioned.
	While version numbers must be supported, a specific versioning scheme is not pre-specified. This is a function of SDO and/or organizational policy and the service registry.

The potential exists to enforce rigor at the registry level, such as capturing representation, versioning, etc. for HL7-balloted content.

	Origin Date
	Every profile must contain an origin date.
	-

	Last Modified Date
	Mandatory, Will default to the origin date if no subsequent modifications have been made.
	-

	Semantic Profile
	Must contain at least 1. Should be expressed as one or more information structures with rigorously defined semantics.
	-

	Functional Profile
	Must contain at least 1. Profiles may either exclude or restrict defined behaviors, but may not add any functionality.
	Since specifications are about defining service behavior, adding functionality would constitute a substantive change and require a new specification to be developed.

	Usage Context
	Freeform text; describes the context in which the profile is intended to be used. This may be an organizational scope (e.g., the US Government), a domain scope (e.g., Pharmacy), or any other relevant contextual binding.
	The intention of Usage Context is to be relevant at design time, though there are clear benefits if this can also be supported in runtime instances.

	Profile Genealogy & Dependencies (optional)
	Expresses traceability of profile history to allow for derived conformance or interoperability assertions.
	While a profile may include extensions and not be interoperable to a 100% degree, understanding the basis from which such profiles offers significant interoperability benefits.

Interfaces vs Profiles

In principle, profiles can be conceptually fairly similar to the notion of interfaces. However, there is a key difference. The “interface’ is defined as a non-overlapping grouping of operations offered by a service. This divides the operations offered by a Service into a number of different mutually exclusive groups for packaging together. Reasons for the grouping are often different Security or QoS requirements. Typical examples are:

· “Service management interface” to do things like “start, stop, pause, monitor system performance etc”. This interface is often not even explicitly defined and assumed to be supported by the container or overall infrastructure.

· “Query interface” grouping together the read only operations since they often have lower reliability needs

· “Administrative interface” to provide configuration or metadata management capabilities

Whereas operations are grouped into mutually exclusive interfaces based on the needs of the Service Provider, a separate mechanism is defined based more on the needs of the Service Consumers, which are often not the same, as well as focusing on management of conformance. This mechanism is known as a Profile.

To briefly consider an example, the HL7 Identification Service (IS). IS is a generic service for managing identification of “things” (People, Organizations, Devices, Drugs etc. basically anything that can be identified) and resolving cross domain identity issues. It allows for a set of information structures or attributes to be defined and associated with the identities, e.g. for a Person these may be Name, Address, DOB, Gender etc. As such, it can support a certain amount of demographic maintenance, but is not intended as a full Master Data Management solution.

Some example interfaces and profiles (without usage context or metadata) for IS:

· Interfaces:

· Service Management (start, stop etc)

· Update (all operations providing identity updates)

· Query (all read only operations on identities)

· Semantic Profiles:

· Person (or better, and more specifically, HL7 RIM V2.14 Person)

· Organization

· Medicinal Product

· and so on.

· Functional Profiles:

· BasicQuery (includes simple operations for looking up Identities)

· BasicQueryRegisterUpdate (adds basic operations for adding and updating identity information)

· BasicAdministration (functions aimed at special “administrators” who manage linking and merging of identities, usually to clear up previous errors)

· and so on.

· Conformance Profiles:

· PersonBasicQuery - semantic #1 plus functional #1 from above.

· etc.

Methodology Considerations

Many different methodologies and life cycles can be followed for specifying Services. Assuming a more iterative approach is used, and one that is based on the Model Driven Architecture approach raises some specific considerations with respect to profiles. It is assumed that Services are specified in a three four process, which consists of three levels of Interface specification, i.e. a Conceptual Specification (CFSS), a logical specification (PIM) and a physical specification (PSM), and also a “Realization” or “Implementation” Specification which defines how the Service is internally designed and constructed.

In an ideal world, all profiles could be defined up front when a Service is initially specified at the conceptual level. However, the reality is that this is not the case, so the following should be borne in mind:
· CFSS include “capabilities” or “functions” which may be realized by multiple operations at the PIM and PSM level. This would affect the definition of Functional Profiles.

