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This document illustrates the benefits of semantic workflows in caBIG by presenting three detailed use cases relevant to the caBIG community.  Two of the use cases have been motivated by the work on the Emory University’s In-Silico Brain Tumor Research Center (ISBTRC).  The first use case focuses molecular data analysis workflows for copy number analysis.  The second use case focuses on image analysis workflows for radiology and pathology data analysis.  We also developed a third case that illustrates how to extend an existing workflow system with semantic capabilities.  For this third use case, we focused on the GenePattern system, which is widely used in the caBIG community.

1 Problem Addressed

While there has been much research over the years on large-scale scientific computing and the complexity of population genomic studies, important problems still remain. A common problem among biomedical researchers is the need to understand the state-of-the-art methods to analyze their data. Although they may be intimately familiar with the driving biological problem, they are often presented with analysis tools that require expansive knowledge of statistical and analytic methods as well.  Because this knowledge is often not readily available, biologists must invest effort in understanding which kinds of analytical techniques and tools are most appropriate for their problem.  This amounts to reading myriads of technical publications and software documentation for a vast array of analytical commercial and open source software.  Based on this understanding, they must set up software that enables the execution of individual steps involved in the overall analysis pipeline.  In executing these steps, they must keep track of a large number of constraints imposed by each analytic tool to ensure that the analysis is valid.

As a result, carrying out data analysis processes remains a highly manual, time consuming, individualized, and error prone process.  Validation of the results is also time consuming as there is no mechanism to offer reassurance that the software, data, and pipelines are correctly used, particularly when analyses are carried out by less experienced researchers.  Reproducibility is a great challenge, as many details of an original analysis are buried in notebooks and often are only known to the research assistants that set up and run the software.  Finally, it is hard for researchers to always use state-of-the-art techniques, as new analytical tools and methods are constantly appearing in the field and each requires a significant time investment to understand, setup, and use. 

Workflows have emerged as a key component of scientific infrastructure that enables the representation of data analyses in a declarative manner, which capture explicitly the dataflow across components [Gil et al 07].  Workflows have been used to manage complex scientific applications in areas as diverse as biomedical imaging, genomics, astronomy, and geophysics among others [Taylor et al 07].  Workflows capture an end-to-end analysis composed of individual analytic steps as a dependency graph that indicates dataflow links as well as control flow links among steps.  Most workflow systems can only assist scientists by automating the execution of fixed pre-set workflows. They have no capabilities to exploit semantic metadata or constraints, and therefore workflow systems cannot reason about the type of analysis being done to the data.  Therefore, there are no mechanisms for adapting or customizing the workflows depending on the type of data being analyzed.  Moreover, many workflows cannot be automated because they include steps that check the properties of the data in order to carry out special data cleansing steps.

However, these human-intensive approaches are impractical for the upcoming tide of large amounts of biomedical data from new techniques in imaging and next generation sequencing. Automation and assistance are key to the future of genomic research and its potential impact on healthcare and beyond. 

Recently, new semantic workflow representations have been developed that support automatic constraint propagation and reasoning algorithms to manage constraints among the individual workflow steps [Gil et al 09a; Gil et al 09b; Gil et al 10].  These semantic workflow systems can assist users in a variety of ways, by validating their use of workflows for complex genomic analyses, initializing the workflow settings, and finding published datasets to support their ongoing analysis.  

caBIG has made a significant investment in semantic technologies in many aspects of its architecture design.  Current uses of semantic technologies focus on data-centered aspects of the architecture: on describing, organizing, discovering, and processing data.  Although there has been significant interest in the exploitation of semantic technologies in the aspects of the caBIG architecture that address processes and services, this aspect of the architecture is lagging behind.  

This document illustrates the benefits of semantic workflows by presenting three detailed use cases relevant to the caBIG community.  Two of the cases have been motivated by the work on the Emory University’s In-Silico Brain Tumor Research Center (ISBTRC).  The first case focuses molecular data analysis workflows for copy number analysis.  The second case focuses on image analysis workflows for radiology and pathology data analysis.  We also developed a third case that illustrates how to extend an existing workflow system with semantic capabilities.  For this third use case, we focused on the GenePattern [cite] workflow system, which is widely used in the caBIG community.

