Potential Future of MetathesaurusMetathesaurus Enhancement and Maintenance Environment (MEME) Software

Business Case and Requirements Outline
Table of Contents
1.	Executive Summary	3
2.	Overview of MEME	3
3.	Mission of this Activity	4
4.	Purpose and Scope	4
5.	Stakeholders	4
6. Roles	5
7. Overview of Editing Cycle and High-Level Requirements for MEME	6
I.	New Editing System Functional Requirements	8
II.	Non-Functional Requirements	11
III.	Technical Requirements- NIH, CBIIT	12
IV.	Proposed Plan for Editing System	12
V.	Proposed Plan for Remaining Components	13
VI.	Management of Phase Implementation	15
1.	Executive Summary	2
2.	Overview of MEME	2
3.	Mission and Goal	3
4.	Purpose and Scope	3
5.	Stakeholders	4
5. Roles	4
6. Overview of Editing Cycle and High-Level Requirements for MEME	5
I.	New Editing System Functional Requirements	7
II.	Non-Functional Requirements	10
III.	Technical Requirements- NIH, CBIIT	11
IV.	Proposed Plan for Editing System	11
V.	Proposed Plan for Remaining Components	13
VI.	Management of Phase Implementation	14

	Author(s)
	Aras Eftekhari
Edits by Sherri de Coronado
	Reviews/ Initials

	Version
	.4
	

	Date
	5/7/2015
	

	Version
	
	

	Date
	
	

	Author(s)
	Aras Eftekhari
Edits by Sherri de Coronado
	Reviews/ Initials

	Version
	.4
	

	Date
	5/7/2015
	

	Version
	7
	Reviews by Sherri de Coronado and Brian Carlsen

	Date
	5/26/2015
	

1. [bookmark: _Toc420064734]Executive Summary
The MetathesaurusMetathesaurus Editing and Maintenance Environment is a software system used by NLM and NCI to edit terminology content to be exported for production of NLM’s Unified Medical Language System (UMLS) and NCI’s NCI MetathesaurusMetathesaurus.
Components of the software have been modified over the years, but the software is aging; the Jekyll editing interface is the oldest component, at about 15 years old. In the face of aging software, it is important and useful for NCI and NLM to jointly conduct an exercise to document the needs and requirements for editing the metathesaurusMetathesaurus content in the future, and to develop a business plan and possible timeline for how NLM and NCI might collaborate to upgrade or rebuild the editing software to support future operations.
Assumptions: We are assuming for the purposes of this exercise that the early and late stages of the Metathesuarus workflows are not going to change – i.e. how source terminologies are processed for insertion and how the exported files are packaged and served for production. We are focusing primarily on the editing related components. Note that we are NOT assuming a priori that the editing and workflow need to be exactly replicated. We wish to identify and document the requirements, and in the business analysis look for opportunities to update existing components or develop new software and to identify synergies and/or opportunities for shared editing or other operational changes as feasible.
The analysis and conclusions from this task are intended to facilitate decision-making about the future state of MEME.

2. [bookmark: _Toc420064735]Overview of MEME
The purpose of the Unified Medical Language System is to assist in the advance of systems that aid health care professionals and researchers in retrieval and integration of biomedical information obtained from a number of knowledge sources, and to help users in linking dissimilar information systems. UMLS also builds knowledge sources that can be used by intelligent programs to overcome:
· Language disparities used by different users or different information sources.
· Disparities in granularity and perspective.
· Problems in mapping and aggregating data from different sources.

MEME contains information regarding biomedical concepts and terms from many controlled vocabularies and classifications used in patient records, administrative health data, and full text databases. The metathesaurusMetathesaurus maintains the names, meanings, hierarchical contexts, attributes, and inter-term relationships present in its source vocabularies. General defining principles of the metathesaurusMetathesaurus include:
· Concept Organization
· Common format for distribution of vocabularies
· Linking vocabularies
· Representing multiple hierarchies
· Regular updates (at least annual)
· Representation of the meaning in each source vocabulary
· Explicit tagging of each source vocabulary’s information
	
