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TCGA pilot started in 2006
NCI & NHGRI (with an investment of $50 million each)
Atlas of genomic changes created for specific cancer types

Expanded to >20 additional tumor types
New approaches to the detection, diagnosis, treatment, and possibly 
prevention of the disease



TCGA datasets  currently available

https://cghub.ucsc.edu/summary_stats.html

Total Cancers: 42 Total Live File Count: 106527
Total Size of All Live Files:  2,309,174.2 Gigabytes 

disease disease (abbr) file_counts size_in_gigabytes
Glioblastoma multiforme GBM 3137 85856.6

Brain Lower Grade Glioma LGG 3817 47202.1

Lung adenocarcinoma LUAD 4620 67961.1

Lung squamous cell 
carcinoma LUSC 4139 73908.1

Breast invasive carcinoma BRCA 10151 142070.7

Ovarian serous 
cystadenocarcinoma OV 6197 130444.3

Prostate adenocarcinoma PRAD 3336 40841.1



Publications from analyses of TCGA datasets  
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We need to re-think
1. “Gene” as a unit of measure in the human 

genome
Gene Expression 

Gene Regulation 

“one gene → one mRNA → one functional 
protein product”

Pal, Gupta & Davuluri (2012) Pharmacology & Therapeutics

“one gene → multiple mRNAs → multiple 
protein isoforms and/or ncRNAs”



EXAMPLE – 1

Promoter and First Exon predictions 
in the human genome



FirstEF (First Exon Finder) Program

Predicted first-exon clusters  
68,645 

Number of identified genes 
32,000



Alternative first-exons / promoters of BRCA1 gene  

FirstEF
predictions



Production of different protein isoforms with distinct 
functional activities (e.g., LEF1)

Normally active in 
testis, fetal heart, 
nasopharynx, 
prostate, and 
pregnant uterus 

Abnormally active 
in embryonal
carcinoma, 
melanotic
melanoma, cervix 
tumor, CLL, colon 
cancer

preferentially active 
in cancer cells FirstEF predictions



EXAMPLE – 2
Multiple isoforms are produced and 
differentially expressed in different 
developmental stages during brain 
development.

Ravi Gupta

Sharmista Pal



Next-Gen. DataSets for the Study
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Summary – Cerebellar Transcriptome Study

A total of 61,525 (12,796 novel) distinct mRNAs transcribed by 
29,589 (4,792 novel) promoters corresponding to 15,669 
protein-coding and 7,624 non-coding genes were identified.

Aberrant use of alternative promoters in medulloblastoma.

Gene isoforms that are specifically active in early development 
(no expression in adult stags) are over-expressed in cancer. 

Numerous gene isoforms are differentially expressed (but not at 
gene-level) during normal development and in cancer. 

Pal et al., Genome Research 2011



Exon skipping is used by tenascin-C to 
generate alternative mRNAs that are 
differentially used during early 
development and adult stages. 

TNC is implicated in guidance of 
migrating neurons as well as axons 
during development, synaptic 
plasticity, and neuronal regeneration.

Alternative transcription is used by 
Gad-1 (glutamate decarboxylase 1 
(brain, 67kDa)) 

Generate alternative pre-mRNAs that 
are differentially used during early 
development and adult stages.



Opposite behavior of Alternative Promoters/Transcripts in 
Primary Medulloblastoma Tumor & derived Cell Lines
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Promoters active during early development were turned 
“ON” in medulloblastoma

Menghi et al, 2011, Cancer Res-” Genome-wide analysis of altersnative splicing in 
medulloblastoma identifies splicing patterns characteristic of normal cerebellar 
development.“

Mouse
Ptch+/-;p53-/- model

Pal et al., Genome Research 2011



EXAMPLE – 3

Protein isoforms are prevalent 
among commonly targeted genes 
for anti-cancer therapy.