The use cases are structured as follows.  For each use case, we discuss:

1. the goals of using semantic workflows in the particular application area

2. current practice

3. a scenario where semantic workflows would provide assistance to users

2 Background

2.1 Semantic Workflows and the Wings Workflow System
Semantic workflows represent declaratively the metadata properties of their constituents.  They represent and reason about the constraints posed by a given analytic tool on the type of data that they can process, the kind of parameter settings that are more appropriate for those data, and the constraints and properties of the output datasets that they generate.  Semantic workflow representations support automatic constraint propagation through steps and reasoning algorithms to manage constraints among the individual workflow steps.  Semantic representations can be the basis to assist scientists in applying complex scientific analyses by guiding them to apply workflows while respecting the constraints for a valid use of the analytic tools and methods.

Wings is a workflow generation system that uses semantic representations of workflows, software components, and data in order to assist a user in generating valid workflows. An introductory overview of Wings and its capabilities is provided in [Gil et al 09a; Gil et al 09b; Gil et al 2010].  Wings uses semantic web standards such as the W3C Web Ontology Language (OWL) to represent constraints and properties of algorithms, datasets, and workflows.  Wings uses a four-step workflow generation algorithm that takes into account metadata properties of the datasets processed by the workflow as well as constraints on the components.  These properties and constraints are used to select components, datasets, and parameter values automatically from a high-level user request.  Wings generates an execution-ready workflow that specifies the specific computations to be conducted and their dataflow dependencies. Wings also generates metadata attributes for all the new data products of the workflow by propagating metadata from the input data through the descriptions and constraints specified for each of the components.   Wings is integrated with the Pegasus/Condor workflow execution system [Deelman et al 05], which supports distributed scalable execution of complex workflows.

More details and a variety of technical publications are available on the Wings website, http://wings.isi.edu. 

2.2 Emory University’s In-Silico Brain Tumor Research Center (ISBTRC)
The description of the center provided in this section is taken from [ISBTRC 2010].

The new Emory University’s In-Silico Brain Tumor Research Center (ISBTRC) is an integrated effort of four institutions dedicated to exploring innovative ideas in brain tumor translational research: Emory University, Henry Ford Hospital, Stanford University and Thomas Jefferson University. Their effort is designed to leverage complementary molecular, pathology and radiology brain tumor data obtained in The Cancer Genome Atlas (TCGA), the REpository for Molecular BRAin Neoplasia DaTa (REMBRANDT), and Vasari studies. These studies involve collection and generation of Radiology, full-slide digital Pathology, high throughput genetic, genomic and epigenetic analyses for patient populations accrued at a large number of clinical sites.

The center’s research focuses on the following aims: 1) Determine the influence of tumor micro-environment on gene expression profiling and genetic classification using TCGA data; 2) Determine genetic and gene expression correlates of high resolution nuclear morphometry in the diffuse gliomas and their relation to MR features using Rembrandt and TCGA datasets; 3) Examine the gene expression profile of low grade gliomas that progress to glioblastomas for predictive clustering, prognostic significance and correlates with pathologic and radiologic features; and 4) Identify correlates of MRI enhancement patterns in astrocytic neoplasms with underlying vascular changes and gene expression profiles. To accomplish these aims, the center will develop and employ workflows consisting of novel image analysis algorithms and bioinformatics analyses to correlate imaging characteristics defined by feature sets with pathologic grade, vascular morphology and underlying gene expression profiles. Advanced information technologies developed by caBIG will be employed to manage, explore, and share among researchers semantically complex datasets representing analysis results.

2.3 GenePattern
GenePattern is a widely used software package that contains a repository of analytic and visualization tools and allows users to combine them to create complex analytic methods that can be easily reused and reproduced [Reich et al 06].  It includes a library with more than 100 modules for microarray analysis, proteomics, and SNP analysis.  The GenePattern software has a user community of over 12,000 users.  GenePattern is widely used in the caBIG community, and has been incorporated in a variety of components and services of the caBIG architecture.  