The metathesaurusMetathesaurus is produced by automated processing of machine-readable versions of the source vocabularies. To accomplish this, each source vocabulary must be put into a common representation. After the source is in this common data structure, lexical matching is performed, suggesting possible synonyms and concepts to which the added concept might be related.
3. [bookmark: _Toc420064736]Mission of this Activity
The mission of this activity is to understand the general requirements for the MetathesaurusMetathesaurus editing system, as illustrated by the MEME environment (Figure 1 below). The conclusions from this task may allow for updating of the Editing System within MEME, and then, if possible, stage a long-term plan for “re-doing” or updating multiple components of the system. Both will be addressed in the following sections. The goal in the near term is to understand what features and functionality would be required of any MetathesaurusMetathesaurus editing system.
[image:]
Figure 1 – MetathesaurusMetathesaurus Lifecycle
4. [bookmark: _Toc420064737]Purpose and Scope
The intent for understanding the editing requirements is the main focus, but high level requirements of other phases of the lifecycle are important to understand in context, as they interact with the editing system, as seen in Figure 1 above. The intent is not necessarily to replicate MEME, but to derive requirements based on observation of these tools and their use.
5. [bookmark: _Toc420064738]Stakeholders
a. Content Editors
b. Workflow managers
c. UMLS and NCI Meta production staff for all phases of life cycle
d. NLM management staff
e. NCI management staff
f. Software Developers
g. End users

[bookmark: _Toc420064739]65. Roles
The following roles are current roles in the MEME environment. These roles currently have some overlap in responsibilities and some are rarely used, therefore one role does not necessarily represent one individual. Any possible update or upgrade of MEME will have to reassess the Roles for the system.
A. Administrator (R-A): Administers the IT infrastructure, hardware, software installations, and databases. Responsible for configuring new systems, installing software, scheduling recurring processes, and making copies of databases as needed. There are at least three sub-administrators
a. Database Administrator (R-A.dba) - Database
b. System Administrator (R-A.sys) - Operating System
c. MEME Administrator (R-A.meme) - MRD, MEME, MIDSVCS, LVG, other servers
B. Developer (R-DEV): Maintenance of existing code line development of enhancements based on objectives/priorities. Includes management of the complete software development cycle, including software QA.
C. Development Manager (R-DM): Manages the software development life cycle (including documentation and QA).
D. Documenter (R-DOC): Maintenance of existing documentation, development of new ways of tracking processes, reporting progress, etc.
E. Editor (R-E): Edits MID content.
F. Editing Manager (R-EM): Manages the editing process. This includes deciding when insertions will happen, and performing the routine EMS/WMS operations after relevant DB work is completed.
G. Inversion/Insertion Manager (R-IM): Manages the inversion and insertion process. This includes prioritizing inverter resources and making sure deadlines for source insertion objectives are met. Also plans and manages bug fixes and development of enhancements and QA improvements to inversion toolkit. Plans staging of test and real insertions to meet production timing goals.
H. Inverter (R-IV): Writes inversion scripts, performs inversion work, and validates results. Typically also responsible for things like converting to UTF-8 character set and providing the gold standard "initial state" for each source.
I. Insertion Operator (R-IO): Takes inverter output, develops insertion recipes, and performs test and "real" insertions.
J. Maintainer (R-M): Performs ad-hoc maintenance operations. This can be in response to QA problems, or requests for E or EM roles for specific work (e.g. change all 'XX' STYs to 'YY' STYs for concepts with source S1 where they have X type of relationship to S2).
K. Production Operator (R-PO): Performs pre-production operations, production operations, and post-production operations.
L. Project Manager (R-PM): Overall project manager.
M. QA Operator (R-QA): Operates QA tools. Identifies QA problems at each stage of life-cycle and triages for handling. Communicates with M role to determine resolution of known problems. Also responsible for QA reporting functions.
N. Source Liaison (R-SL): Responsible for performing source acquisition and initial qualification and evaluation.
O. User Community Liaison (R-UCL): Responsible for interacting with user community. Triage of user complaints and suggestions and routing of requests or questions to relevant roles.
[bookmark: _Toc420064740] 76. Overview of Editing Cycle and High-Level Requirements for MEME
A. Inversion
Inversion is the process of converting source provider files in their native format to MEME’s common format, called the .src format. Generally, the inversion process consists of running a script or scripts tailored to the particular conversion task.
Inversion begins with a set of files that come from a source provider (for example, MeSH). These files will be in either the RRF input format or in a source specific format. One key goal of inversion is to maintain source transparency, or the preservation of all initial data in the new format. Source transparency can be validated by attempting to recreate the original source files. Additional work is required for sources that have hierarchies to generate the necessary information to completely and accurately represent those hierarchies.
Inversion ends with insertion-ready .src files and a source insertion recipe used to actually load the inversion data into an editing database.
Information about source data and the process of converting it is should be stored and maintained over time using the Source Information Management System, or SIMS. This is an on-line documentation system that captures all relevant information about the process and data. Eventually, a subset of this data is to be made publicly available to satisfy another requirement of source transparency, that the representation of original source data in MEME is accurately documented.	Comment by Sherri De Coronado: Should be, or “is”?