Sharmista Pal



VEGF gene alternative splicing: pro- and anti-angiogenic isoforms in cancer 
(Biselli-Chicote PM et al. J Cancer Res Clin Oncol. 2011 Nov).

http://genome.ucsc.edu

Molecularly targeted therapies 
(e.g. Avastin binds to circulating VEGF-A rendering it inactive)



Pal, Gupta & Davuluri (2012) Pharmacology & Therapeutics



“one gene → one mRNA → one protein” 
model is too simplistic in the human genome 

Gene counts http://useast.ensembl.org
Consensus CDS counts

Gene IDs 18,826
CCDS IDs 31,826
Genes with >1 
CCDS ID 7,058

http://www.ncbi.nlm.nih.gov/CCDS/

Coding genes 20,300
Small NC genes 7,715
Long NC genes 14,863
Misc NC genes 2,307
Pseudogenes 14,424
Gene transcripts 198,457



Samples x Genes/Transcripts Matrix

Sample X Gene expression data matrix

ID Sample 1 Sample 2
ENSG00000185518 3.23 1.68
ENSG00000147676 2.68 1.34
ENSG00000006116 1.95 1.95
ENSG00000072657 1.21 1.85
ENSG00000102468 2.39 1.85
ENSG00000166111 2.53 1.28
ENSG00000164588 2.30 2.66
ENSG00000137766 1.77 2.57
ENSG00000104888 3.96 1.81

Xij
N x M

=

N – Number of genes
M – Number of samples

Xij

20,000 x M

Xij

200,000 x M
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Early days of molecular profiling – Microarrays 

Cartoon of spotting/growing oligonucleotide probe on a silicon wafer. Courtesy of Affymetrix



Hybridization to its complementary 
oligonucleotide probe:

The experimental sample, which 
can be either RNA or DNA, is 
amplified and labelled with a 
fluorescent tag. 

The tagged sample is then 
applied to the microarray. 

The tagged sample can then 
hybridise to its complementary 
oligonucleotide probe, as each 
feature contains millions of 
oligonucleotide probe, the 
amount of tagged sample that 
binds within the feature is 
comparable to the amount 
contained within the original 
sample

Cartoon of hybridisation of fluorescently tagged samples. Courtesy of Affymetrix



Software to analyze gene chip data

Estimating gene expression indices and finding significantly 
different genes between conditions

BRB-Arraytools (http://linus.nci.nih.gov/BRB-ArrayTools.html)
dCHIP (http://www.hsph.harvard.edu/cli/complab/dchip/)
SAM (http://www-stat.stanford.edu/~tibs/SAM/)
MMBGX (http://www.bgx.org.uk/software/mmbgx.html)

Clustering (finding groups of samples with similar expression 
profiles)

Cluster analysis can be performed using CLUSTER software and 
visualize by TREEVIEW software (http://www.eisenlab.org/eisen/) 

Open Source Software for Bioinformatics 
BioConducter (http://www.bioconductor.org/)

http://www.eisenlab.org/eisen/
http://www.bioconductor.org/


NGS Sequencing Technologies

DNA 
sequencing

Transcriptome/
smallRNA

ChIP-Seq/
Methylation

Next-Generation Sequencing Technologies

28



Algorithm version Reference Estimation 
method URL

Cufflinks v2.0.2
(Trapnell, et al., 
2010), Nature 
biotechnology

EM http://cufflinks.cbcb.umd.ed
u/

RSEM v1.2.3 (Li, et al., 2010), 
Bioinformatics EM http://deweylab.biostat.wisc

.edu/rsem/

eXpress v.1.4.0
(Roberts and 
Pachter, 2013), 
Nature methods

online_EM http://bio.math.berkeley.ed
u/eXpress/index.html

IsoformEx v1.0.0
(Kim, et al., 2011), 
BMC 
Bioinformatics

Weighted 
none-
negative 
least squares

http://bioinformatics.wistar.
upenn.edu/isoformex

MMBGX v0.99.2
0

(Turro, et al., 
2010), Nucleic 
acids research

Bayesian http://www.bgx.org.uk/soft
ware/mmbgx.html

List of transcript abundance estimation 
algorithms from RNA-seq

http://cufflinks.cbcb.umd.edu/
http://deweylab.biostat.wisc.edu/rsem/
http://bio.math.berkeley.edu/eXpress/index.html
http://bioinformatics.wistar.upenn.edu/isoformex
http://www.bgx.org.uk/software/mmbgx.html


IsoformEx Algorithm

Transcipt isoform cluster

Include additional transcripts overlapped 
with the cluster

Collect exons and split them into 
Exclusive slices of exons

Compute FPKM for each slice

Solve the weighted NLS

isoform1

isoform2

isoform3

RNA-Seq tags

FPKM=20 FPKM=20
FPKM=8 FPKM=10

Apply low weight since this slice is 
too short. (Let’s suppose it is too 
short for this presentation. But, 
when it is not too short, the weight 
is high since it is a discriminative 
slice.) 