GenePattern users can combine modules from the library to define pipelines, or can choose from a set of pre-defined abstract pipelines called protocols. GenePattern is accessible to users of various levels of sophistication. GenePattern offers users the benefits of a framework for accessible and reproducible research. Providing a single point access that integrates otherwise diverse software tools makes it significantly easier for scientists to use state-of-the-art analysis tools.  Moreover, the system can record the analyses done by the user, which enables others to easily replicate the results [Mesirov 2010].  

More information about GenePattern is available at the GenePattern website, http://www.broadinstitute.org/cancer/software/genepattern.  

3 Use Case # 1: Molecular Data Analysis Workflows for Copy Number Analysis
3.1 Goal
As new data becomes available in TCGA, the system would assist researchers of the Emory GBM in-silico center in running data analysis workflows that are automatically adapted to the particulars of the data.  That is, the system will perform semantic reasoning on the workflows to adapt them based on metadata properties of datasets.

3.2 Current Practice
Copy number analysis identifies regions of the genome that are either missing or duplicated.  These kinds of analyses have the overall goals of identifying indicators of prognosis and response to treatment, and better understanding glioma progression.
For this work, researchers at the ISBTRC are currently focusing on the REMBRANDT dataset and will soon be using TCGA data as well. Currently, TCGA does not contain many low grade tumors.  The datasets in TCGA suffer from the same problems that the REMBRANDT datasets have with respect to the workflow described here, although the data is expected to have higher quality.

The REMBRANDT dataset consists of two types of molecular data: gene expression and SNP.  A schematic of the REMBRANDT data model is shown in Figure 1a. The copy number analysis operates on SNP array data.  The SNP arrays consist each consist of two chips, and each patient may have either a tumor-only or paired tumor-blood sample.  The structure of the SNP data is shown in Figure 1b.

One instance example of the use of workflows on REMBRANDT gene expression and SNP data is presented here.  First, a categorization of the REMBRANDT patients is performed using an analysis on gene expression data to identify “gene expression subtypes” among the REMBRANDT data.  Then a copy number analysis is carried out with the the SNP data to determine patterns of chromosomal aberrations for each category of patients.

There are seven distinct steps in the analysis, as shown in Figure 2.  The first step is a normalization to correct for measurement affects, and is carried out separately on the Xba and Hind arrays for all samples.  The next step is a tumor/blood normalization.  The blood chips for paired array samples are then averaged together and the tumor chips for each sample are then divided by this blood average.  Following the normalization the blood chips are discarded from the paired samples.  The next step is then to combine the normalized tumor chip Xba and Hind chip-pairs together.  Following this combination step, all probes are sorted into the physical order in which they appear on the chromosomes.  This provides a noisy mapping of copy number throughout the whole genome.  The next step is to detect regions of extended amplification or deletion within the noisy copy number signal (see Figure 3).  This segmentation produces an estimate of regions of chromosomal deletion and amplification for each sample [Hupé et al 2004].  At this point the data is then visually checked for quality.  The final step is to incorporate the categorization of patients and check for regions of consistent deletion/amplification of DNA in each category using GISTIC analysis [Beroukhim et al 2007].  This is actually conducted in two separate steps, first grouping of patients according to the patient' initial characterization, then the GISTIC analysis is carried out. 

Currently, the analysis consists of some automated steps interleaved with manual steps for data cleansing and quality checks. 

GenePattern is used to automate some of the steps, in particular the SNPFileCreator, CopyNumberDivideByNormals, MergeRows, GLAD, and GISTIC. The GenePattern SNPFileSorter to arrange the array probes into chromosomal order. 