BAC: I’d say “is”	Comment by Sherri De Coronado: Who enters the source information? (What roles?) Just a nit. Also, is it a wiki? And could we add a footnote to link to it or a screenshot?

BAC: Well, there are several tools used in the overall process. SIMS is a web application that tracks metadata about sources and inversions. NLM uses a wiki (and Siebel) to track progress of a source through its editing lifecycle, and then there is also the UMLS-level “source documentation” pages that actually detail what the inversion did and how data structures from source files were converted to UMLS structures (e.g. from initial files ->what it looks like in RRF) – see
B. Insertion
Insertion is the process of loading inversion data files into the Metathesuarus Image-map Documentation (MID) editing databaseInformation Database (MID). The source insertion process typically begins with inversion files. (either in the intermediate .src format. A GUI wizard called the “recipe writer” is used to create a “recipe”. The is document recipe informs the insertion system of the series of steps needed to load and merge the inversion data with the editing MID. Behind each step is a piece of code that performs some aspect of the insertion. When finished writing a recipe, a user creates an HTML file for viewing the recipe steps, an XML document representing the saved form of the recipe, and a UNIX shell script for performing the insertion.

When inserting a source, a test insertion must first be scheduled and run. The source inverter and NLM content experts should review the test insertion to make sure that (a) the insertion recipe was properly implemented, and (b) that the insertion recipe was the correct recipe for the data. If any major modifications are made, an additional test insertion should must be performed.

C. Editing
Editing is the process of resolving conflicts between a source's view of synonymy and the UMLS view of synonymy. The metathesaurusMetathesaurus is a thesaurus comprised of a large number of constituent vocabularies, and it is an editor's task to incorporate all of the different views of the world into a homogenous single representation.
Editing is primarily driven by four processes-
a. Insertion of new sources. A new source is one whose content has never appeared in the metathesaurusMetathesaurus before. Here, the insertion process attempts preliminary matches to the existing MID content. It is ultimately the editor’s task to review every concept in the new source and decide if the insertion algorithm placed it correctly into a UMLS concept or if it should be moved elsewhere. Typically, editors try to merge as much of the new source with existing MID content as possible so as to avoid creating new missed synonymy. Another important goal is to locate all new concepts created by the source and connect them to existing MID concepts so as to avoid creating new orphans.	Comment by Sherri De Coronado: Define orphan? Concepts without a parent relationship?