Isoform1: FPKM~10
Isoform2: FPKM~10
isoform3: FPKM=0

Kim, et al., BMC Bioinformatics 2011, 12:305 



Summary of available datasets (series) and 
samples for human and mouse in different data 

sources, including GEO 

$Exon-array platforms: Affymetrix Human Exon 1.0 ST Array and Affymetrix Mouse Gene 
1.0 ST Array

@NGS Platforms: Illumina Genome Analyzer, Illumina HiSeq, AB SOLiD and 454 GS 
FLX

Data sources: GEO, BROAD, TCGA and ArrayExpress

31
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Cancer Vs Non-cancer cell line grouping

Cancer cell lines, regardless of their tissue of 
origin, can be effectively discriminated from 
non-cancer cell lines at isoform level, but not 
at gene level.

Zhang et al., Genome Medicine 2013
Sharmista Pal

Jacob Zhang



Hierarchical clustering dendrograms of 160 datasets 
(73 cancer and 87 non-cancer cell-lines)

Affymetrix Human Exon 1.0 ST Array (whole-transcript GeneChip) platform, were 
downloaded from Gene Expression Omnibus (GEO) data depository



Isoform-level expression profiles provide better cancer 
signatures than gene-level expression profiles

Zhang et al., Genome Medicine 2013

Mean normalized expression estimates 
of TPM4 and its transcript variants in 
HMEC (N) and MCF7 (T) cell-lines

exon-array data RT-qPCR data in 
breast cancer tissues 

ENST00000300933ENST00000344824



Glioblastoma Multiforme (GBM) – A Deadly Brain Tumor
Statistics 

Estimated new cases (23,130) and death (14,080) from brain and other 
nervous system cancer for 2013. (http://cancer.gov).
GBM accounts for 12% to 15% of all intracranial tumors and 50% to 60% of 
astrocytic tumors (http://www.braintumor.org)
About 9% of childhood brain tumors are glioblastomas.

Incidence - annually 2 to 3 per 100,000 people (in US or Europe)
Survival info 

The median survival time of GBM patients is 12-14 months (Smith and Jenkins, 
2000).



GBM sub-typing (Gene level vs Isoform-level)

Molecular sub-type
Number of samples (n)

Core Other Total
Classical (C) 37 -

173Mesenchymal (M) 55 -
Neural (N) 27 -

Proneural (PN) 54 -
Other GBM (subtype not known) 246 246

Total GBM samples 419
Normal brain 10 10

Verhaak et. al. (Cancer Cell 2010): Classified GBM into 4 groups-
Proneural (PN), Neural (N), Mesenchymal (M), And Classical (CL). 
Identified a 840 gene based signature, uses 210 genes per class.





TCGA classification has no prognostic significance
GBM patients (173 core group) into 4 groups

Verhaak et. al. (Cancer Cell 2010):



Pal & Bi et al. Nucleic Acids Res. 2014

Sharmista Pal, Ph.D.
Staff Scientist
(Mol Bio., OSU, Columbus)

Yingtao Bi, Ph.D.
Staff Scientist 
(Statistics, UC Riverside)

PIGExClass – Platform-independent 
Isoform-level Gene-Expression 

based Classification-system



Xij

Step 2:
Marker 

Selection 
(Model Design)

Step 3:
Platform 

Transition

Step 4:
Model 

Validation

Step 1:
Group 

Discovery

Cluster analysis; 
using Isoform-

level expression 
profiles

Classification; 
Feature selection 
& Model Building

Transforming 
the isoforms to 
RT-PCR based 

assay

Validating the 
classifier on 
independent 
GBM samples 

400 x 115,000

Yij

400 x 200

OpenArray® RT-qPCR PlatformSamples x Genes/Transcripts 
Matrix

Sharmista Pal, Ph.D.
Staff Scientist
(Mol Bio., OSU, Columbus)