In addition to the automated steps, the current workflow also includes manual data cleansing steps that must be adapted to the particular characteristics of the data.  Cleanup includes identifying missing samples and duplicate samples, and dealing with missing information (it is common to have missing clinical data).  Although some portions of the workflow can be automated, the data cleansing steps are interleaved between them.
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Figure 1.  REMBRANDT data model.  Each sample consists of gene expression data, SNP data, clinical data, and associated imaging data.  The copy number analysis operates on the SNP array data.  Each SNP array consists of two physical chips, the Xba and the Hind.  Patients may either have paired arrays for both normal (blood) and tumor tissue, or they may only have one array for tumor tissue.
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Figure 2. Copy number workflow for REMBRANDT data.  The finished product is a statistical quantification of DNA gain/loss in categories of patients.
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Figure 3. Raw copy number signal.  The GLAD segmentation analyzes this noisy signal for extended regions of amplification or deletion to identify missing or duplicate regions of DNA.
Matlab is used to for three purposes - gathering data, grouping data, and integrating clinical information.  To gather data, patients of interest are compared against the available data (the SNP arrays are not available for all patients.)  There are two uses for grouping data.  One is using regular expressions to identify tumor arrays from blood arrays, and identifying duplicate samples.  Another is cutting up the GLAD output file based on some classification, putting patients in different classes into different files.  This is to prepare the data for GISTIC analysis.  Finally, for integrating clinical data the available array data is linked to the clinical data.  This clinical data could be used to group samples for GISTIC analysis as well.

3.3 Use Case Scenario: Automatically Triggering and Customizing Workflows for New Data
Researchers would like to automate as much of the process as possible in order to increase productivity and the throughput of new scientific results.  Ideally, the entire workflow would be automated and would be triggered automatically by the system whenever new relevant data appears in the system.  Researchers would be presented with the results of executing the workflows, and upon examining these results they would either vet the analyses or go back to clean the data and perform additional quality control steps.

The use scenario is as follows.  As new relevant data is added to TCGA, the semantic workflow system triggers a selected set of workflows.  These semantic workflows have been automatically selected by the system based on the metadata properties of the new data.  For example, for SNP datasets the workflows triggered carry out copy number detection.  The semantic workflow system also customizes the workflows automatically, based on metadata properties.  Data cleansing steps are included and configured automatically by the semantic workflow system based on metadata properties of the datasets.

It should be possible to automate the data cleansing steps for the workflow outlined above. Some statistical tests for quality control could be developed.  Molecular data is usually noisy, and researchers may want to have visualization steps included in the workflow so they can spot undesirable patterns and anomalies.  IGV could provide a convenient interface for visualization (supports most common file types). 
4 Use Case # 2: Image Analysis Workflows for Radiology and Pathology Data in TCGA and REMBRANDT 
4.1 Goals
As new data becomes available in TCGA, the system could assist researchers in running data analysis workflows that are automatically adapted to the particulars of the data.  That is, the system would perform semantic reasoning on the workflows to adapt them based on metadata properties of datasets.

4.2 Current Practice
Researchers in the ISBTRC are carrying out complex image analysis processes both for radiology and pathology data.  We describe the process for each in turn.

Radiology images for both the TCGA (glioblastoma) and REMBRANDT/VASARI (glioma) studies are added to the National Biomedical Image Archive (NBIA).  The images are accessed through the NBIA caGrid data service interface.  The images are retrieved by a customized radiology review workstation and annotated by an expert Radiologist.  The results of the annotation are submitted from the review workstation to a central annotation repository using caGrid data service protocol.  The annotations are used in subsequent data integration and statistical analysis.  No automated analysis is being carried out currently. That is, the workflows are currently customized by hand to the particular characteristics of the datasets.

Pathology images from TCGA are available from the TCGA FTP server.  REMBRANDT/VASARI pathology slides are shipped to Emory University for digitization, with the resulting images stored at Emory University ISBTRC. The images are processed semi-automatically for nuclear characterization and classification as well as angiogenesis analysis.  The images are partitioned into tiles and Matlab algorithms for nuclear segmentation, feature extraction, and tumor grade classification are applied in sequence using a compute cluster for parallelized image analysis.  For angiogenesis analysis, the signal for a histological stain is extracted, followed by segmentation of blood vessels, extraction of vessel features, and classifications into different categories of angiogenesis.  The results of the analysis are used for subsequent data integration and statistical analysis.  The individual steps in the analyses are initiated manually.