BAC: good question. The goal is to attempt to find a matching UMLS concept and merge together if possible. I think in this sense “orphan” means a UMLS CUI with only one atom.
b. Insertion of updates to existing sources. An update source is a new version of a source that already exists in the metathesaurusMetathesaurus. Here, the primary editing responsibility is the same as for a new source, but instead of reviewing all content, editors do not have to review content judged to be safe replacement.	Comment by Brian Carlsen: Safe replacement is determined algorithmically where if atoms from the previous version and current version are similar enough, then the merging and STY assignment done on the previous version can be reused. The “simliar enough” algorithm is determined in a source-specific way and is based on things like lexical similarity, matching codes, and other precomptued algortihmic info.
c. Quality assurance predicates (QA bins). Various scripts and PL/SQL packages produce sets of concepts (clustered or non-clustered) that violate certain QA conditions.	Comment by Sherri De Coronado: Is the MID an Oracle database? We probably should mention earlier. (Unless I missed it in the graphic).
d. Ad hoc sets. At any time, a certain predicate may be used to generate a list of concepts. Frequently used ad-hoc sets are incorporated into a collection of Ad Hoc Bins.
Editing management typically revolves around bins, or collections of concepts. Bins are managed and maintained by the Editing Management System. This web based tool allows administrators to create mutually exclusive bins of concepts based on an ordered list of predicates. Additionally, orthogonal sets of bins based on QA queries or just frequently used ad hoc queries can also be built and maintained. Editors are assigned worklists which are collections of concepts from a particular bin. Worklists are created and managed by the Worklist Management System.
An editor typically looks at one or more UMLS concepts at a time and attempts to resolve issues that cause those concepts to require review. Once an editor decides that a change needs to be made, they will use the MEME4 editor (Jekyll) to enact the change. An editor is required to approve the concept when finished with it. The All concepts on an editor's worklist that are left untouched are . When the worklist is finished are subjected to a process called “stamping,” in which all concepts on the list they are algorithmically approved.
D. Production – Production occurs post editing and is not the main focus of this requirements activity. The steps and elements are as follows:
a. Synchronization
b. MetathesaurusMetathesaurus Release Database
c. Release Manager (Production)
i. Quality Assurance- QA on MEME published reports to review and reconcile differences.
d. MetathesaurusMetathesaurus Files (mmsys.zip and .nlm files)
e. DVD Mastering
f. UMLSKS
i. User Applications
ii. UMLSKS User
g. MetmorphoSys
Further information is available hereat [link].
I. [bookmark: _Toc420064741]New Editing System Functional Requirements
These functional requirements are derived through a series of meetings, demonstrations, and review of documentation.
A. General Editing System Requirements
i. [All functionality on Jekyll’s current SEL (Select) screen]
ii. Ability to edit:
1. Concept
a. Add, Delete, Replace functionality
2. Class	Comment by Sherri De Coronado: I don’t think you introduced what a class is earlier.

BAC: agreed,and I don’t think MEME involves any direct editing of LUI, SUI, CODE, or SDUI (which are the classes other than “concept”).
a. Move, Merge, Split functionality
3. Relationship
a. Change, Add, Delete functionality	Comment by Sherri De Coronado: We assume that we need to continue using all existing relationship and attribute types and create or delete new ones as needed?

BAC: most relationship/attribute “types” are created during inversion/insertion. All editing really involves is manipulating relationships between CUIs (e.g. to make sure all concepts with ambiguous strings are connected by a rel).
iii. Lifecycle tracking of individual source vocabulary and where individual sources are in the lifecycle (see Figure 1)
iv. Application should allow for:
1. Browsing in Editing mode
a. All browsing functions need ‘back’, ‘forward’, ‘go to beginning’, ‘go to end functions’ while browsing Editing system
2. Browsing a concept
a. Ability to view multiple concepts at the same time/within same window
3. Browsing published concepts
4. Browsing of a concept within the full lifecycle
5. Multiple users to edit simultaneously
6. Role based functionality (e.g. workflow manager, senior editor, editor)
7. Reporting
a. Parent/child hierarchy in reports
b. Ability to View All or Filter
8. (configurable) Real-time integrity checking to prevent bad data input.
9. Export
v. Interface with the worklist environment (e.g. discover assigned worklists, pull concepts into environment from worklist, track progress through worklist, stamp worklist when finished – or mark for later stamping)

B. Worklist Functionality
Worklist integration should be simple and efficient, so that editors can utilize quickly and painlessly.
i. Ability by workflow manager role to view worklists in a dashboard within the web-based system
ii. Ability to assign tasks via worklists.
1. Worklists may be as small as a single concept
2. Worklists may contain (concepts or atoms?) from one or more sources (?)	Comment by Sherri De Coronado: I think that by the time anything is created in a worklist, it is a concept in MEME. But should verify.

BAC: worklists are computed at the atom level but delivered and worked with at the concept level. The reason atoms are used is so that splits/merges can be easily handled (e.g. if a “concept” on your worklist is split, then your worklist should retrieve both ends of it).
iii. Tracking of edits and assignments via worklist (delta reports indicating what has changed and who made changes)
C. Editing (by Editor)
i. Tool should help editors assert synonymy
ii. Tool should allow for sort, flag, and move functions
iii. Ability to view and edit whole cluster and/or each concept one at a time	Comment by Sherri De Coronado: What is a cluster?