· In a Service Oriented Architecture, Services are deliberately designed to be extensible and will often be used in unforeseen ways and new business processes. This will often give rise to needs for new functional profiles.

· Similarly, many Services will be defined with the intent to provide a common behavior pattern that can work with multiple different information models and/or representation formats. Additional models and versioning of information models will occur over time.

Also, another key point in the end is that each implemented Service instance must explicitly support one or more known conformance profiles. This information should be queryable, preferably through an external registry, but also may be queried using a reflection style interface on the Service itself.
Profile Registration, Standardization and Ownership

Any Service Specification being developed must take into consideration the role and formality of profiles established to support of the specification. For instance, Specifications that include a full set of profiles take on a different complexion than specifications that have few or even no profiles. However, not all profile work needs to, or should be, undertaken as part of initial specification. Additional profiles may and should be defined subsequently, and in the case of standardization, even balloted and adopted standards in their own right.

Depending upon the source of the profile, the venue in which it was created, and the mechanism in which it is being captured and made available, the viability and extent of use may vary. The following non-exhaustive list characterizes profile origins and highlights the implications of each:

Specification: These profiles would be included within the original service specification (ballot material for standard services). As a result, all derivative work would be aware of these profiles and could be mandated to support it. In the standards case, having passed through the formal ballot, these become community artifacts and could be considered adopted standards.

Normative Profiles: These would be Profiles specifically designed to be industry standards, but which are be developed separately from the Service Specification. These artifacts would be the products of an SDO standards committee with a particular interest or focus.
Registered Profiles: This is where a registration authority serves as a collection-point allowing profiles to be registered, discovered, and queried. (This could be an industry standards body or internally within an organization). These profile registries have viability at design-time and potentially run-time. The role of registries may be extremely varied – some registries may collect any profile that is submitted, while others could require profiles to pass rigorous criteria before being included.
Use Profiles: Use profiles are a “catch-all” describing any profile that is created for a target usage without any interoperability assertion claims. These profiles can be “one-offs” for collaboration between business partners, intra-organizational, or any other context that would not necessarily be conducive to general interoperability or standardization.
Rationale and Benefits

So what are the benefits of using profiles? Some of these are listed below:

· Can provide a means of implementing a business proxy/facade in a controlled standardized fashion

· Can enable a separation of consumer view of the service from the service provider view, allowing a loosely coupled evolution of each.

· Enabling reuse of the same or similar functionality across different information models. This allows for common code frameworks to be built to support a number of different scenarios and requirements. Note – the actual implementations can support varying degrees of dynamism depending on specific needs.

· Provides an additional layer of indirection which enables:

· Limiting optionality in order to simplify conformance and compliance.

· Support for extensibility/localization/versioning

· Can provide various constrained models in profiles supported by the same “back end” logic for the unconstrained version with just the additional constraint validation in the business façade. Examples: make optional item mandatory, limited subsets of code sets, support multiple code sets (where back end can support multiple but profile narrows to one).

· Can support version-based or localized extensions where additional processing can be isolated (i.e. call the basic/original and then apply an additional update) – sometimes as temporary migration measure.

· Support generic vs specific views (both ways), i.e. present a generic, durable view to client, e.g. getIdentity(person) delegates to getPerson or getPerson exposed to client delegates to getIdentity(person).

· Allow for varying distribution or technology variations at the interface level, e.g. client consumes a web service profile and existing back end offers only a language specific interface (e.g. Java)

Note that intuitively the more “generic” services, like HL7‘s IS and RLUS would have more profiles defined than some of the more specific ones. Also, in some cases, there may be little difference from the structure of the interfaces vs the functional profiles, which again may be truer with the more “specific” services.

Note also that Semantic Datagraphs used in Profiles could be defined at varying degrees of specificity. For example, if there was a justifiable and valid reason for an operation to handle a very generic information model, then a profile could be defined at that level, although this should be handled with care for obvious reasons. In extreme cases, this leads to the universal “Do” operation that accepts the “any” data type.

� For example, suppose there were a Person Identity profile for the Identification Service. If a particular national implementation defined a National Provider Profile based upon the Person profile, significant portions of functions, semantic, and intent would propagate to the new profile’s context.