4.3 Use Case Scenario: Automatic Incorporation of New Algorithms and Customization of Workflows
A new image processing algorithm is developed and made available in the caBIG infrastructure.  The researchers would like to include this new algorithm in the workflow, rather than using older algorithms only.  The semantic workflow system would start from a semantic description of the workflow that allows the specification of abstract classes of workflow components.  The semantic workflow system would reason about the component classes and automatically instantiate the workflow based on all the algorithms available, including the new algorithm.  

As new data is added to TCGA and REMBRANDT/VASARI studies, the semantic workflow system triggers a selected set of workflows.  These semantic workflows would be automatically selected by the system based on the metadata properties of the new data and how they match the semantic constraints represented in the workflow. The semantic system would also customize the workflows automatically, based on metadata properties.

5 Use Case # 3: Assisting Researchers with Gene Expression Analysis

5.1 Goals
This use case illustrates how users can be assisted in creating valid workflows.  Complications arise from constraints that exist between the properties of chosen datasets, algorithms, and their parameters and additional constraints the user may have on the results or the workflow itself.

5.2 Current Practice
A user has access to micro-array data from various sources, such as caArray and the Gene Expression Omnibus (GEO). She would like to be able to preprocess data from any of these sources, cluster it (either by genes or by samples), and then visualize the result. She may also need to carry out additional analysis steps, for instance, to detect anomalies in the clustered data.

GenePattern provides the user with a library of algorithms including various data importing, clustering, and visualization algorithms. It allows the user to define pipelines, which are linear sequences of algorithm invocations. Using these, the user can implement and execute the desired sequence of steps.  GenePattern also offers users protocols, designed to provide guidance on what algorithms to use by providing a high level description of the analysis. GenePattern protocols are English descriptions of how to perform some of these algorithms in sequence in order to accomplish common tasks.  The user then takes a protocol, and creates a pipeline by following the instructions provided in the protocol.

In our running example, the user would use the “Clustering” protocol to design a workflow that would take micro-array data from one of several possible sources, preprocessing the data, clustering the data using one of several possible clustering algorithms, and visualizing the result.

Designing the pipeline correctly is a very manual process:

· there are a number of concrete algorithms to choose from for the clustering and visualization steps,

· depending on the data source, a different importing algorithm needs to be used, numerous parameters need to be set for each step, and 

· there are various constraints between the properties of the chosen datasets, the concrete algorithms chosen for each step, and additional requirements the user has (e.g., whether to cluster by genes or by samples). 

The following exemplifies a few such interdependencies:

· If the data is already normalized, the pre-processing step is not required. Likewise, if data is Affymetrix CEL files created using the ExpressionFileCreator module with a normalization parameter other than “none”, the data should not be normalized again in preprocessing. 

· If the computationally expensive HierarchicalClustering algorithm is used to perform the clustering, the data should be filtered first by setting a threshold parameter in the pre-processing step. This threshold has to be set on genes when clustering by rows, or on samples when clustering by columns.

Users would ideally want to experiment with different clustering algorithms and using a collection of data sets. While these constraints are described in English in the Clustering protocol, the user needs to read and understand these descriptions and design the pipeline accordingly. This also makes editing difficult: several ramifications may result from choosing, say, a different data set as input. Then for each combination of algorithms and data, the user would have go through the steps of editing the pipeline, understanding all involved constraints and adjusting the components and parameters accordingly.

5.3 Use Case Scenario
Semantic workflows follow a declarative approach to workflow design and execution. Intuitively, instead of making the user specify “how” to solve the problem, semantic workflow systems ask “what” she wants to achieve. The semantic workflow system has a formal specification of the available modules and their constraints and is able to reason about which combinations of datasets, modules, and parameter settings are admissible. This enables the semantic workflow system to choose datasets, modules, and parameter settings for incompletely specified workflows, highly increasing the flexibility of the system and allow for much easier experimentation.