BAC: This refers to a cluster of concepts on a worklist. The worklist isn’t just a list of concepts, it’s a clustered list – so that concepts on there for the same reason (e.g. a demotion between them) are grouped together.
iv. Ability to split/merge concepts
v. Ability to see relationships and hierarchy within database
vi. Ability to Undo previous editing steps
vii. Multiple simultaneous users without conflict (or concurrency issues, like deadlocking)?
viii. Edit semantic type, flag for status
D. Bins
There are currently three kinds of bins used to support editing: ME bins, QA bins, and AH bins.

Mutually Exclusive (ME) are the major bins, primarily used to drive editing and are based on concept status as well as other predefined conditions.
A new system needs an equivalent functionality, with ME bins holding concepts from multiple sources.

Quality Assurance (QA) bins hold concepts based on QA rules that can be run at any time to identify known, problematic data conditions. Typically work from these is put into “checklists” and edited alongside the worklists. If something is already on a worklist, it typically does not also get put onto a checklist. QA bins should also be at “zero” for the system to be ready for a release. Similar functionality is needed for a new system.

Ad hoc (AH) bins is a less commonly used mechanism for weaker QA rules but it has a history mechanism. The idea is that you can find concepts matching a condition where sometimes that condition is acceptable and sometimes not. Editors make choices about that and the history mechanism prevents these cases from needing re-review. QA bins are more for rules that should not be violated, whereas AH bins are for rules that have known and correct exceptions.	Comment by Sherri De Coronado: So this is something like a status flag with additional metadata?

BAC: basically there’s a list of concepts that have been reviewed for a particular query. So when computing the results of that query again, the “already reviewed for that query” cases are removed. (e.g. STY coocurrence review)

Overall requirements for Bins or equivalent:
· Bins are configurable.
· Bins can be created and reordered.
· Bins are the same if the same editing rules are used, and different bins used to support different editing rules.	Comment by Sherri De Coronado: Programmatically enforced editing rules, or SOP driven editing rules?

BAC: bins are used to programatically identify different “kinds” of things to look at. Really, each bin has different rules, though there are some standard generators (like “find all status N concepts for source = XXX” where XXX is configurable).
· “Comment out” bins that you don’t want at particular time.
· All bins should have a zero count to freeze for production	Comment by Sherri De Coronado: i.e. no concepts left in the bin?

BAC: exactly. Though this is not strictly true, it is best practice.
· Re: “ncibadmerges” – This is an NCI specific bin used when two NCI/PTs get merged into the same concept. The fix is usually to separate them back out along with any other atoms that mean the same thing (e.g. split the case). Occasionally, these are correct and then the information is fed back to the NCI thesaurus authoring environment to actually put them together into one code.
· Q/A goal : ‘it would be nice to be able to make bins without going to the programmers’
E. Quality Assurance (QA) - QA of the types mentioned below, are now controlled outside of the Jekyl editing interface, through a series of tools and scripts which act on the .src (SRC?) files directly.

i. Ability to QA via ‘conservation of massbean counting’- Counting, comparing, and explaining discrepancies (“bean-counting”). There is a “qa reference model” of the data which determines the aggregations (group by) expressions that are used for counts. Counting is all done relative to the “release perspective”. An adjustment/explanation mechanism should also be supported to allow for known discrepancies.	Comment by Brian Carlsen: I’d say “conservation of mass” instead of “bean-counting”.	Comment by Sherri De Coronado: What is the Release Perspective?

BAC: there are some features of the editing environment that do not make it to the release (e.g. unreleasable attributes, duplicate relationships, etc). The idea is that counts should reflect what they will be at release time, even if the editing environment isn’t 100% aligned (for a variety of possible reasons)	Comment by Sherri De Coronado: Is this to document discrepancies? And if so, where should it be documented?