Yingtao Bi, Ph.D.
Postdoctoral fellow 
(Statistics, UC Riverside)
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Pal & Bi et al. Nucleic Acids Res. 2014



TCGA datasets  analyzed by our group
Sample type Data-type Number of samples

Normal brain
(control samples)

Gene expression 
(exon-array data)

10

GBM tumor 
Gene expression 
(exon-array data)

419

GBM tumor
Gene expression 

(RNA-seq)
169

GBM tumor Exome sequencing 323
GBM matched blood Exome sequencing 259

LGG tumor
Gene expression 

(RNA-seq)
??

LGG tumor Exome sequencing 180
LGG matched blood Exome sequencing 160

https://tcga-data.nci.nih.gov/

76 
common



Gene-level and Isoform-level analysis of 
transcriptome changes

TCGA Exon-array Data Analysis (q≤0.001 and fold-change ≥2.0) 

 Gene-level Isoform (transcript  variant)-level 

Upregulated 912 2085 

Downregulated 1922 5228 

 

symbol FC
AAK1 -2.09
DCLK1 -2.49
DCLK3 -2.01

symbol FC
AAK1-001 -6.77
AAK1-004 -2.62
AAK1-011 3.52
DCLK1-001 3.17
DCLK1-006 -5.04
DCLK1-013 -2.47
DCLK1-201 -5.66
DCLK2-201 7.31
DCLK2-202 -3.52
DCLK3-001 -2.15

Gene-level fold changes Isoform-level 
fold changes



Validation in independent brain tumor cohort 
(UPenn Neurosurgery Dept)

Validated the isoform-level expression changes by RT-qPCR in primary GBM 

samples for 15 of 16 isoform transcripts corresponding to 6 genes



An example showing isoform specific dysregulation



DCLK2 isoforms show opposite patterns of 
expression in gliomas versus normal brain

Analysis of 
TCGA data

Validation in 
independent 
cohort of 
gliomas



Dclk2 isoforms are developmentally regulated

Pal et al., Genome Research 2011



DCLK2 isoform 1 is tissue specific in humans

DCLK2 isoform 1, which is brain specific and expressed higher in adult 
brain than in early development is down-regulated in cancer (GBM)



Stable clustering at isoform-level can be achieved in four groups

Data matrix – isoform expression data of 197 (or 419) samples and 1600 
isoforms 
Consensus non-negative matrix factorization (NMF) clustering method 
Silhouette width was computed to filter out samples that were included 
in a subclass, but that were not a robust representative of the subclass



NMF clustering of 419 GBM patient samples based on the 
expression of 1,600 of the most variable isoforms across the patients

95 
(PN)

85 
(M)

75 
(N)

87 
(CL)

A total of 342 as most representative of the four groups,
“isoform-based core samples”

342

TCGA core samples

PN 54

173M 55
N 27

CL 37



Concordance in cluster membership calls between our isoform-
based and gene-based groupings in the TCGA publication

Gene-based clustering
(Verhaak et al Grouping)

Isoform-based 
clustering

(Our Grouping)

169 342

4

Overlap of Our & TCGA 
Core Samples

32 (~20%) were reassigned to a different 
subgroup by our isoform-based signature. 



Survival plots of gene vs isoform-level grouping of 169 samples 

Gene-based clustering of 169 samples  
(Verhaak et al Grouping)

Isoform-based clustering of 169 samples 
(Our Grouping)



Survival plot for the four groups based on isoform-level clustering

Isoform-based clustering of 341 core-samples 
(Our Grouping)



Isoform-level classifier for GBM patient stratification

Predictive classifiers –
composite gene signatures 
as biomarkers 

Brain tumor sub-typing  Precision Medicine

A diagnostic assay to predict the molecular subtype 
of a future GBM patient is currently lacking 

Kotliarova & Fine (2012) SnapShot: glioblastoma multiforme. Cancer Cell.