Continuing with our clustering scenario, a user would use a semantic workflow system to first create a workflow template that intensionally represents the set of all possible executable workflows that are of interest to the user. Such a template specifies at a high-level what needs to be done, but leaves it to the semantic workflow system to determine how to achieve the task given the constraints.

For the clustering scenario, the template may specify the following steps:

1. Load micro-array files from Affymetrix CEL files (from caArray or the Gene Expression Omnibus).

2. Run DataImporter to produce a gene expression file in GCT format.

3. Run PreprocessDataset if needed.

4. Run a Clustering algorithm.

5. Visualize the result using a Viewer.

This high-level template leaves certain decisions open, and as such represents all its instantiations.  In this workflow, Clustering is an abstract component that leaves the decision open about what concrete clustering algorithm to use, which would mean choosing one of KMeansClustering, HierarchicalClustering, self-organizing maps (SOMClustering), or ConsensusClustering. Also DataImporter and Viewer are abstract components.  

Some of the constraints that make the choice of algorithms difficult and that the semantic workflow system could be tracking for the user include the following:

· When using ConsensusClustering as the clustering method, the system enforces the best practice of first normalizing the data by adding this constraint. This constraint would propagate and could, for example, cause the normalization parameter in PreprocessData to be set to something other than “none”.

· If the data is from GEO, the system will recognize that it has to use the GEOImporter module to realize the abstract DataImporter step. 

· When using data from Affymetrix (which is created using ExpressionFileCreator with normalization), the system recognizes that normalization is no longer required and can set the normalization paramter of PreprocessDataset to “none”.

· When using HierarchicalClustering, the system would add and propagate the constraint that the data input to that step is filtered to a reasonable size and hence set a threshold in PreprocessDataset accordingly if the original input data is too large. Depending on whether clustering is by rows or columns, the threshold would be put on genes or samples, respectively.

The set of possible workflows implicitly described by the original template can be automatically generated by a semantic workflow system, providing the user with a list to choose from rather than burdening her with designing and configuring each possible workflow manually.  The list that the user would be offered would not include any choices that violate the semantic constraints known to the system.  Therefore, the user would only be shown the valid workflows that are possible given the specified data and goals of the analysis.

6 Summary and Recommendations

These use cases illustrate how a semantic workflow system can assist scientists in various ways:

· automatically customizing the workflow to the input datasets

· automatically selecting algorithms, include new ones recently added to the system

· assistance in setting up parameters of the analysis

· validating that the analysis is correctly done given the user’s data and goals

· automatically elaborating workflows from a high level specification

In order to enable the use of semantic workflows for these use cases, and generally for workflows within caBIG, we make the following major recommendations:

1. Data catalogs in caBIG must include semantic information that is directly relevant to conducting scientific data analysis processes.  Some group must be tasked with eliciting such metadata properties from caBIG data users.  Some group must be tasked with ensuring that such metadata properties be collected when contributors deposit data in caBIG data catalogs.

2. Catalogs of analytic tools (be it software components or services) in caBIG must capture semantic constraints about their proper use and about proper configuration guidelines.  Registries for such catalogs must be augmented with a layer of semantic information that capture such constraints.  This activity needs to be coordinated with the extension of data catalogs described above, since the vocabulary of metadata properties needs to be the same.

3. Workflow catalogs must be created for caBIG that include appropriate semantic information about workflows.  These catalogs must contain high-level reusable workflow templates for common data analyses in caBIG.  Each workflow must be described with semantic information about their function, and possibly include semantic constraints imposed by the end-to-end analysis requirements.

4. Data catalogs in caBIG must be extended to include provenance information generated by workflow systems.  Once a workflow is executed and new data products are obtained, they would ideally be deposited in shared data catalogs together with their provenance expressed as the workflow that was executed to obtain the data.

5. Researchers that use caBIG data and infrastructure must be given priority as prime consumers of caBIG data and given intelligent tools that can assist them.  Without such assistance, the access to shared data and infrastructure will be overwhelming to impractical for single researchers and individual labs.  Ongoing sophisticated data collection and architecture design efforts must be complemented with user-centered tools designed with biomedical researchers in mind.
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