BAC: some discrepancies are allowed (this requires deeper explanation to understand properly). So the idea is that when counts don’t match and you know it’s OK, you can indicate that, and reports based on the QA system reflect these explanations.
1. A count-comparison function is also needed to verify that mass is preserved across the life cycle (and that known explanations account for all discrepancies).
2. Should be able to compare counts of a source to the previous version
3. Should be able to compare counts of the current release to the previous release
4. Should be able to compare counts within editing environment from week-to-week.
5. Should be able to compare counts from before a life-cycle event (like an insertion) to counts afterwards. – e.g. assure that an insertion actually brought all expected source data into the system.
ii. Hierarchy Viewer function to ‘spot check’ QA from Insertion
1. Hierarchy visualization should be based around data that is actually used to insert into the database. Current tool builds an intermediate form that is used by the viewer – this is problematic because it may be out-of-sync with the actual insertion files.
iii. Source (SRC) QA: For Spot Checking purposes from Insertion- Automated QA algorithm runs every time a source is inserted into the system. When things inserted, able to go in and view data elements to make sure that everything got inserted as it should have. In particular, it is important to sample new content (e.g. a new term type) and content that has been removed since the previous release.	Comment by Sherri De Coronado: How do you identify that? By tags or some sort of metadata on inserted content? Or by knowing what the new content was?

BAC: rather than “spot checking”, I’d say “sampling”. And the current approach to sampling highlights areas where either new term types (or attribute names, or relationship types) were added, or alternatively removed. There is a specific checklist item to review samples of types of things that either disappeared or were added. Each release is sampled, so samples from previous release and samples from current release are both available for review.
iv. RAW SRC Count: SRC QA run data for spot checking Inversion- Whenever inverters run an inversion, one script is a SRC QA to show breakdown. First time things are counted and compared, if something is different, then it must be explained. Ability to labelling sequential order in which stages happen, e.g. “presentation improvements”.	Comment by Sherri De Coronado: Does this occur prior to insertion? If so, should it be moved up or have its own category?

BAC: I’d also say that this should be brought into line with the same approaches to QA used later in the process. That is, to produce QA counts aligned with the “reference QA model” so that you can compare things from the native source files to the SRC files. I suspect this is done in an “ad hoc” way rather than being part of the formal QA cycle.
v. Other QA tools??
1. Rule-based checking of data conditions not completely managed by database constraints (e.g. the “MID Validation” tool).	Comment by Sherri De Coronado: For 1 and 2 -- Is this saying that additional QA tool (s) are desireable? Or that these are additional types of QA that are run? Or both?

BAC: These are QA tools run after an insertion. the first one is an existing tool that performs a series of queries to validate things not validated already by DB constraints (e.g. predefined referential integrity). The second one has some implementations here and there (e.g. STY coocurrence checking) - though could easily be expaned to all sorts of other data conditions (STY comparison across relationships, STY/TTY combinations, character counting, etc).
2. Statistical analysis to look for outlier conditions (e.g. very low volume combinations of semantic type usage) – this is good stuff for “ad hoc” bins because of the history mechanism.
vi. Requirement related to Editing: QA tools must feed into Editing System to create a checklist that is assignable to editors internally.
F. Editing system must be a web-based application
i. Eliminate extra layers and/or “doors” into system	Comment by Sherri De Coronado: Is this saying that it should be web based vs using citrix, remote apps, etc?

BAC: I think the #1, #2, and #3 are the current barriers to use, a pure web-based thing is most desirable.
1. Citrix
2. Multiple logins
3. Remote Desktop/Applications (NCI)
G. [bookmark: _GoBack]User must be able to login using NIH credentials.	Comment by Sherri De Coronado: And single login should work for access to all tools for which one has role based authority to access?
H. Simultaneous Editing with multiple users logged in
I. Re: Collaboration with NCI (and other organizations)
i. Are we talking about a single server that can be used by multiple organizations? Long-term single server or independent servers that can be integrated and/or pass information back and forth? May not be possible politically. Needs to be modular to not affect editing interface.	Comment by Sherri De Coronado: Note that NLM is experimenting with a new model to have some community help with editing a new source inserted into the MID. Does that create new requirements , or different role based authority?
ii. If so, can they edit concepts differently (i.e. disagree on synonymy)?
iii. Can we then export different “versions” of a MetathesaurusMetathesaurus?
iv. How would inversion/insertion be handled?
II. [bookmark: _Toc420064742]Non-Functional Requirements
A. Usability
a. All tools must support publishing at intervals in XML, OWL, etc., with a sub-setting capability	Comment by Sherri De Coronado: Is it feasible to publish in OWL? [Or just export a single source in OWL? OWL2?] Is it a new requirement over what is currently available?

BAC: it is feasable to publish DL-based sources in OWL (e.g. SNOMEDCT) but not other ones (e.g. MSH).