Feature Selection & Classification: RandomForest

Bootstrapped
sample – 1

Bootstrapped
sample – 2

Bootstrapped
sample – n

Create n samples...
Split each node 
choosing only from 
random subset of 
variables 
Trees are not pruned

pm =

{ }N
ipii xxyD

11,....,,=Dataset

The majority vote of the trees determines the classification result of an 
observation. 
An estimate of the classification error is supplied by the out-of-bag sample



Platform Transition: Converting FCs to discrete values
20                        9                   1

Yij

ID Sample 1 Sample 2
ENSG00000185518 3.23 1.68
ENSG00000147676 2.68 1.34
ENSG00000006116 1.95 1.95
ENSG00000072657 1.21 1.85
ENSG00000102468 2.39 1.85
ENSG00000166111 2.53 1.28
ENSG00000164588 2.30 2.66
ENSG00000137766 1.77 2.57
ENSG00000104888 3.96 1.81

=

ID Sample 1 Sample 2
ENSG00000185518 1 2
ENSG00000147676 2 3
ENSG00000006116 4 2
ENSG00000072657 5 2
ENSG00000102468 3 2
ENSG00000166111 2 3
ENSG00000164588 3 1
ENSG00000137766 4 1
ENSG00000104888 1 2

Data-discretization is an important step in platform transition
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Performance of gene-based vs isoform-based model to 
discriminate the four molecular subgroups of GBM

While the isoform-based randomForest model achieved 90% 
accuracy with as few as 50 isoforms as feature variables, the gene-
based model required more than 100 genes as feature variables for 
comparable accuracy to the isoform-based model



Assay design- Open array platform

121 variable transcripts - 18 Non-coding transcripts

8 transcripts- consistently up

7 transcripts- consistently down

4 house keeping genes- Polr2a, GAPDH, B2M, b-Actin

Classification model from RandomForest

Number of variables/ 
features selected by 

RandormForest
feature selection

OOB error 
rate

Error rate based 
on independent 

test set

213 transcript 
variants 0.0661 0.07



N PN M CL Class Error
N   (78) 63 5 3 5 0.17
PN (95) 0 92 1 2 0.03
M  (85) 3 0 82 0 0.04
CL  (86) 4 1 1 80 0.07

OOB estimate of  error rate: 7.31%

Predicted labels
Tr

ue
 la

be
ls

Confusion matrix  based on 121 selected transcripts
(Number of bins equal to 15)

Accuracy of 121 transcript-based classifier 
on exon-array data



N PN M CL Class Error
N   (22) 16 1 1 4 0.27
PN (18) 0 18 0 0 0.00
M  (20) 0 0 20 0 0.00
CL  (16) 0 0 0 16 0.00

OOB estimate of  error rate: 7.89%

Predicted labels
Tr

ue
 la

be
ls

Accuracy of 121 transcript-based classifier 
on RNA-seq data (76 samples)

Confusion matrix  based on 121 selected transcripts
(Number of bins equal to 15)



Sub-typing of 206 GBM patients using RT-qPCR assay
(based on 121 assays/transcripts)

N PN M CL Total

TCGA 76 
(22%)

95 
(27.8%)

85 
(24.9%)

86 
(25.2%) 342

PENN 41 
(19.9%)

52 
(25.2%)

50 
(24.2%)

63 
(30.5%) 206

Sample 
ID

Probability of sample in sub-type Predicted 
Sub-typeCL M N PN

1409 0.16 0.16 0.43 0.25 N
1470 0.02 0.96 0.01 0.01 M
1621 0.02 0.01 0.88 0.09 N
1716 0.04 0.02 0.17 0.77 PN
1770 0.08 0.01 0.36 0.55 PN
1817 0.53 0.23 0.10 0.14 CL
1961 0.87 0.05 0.05 0.03 CL
1659 0.03 0.02 0.49 0.46 N
1730 0.09 0.11 0.39 0.41 PN

91%

9%

Low-
confidence 
predictions

High-
confidence 
predictions



Group Marker gene

PN DCX
N GABRA1
CL NES
M CHI3L1 and MET

Validation of our classifier-PENN GBM cohort

Expression of specific markers for each subgroup



Isoform-level expression clustering identified four GBM subgroups with 
significant (p=0.0103) survival differences

A four-class classifier, built with 121 transcript-variants, assigns GBM patients’ 
molecular subtype with 92% accuracy

The GBM classifier was translated to an RT-qPCR-based assay and validated 
on an independent cohort of 206 glioblastoma samples, and maintained high-
confidence subtype calls for 91% of the patients.

