[bookmark: _GoBack]Notes from MEME Working Group Session
7 Jul 2015

Goal - get to a point to bring this forward to management
Decisions - to stage or not to stage

· Could we make a new interface without changing the backend? API forward-looking, but implementable against current system then as each enhancement built, roll it out (1 scenario).
· Options - whole thing.
· Editor’s interface. How would our lives be improved?
· Miranda - edits MeSH - relates (bad) experience of not keeping the editor involved and collaborating with during new editing tool upgrades, paid the price. We will not make the same mistake with MEME. ACTION: Editors - look to see if we captured everything in the editing requirements.
· Inversion - Keep the same? Release similar but same?
· Rationale: Jekyll is not web based, very difficult to change, can’t be run from anywhere. New Interface - benefits - (1) Quicker editing, (2) more productive; (3) integrated work flow; (4) now windows all over the place (5) work from anywhere. (6) be able to see more than 1 concept at a time rather than toggle back and forth; (7) easier training. (8) opportunities for more features, e.g. editor management dashboard, like how much left to edit.; (9) ability to add business intelligence.
· Approach - create NCI in neutral, common denominator, …write a layer to translate in API, might make / require some changes to MEME.
· Technical : Editing management API/interfaces to complete, using CGI scripts that exist — 6 month and 2.5-3 FTE very rough estimate.
· Unifying UTS - leave UTS Unchanged - it would be too hard to change that, and not make sense given the other work being done with it. They are spec’ing out a REST interface on top of UTS. Instead of SOAP API. Note (Brian downloaded whole database and wrote an interface to it for his browser — did not use the SOAP (‘heck no!’)
· Note, something like what Brian did is feasible — each terminology is basically a separate terminology in his browser. INDEPENDENT CONTENT MODELs. [similar to NCI Term browser - but faster] But the same thing you write the browsing interface against, you could write the editing interface against as well. You could then have almost real time production (with stuff in dev/qa being promoted to production). The editors don’t seem as keen on being able to publish continuously, though they would like it to be easier to publish more frequently.
· One or two databases? If you have independent content models, do you still need 2 databases? (likely). Note that NCIt and RxNORM are both like metathesauri.
· If conceptness is the universal representation then there could be different VIEWs?
· Note: editors would not want to see both views (e.g. NCI view of a chemical concept and SNOMED view of a chemical concept automatically, but it would be good to be able to call the other representation up as needed.)

· To do this, the backend would have to change. UTS model could be the basis. Could extend. Could write release processes against new database, or use the UTS model to publish RRF. Writable aspect of the REST API - could help with unifying the domain models.
· Again - BENEFITS and RISKS discussion from the broader approach—

· REST- Browser anywhere, Benefits to using the same backend for editing and production - the production process is a RISKY 5 weeks to release time. Would be good to streamline the process. Very specialized knowledge. Can’t find people who have the required skills. Not many systems use PERL. Same as before -
i. all development understood
ii. easier training
iii. more maintainable
iv. ability to add features much more easily.

· Risks - everything interconnected. Difficult to design.
Need:
i. Edit interface(s)
ii. Edit API(s) in between
iii. Backend

How much? How long?
Based on experience with the IHTSDO mapping tool, something like 18 months, 2 developers including documentation and training videos.
For this, with the user interface, complicated workflow and QA, 2.5 developers for 2 years.

Other - what is a project, who are the users, Tammy wants to create her own (QA queries?) - how complicated is that? Avoid scope creep, but has to be more than minimally implementable, or you don’t get the value. Need to get the value. Has to be better than what we have. Eliminate steps, make it more productive, make it less risky and difficult to maintain.

First impressions don’t always lead you down the right path.