In this section, I might also suggest that there should be an “update” model. Something we’ve talked about for a long time and implemented many years ago but which was never used.
b. Backup on continuous basis
c. Ability to print (through the web browser)
d. Track actions of users
B. Constraints and Dependencies
a. Wherever there is a data transformation step, there must be a corresponding QA step to validate the transformation and identify any missing, extra, or unexpectedly changed data.
C. Extensibility
a. Compatibility if customer is updating systems (‘make it easier for customers to get new content’)	Comment by Sherri De Coronado: What do we mean here? Export whole vs diffs? Export various formats? And is this a requirement for the editing system vs Metamorphosys which acts on RRF files?

BAC: ahh, maybe this is where “udpate model” makes sense
D. Performance
a. Good editing performance with X number of simultaneous editors
III. [bookmark: _Toc420064743]Technical Requirements- NIH, CBIIT
A. Must meet NIH ISSO Security requirements	
B. External API Integration
C. External facing applications must meet 508 compliance	Comment by Sherri De Coronado: Is this true for all web applications or only web apps that are actually public facing? (I hope the latter). And can no one edit without an NIH account and login? [Assuming so, from above.]

BAC: hmm. NLM certainly interpreted the rules that everything they created should be 508 compliant. These days, it’s pretty easy to ensure a web application is 508 compliant anyway.
D. Use standard software and tech stack, open source if possible	Comment by Sherri De Coronado: If current MID is based on Oracle, is it feasible to reimplement? If Jekyl is rewritten, it will interface with the database. Do we need to make a decision about the database now?

BAC: it is certainly feasable to reimplement. The next generation should be designed around an abstracted “data source” layer that supports any modern back-end database. There are frameworks (e.g. hibernate) that do this all for you. The main thing is to avoid putting “native queries” directly in the code anywhere. And where you do use queries, keep the complexity to a minimum so they are transportable across environments.
E. etc.
IV. [bookmark: _Toc420064744]Proposed Plan for Editing System
Phase 1 - Editing Functions transition to Web-based Application using existing and new requirements mentioned in previous sections:
A. Web-based Editing Application	Comment by Sherri De Coronado: See my comment directly above.
i. Workflow
ii. Editing
1. Multiple simultaneous usage
2. Ability to merge deleted concepts on server side
3. etc.
iii. Quality Assurance
1. Counting, comparing, and QA at each transformation step
2. QA Tools feed into Editing Management System to create checklists/assign work within tool

After several attempts to upgrade the MEME environment in the past, it was identified that the main ‘roadblock’ is the complexity of lifecycle interactions between various processes and modules (See Figure 1 above). After collaborating with MEME users and editors, the overall recommendation is to create interfaces (APIs) or standard ‘handoff’ artifacts that separate lifecycle stages in ways that completely disentangle them. By creating well-defined file formats and REST APIs, the core functionality and the interface tooling of each lifecycle stage can be cleanly separated from one other. This allows for incremental reengineering of individual pieces; i.e. Editing System, then Inversion, Insertion, Publishing System, etc.

Each of these systems is currently implemented with legacy technology and can be upgraded without requiring an upgrade of the entire system. The starting point would be to upgrade the interfaces between lifecycle stages, thus allowing tools and interfaces to be upgraded without first requiring the back-end to be upgraded.

Stage 1: Define security and domain model Read/Write REST APIs. Implement them to run against the existing MEME environment.
Step 2: Redevelop the editing interface (currently Java applicaton “Jekyl’).
Step 3: Redevelop other tooling that would make use of the corresponding API (in order of priority)
Step 4: Upgrade backend to directly implement the APIs using modern architecture and development approaches.

Consider the following diagram that shows the fully reengineered MEME Editing System (Figure 2). There is an API layer between the backend system and the tools and interface that drive the lifecycle processes.
[image:]
Figure 2 – Editing and Editing Management System
The best incremental pathway to a complete system would be to define and implement the middle layer APIs. For example, with ‘Security Services’ and ‘Domain Model I/O’ APIs written against the legacy system, but using a next-generation set of domain model objects and services, would enable the complete redevelopment of the editing interface without needing to change any other feature of the system.