We found the proneural subtype to have the worst prognosis for patients, 
except for the younger group (<40 years) who showed significantly better 
survival (p=0.007), while a better prognosis for the neural subtype was 
observed (p=0.02) in older patients (≥40 years).

Summary



This assay could be used in prospective clinical trials to select 

specific groups of GBM patients for treatment with drugs targeting 

subtype-specific pathways

GBM patients can be stratified into 4 subgroups, so that patients 

within a group can receive treatments that have been tailored 

specifically for them

Clinical Significance of the Assay



1. Grows of multi –omics data 
2. Why “gene” as a unit of measure is too simplistic?
3. Exon-arrays and RNA-seq methods 
4. Gene-level Vs Isoform-level analysis

A. Cancer Vs Non-cancer cell-line grouping
B. Isoform-level gene signatures for brain tumor sub-typing

5. Evaluation of isoform-level expression estimation 
algorithms for RNA-seq and exon-array platforms

Topics of Discussion



Comparative assessment of isoform-level expression 
estimation algorithms (for RNA-Seq, exon-array)

1. TCGA data:
• 103 tumor- and 4 normal-tissue glioblastoma multiforme (GBM) samples
• Samples feature both RNA-seq and exon array data available in TCGA

2. Exon array analysis:
• Estimates obtained using Multi-Mapping Bayesian Gene eXpression (MMBGX)
• Ensembl 70 (GRCh37.p8) reference annotation

3. RNA-seq analysis:
• Genome alignments were made using Bowtie2, Ensembl 70.
• Tested the following tools: TopHat/Cufflinks, RSEM, eXpress, and Sailfish.

4. RT-qPCR:
• GBM samples obtained from the Human Brain Tumor Tissue bank at the University of 

Pennsylvania
• RT-qPCR performed on 159 transcripts previously selected for tumor subtyping 

5. Expression and fold change correlations:
• Sample-by-sample correlations between RNA-seq and exon array evaluated using Spearman’s 

correlation.
• Fold changes calculated using mean values from 4 normal-tissue GBM samples.
• RNA-seq expression estimates (FPKM) were normalized using upper quartile normalization.
• For RT-qPCR correlations, estimates were further normalized by POL2A expression.

Matthew 
Dapas
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Correlations between RNA-Seq expression estimates
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• Gene-level correlations are significantly higher and less variable than at isoform-level 
• Fold change correlations are higher than expression correlations in isoforms, but the 

opposite is true at the gene level. 
• eXpress provides strongest overall correlation with exon array

Scatter plots of average expression and fold change (tumor vs. 
normal) estimates between exon array and RNA-seq



70

Spearman correlation coefficients between MMBGX and 
different RNA-seq quantification methods
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RT-qPCR Correlations

The transcripts included in RT-qPCR analysis (red), according to their average 
expression estimates (a) and fold-changes (b) from the RNA-seq and MMBGX 

exon array tumor results
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RT-qPCR Correlations

The Spearman correlations and number of shared, resolved transcripts between 
the various programs tested and the RT-qPCR estimates

Algorithm Expression 
Correlation (rS)

Fold Change 
Correlation (rS)

# 
Transcripts

eXpress 0.470 0.900 139
isoformEx 0.292 0.873 127
Salmon 0.115 0.864 131
Kallisto 0.287 0.860 132
TopHat/ Cufflinks 0.223 0.849 133
Exon Array - MMBGX 0.424 0.836 142
RSEM 0.231 0.835 132
Sailfish 0.259 0.812 126



Better concordance between RNA-seq/exon-array and RT-qPCR platforms for 
fold change estimates than for raw abundance estimates, suggesting that 
fold-change normalization against a control is an important step for 
integrating expression data across platforms.

Potentially important isoform-level expression changes can be masked by 
gene-level estimates

While eXpress and MMBGX programs achieved the best performance for 
RNA-seq and exon-array platforms respectively for deriving the isoform-level 
fold change values, there is an urgent need to improve the methods for 
abundance estimation.

Summary
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