Similarly, between each ‘major functional component’ of the system there is a ‘bridge component’ that allows either side of the bridge to be reengineered without changing the other side. The long-term implication of this is that each major functional component ends up independent of one other, therefore any future needs for redevelopment can also be incrementally undertaken. Major functional components and bridge components are defined in Appendix A.
V. [bookmark: _Toc420064745]Proposed Plan for Remaining Components
Phase 2 - Transition of other parts of MetathesaurusMetathesaurus Lifecycle to updated System in similar fashion
to Phase 1 for Editing System. Figure 3 is for Inversion and Insertion and Figure 4 is for Release and Production.

[image:]
Figure 3 Inversion and Insertion

[image:]
Figure 4 – Release and Production
VI. [bookmark: _Toc420064746]Management of Phase Implementation
A. Work Breakdown Structure
B. Schedule
C. Funding/Budgetary Proposal
D. Organizational Constraints/Considerations
E. Risk and Risk Mitigation
F. Conclusions
	
References
1. UMLS MetathesaurusMetathesaurus Editing Manual. https://meme.nci.nih.gov/Manual/Complete_Training_Manual.pdf
2. MetathesaurusMetathesaurus Lifecyle. https://meme.nci.nih.gov/MIDS/.
3. Carlsen, Brian. ‘Migration Plan Ideas’ and figures 2-4.

Appendix A

The major functional components are as follows:
• Inversion Processes (currently implemented as shell/perl scripts)
• Insertion Processing (currently implemented as a shell script generated by a Java recipe
writer. Ideally, enough information about the “recipe” could be defined at inversion time that a simple engine could process a reusable configuration artifact and automatically enact the insertion.
• Batch QA Processing (background analysis of various states of the data)
• Editing interface (currently Jekyll)
• Editing/Workflow management tooling (currently EMS/WMS)
• Metadata management tooling (not shown but would be in Figure 3 alongside editing
interface, this is all the stuff to manage source data, TTY lists, etc. This envisions that either the “MEME domain model i/o API” supports these capabilities or there is an additional metadata service)
• Admin tooling (also not shown, but would be in Figure 2)
• QA tooling (currently a collection of a wide variety of different, but similar tools, and EMS
 QA/AH bins)
• Release processing (currently a collection of PL/SQL procedures, java classes, and shell scripts)
• Release Management tooling (currently the “release manager”)

The major bridge components are as follows:
• .SRC files (the abstracted layer between Inversion/Insertion)
• Insertion recipe configuration (also part of the abstracted layer between Inversion/Insertion)
• MEME Security API – for controlling access to the back-end server
• MEME QA API – for reading/writing/comparing sets of QA counts or samples and for
 recording explanations for discrepancies. (would be used across all lifecycles)
• MEME Domain Model I/O API – for reading/writing domain model and metadata objects,
 accessing the history of domain model objects, validating, and querying domain model objects
• MEME Editing Management API – for managing “bins”, assigning and tracking work,
 “stamping”, etc.
• MEME Release Management API – for invoking release processes, monitoring progress of
 release processes, etc.

image1.jpg
Metathesaurus Life Cycle

Insertion

burton

]
=

oo e

Subsetting [IEZ B e
1 Production
— e
T
T
e =

image2.png
G55 G55 G55
. Editing Interface Editing Management
Batch QA Tool Quality Assurance Tool e e ool o Enrrnas)
MEME Security API MEME QA API MEME Domain Model 1O API MEME Editing Management AP

— 1

MEME Application

Domain Model
10 Services

Workflow/Ediing
Managment Services

Data Store

QA Sevices

(2. MID)

Security Services

image3.png
Native source
provider fles

Inversion

Common load
fomat (e g src)

Insertion Config

(2.9 "recipe’)

Insertion
Engine

Y

Y

MEME Security API

MEME 0A API

MEME Domain Model 1O API

MEME Editing Management AP

MEME Application

Domain Model

10 Services

Workflow/Ediing
Managment Services

Data Store

QA Sevices

(2. MID)

Security Services

image4.png
Release Process
(RRF generation, 0, and

Release Files

Release Management

packaging) ool
wene securty 4Pt | | wengonapt | [WEME Domain oceivoapr | [MEME Release enagement

— 1

MEME Application

Domain Model
10 Services

Workflow/Ediing
Managment Services

Data Store

QA Sevices

Security Services

(2. MID)

