NCI Center for Biomedical Informatics and Information Technology (CBIIT) Speaker Series, October 14, 2015

Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Cancer genomes are too complex: It is time to move away from simple genecentric approaches;

and adapt to isoform-centric approaches

Ramana V Davuluri, PhD Department of Preventive Medicine – Division of Health and Biomedical Informatics Department of Neurological Surgery Robert H Lurie Comprehensive Cancer Center

Topics of Discussion

- 1. Grows of multi –omics data
- 2. Why "gene" as a unit of measure is too simplistic?
- 3. Exon-arrays and RNA-seq methods
- 4. Gene-level Vs Isoform-level analysis
 - A. Cancer Vs Non-cancer cell-line grouping
 - B. Isoform-level gene signatures for brain tumor sub-typing
- 5. Evaluation of isoform-level expression estimation algorithms for RNA-seq and exon-array platforms

Topics of Discussion

- 1. Grows of multi –omics data
- 2. Why study "gene expression" at isoform-level?
- 3. Exon-arrays and RNA-seq methods
- 4. Gene-level Vs Isoform-level analysis
 - A. Cancer Vs Non-cancer cell-line grouping
 - B. Isoform-level gene signatures for brain tumor sub-typing
- 5. Evaluation of isoform-level expression estimation algorithms for RNA-seq and exon-array platforms

Growth of multi –omics Data

- TCGA pilot started in 2006
 - NCI & NHGRI (with an investment of \$50 million each)
 - Atlas of genomic changes created for specific cancer types
- Expanded to >20 additional tumor types
- New approaches to the detection, diagnosis, treatment, and possibly prevention of the disease

TCGA datasets currently available

Total Cancers: 42Total Live File Count: 106527Total Size of All Live Files: 2,309,174.2 Gigabytes

disease	disease (abbr)	file_counts	size_in_gigabytes
Glioblastoma multiforme	GBM	3137	85856.6
Brain Lower Grade Glioma	LGG	3817	47202.1
Lung adenocarcinoma	LUAD	4620	67961.1
Lung squamous cell carcinoma	LUSC	4139	73908.1
Breast invasive carcinoma	BRCA	10151	142070.7
Ovarian serous cystadenocarcinoma	OV	6197	130444.3
Prostate adenocarcinoma	PRAD	3336	40841.1

https://cghub.ucsc.edu/summary_stats.html

Publications from analyses of TCGA datasets

.....

THE CANCER GENOME ATLAS		Launch Data Portal	Contact Us For the Me
NATIONAL Cancer Institute National Human Genome Research Institute	Search		Search Search
Home About Cancer Genomics Cancers Selected for Study Research Highlights	Publications	News and Events	About TCGA
Home > Publications		Launch Data Po	rtal 🕨 🕨
Publications All data generated by The Cancer Genome Atlas (TCGA) Research Network are made open to the public the he Data Coordinating Center and the TCGA Data Portal. The following is a growing list of publications from the TCGA Research Network (designated with an *) and	nrough from	The Cancer Genome Atlas (provides a platform for resea download, and analyze data TCGA.	(TCGA) Data Portal archers to search, a sets generated by
Information regarding Publication Guidelines is available here.		Questions About (Cancer
A complete list of publications from the TCGA Research Network is also available.		Call 1-800-4-CANCER	
View Publications by Cancer Type		Use LiveHelp Online Cha	at
Glioblastoma Multiforme	•	Multimedia Libran	4
* = TCGA Research Network		Maranicala Elbrary	,
Veinhold, N., Jacobsen, A., Schultz, N., Sander, C. and Lee, W. (2014) Genome-wide analysis of noncodi regulatory mutations in cancer. <i>Nat Genet.</i> doi: 10.1038/ng.3101. View PubMed abstract	ng	🤌 Images	
Stransky, N., Cerami, E., Schalm, S., Kim, J.L. and Lengauer, C. (2014) The landscape of kinase fusions in cancer. Nat Commun. doi: 10.1038/ncomms5846. Read the full article	n	Videos and Animatio	ons
Feng, H., Lopez, G.Y., Kim, C.K., Alvarez, A., Duncan, C.G., Nishikawa, R., Nagane, M., Su, A-J.A., Auron, P al. (2014) EGFR phosphorylation of DCBLD2 recruits TRAF6 and stimulates AKT-promoted tumorige J Clin Invest. doi: 10.1172/JCI73093. Read the full article	P.E., et enesis.	Interactive	
Eder, K. and Kalman, B. (2014) Molecular hereogeneity of glioblastoma and its clinical relevance. Patho Res. doi: 10.1007/s12253-014-9833-3. Read the full article	ol Oncol	Stay Connected	
* Hoadley, K.A., Yau, C., Wolf, D.M., Cherniack, A.D., Tamborero, D., Ng, S., Leiserson, M.D.M., Niu, B., McL M.D., Uzunnangelov, V., et al. (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. doi: 10.1016/j.cell.2014.06.049. View PubMed a	.ellan, Ibstract	Sign up for email up	dates
Kim, Y., and Kumar, S. (2014) CD44-mediated adhesion to hyaluronic acid contributes to mechanosens invasive motility. Mol Cancer Res. doi: 10.1158/1541-7786.MCR-13-0629. View PubMed abstract	ing and	E Twitter	

Topics of Discussion

- 1. Grows of multi –omics data
- 2. Why "gene" as a unit of measure is too simplistic?
- 3. Exon-arrays and RNA-seq methods
- 4. Gene-level Vs Isoform-level analysis
 - A. Cancer Vs Non-cancer cell-line grouping
 - B. Isoform-level gene signatures for brain tumor sub-typing
- 5. Evaluation of isoform-level expression estimation algorithms for RNA-seq and exon-array platforms

We need to re-think

- 1. "Gene" as a unit of measure in the human genome
 - Gene Expression
 - Gene Regulation

"one gene → multiple mRNAs → multiple protein isoforms and/or ncRNAs"

Pal, Gupta & Davuluri (2012) Pharmacology & Therapeutics

EXAMPLE – 1

Promoter and First Exon predictions in the human genome

article

© 2001 Nature Publishing Group http://genetics.nature.com

Computational identification of promoters and first exons in the human genome

Ramana V. Davuluri^{1,2}, Ivo Grosse¹ & Michael Q. Zhang¹

Published online: 26 November 2001, DOI: 10.1038/ng780

The identification of promoters and first exons has been one of the most difficult problems in gene-finding. We present a set of discriminant functions that can recognize structural and compositional features such as CpG islands, promoter regions and first splice-donor sites. We explain the implementation of the discriminant functions into a decision tree that constitutes a new program called FirstEF. By using different models to predict CpG-related and non-CpG-related first exons, we showed by cross-validation that the program could predict 86% of the first exons with 17% false positives. We also demonstrated the prediction accuracy of FirstEF at the genome level by applying it to the finished sequences of human chromosomes 21 and 22 as well as by comparing the predictions with the locations of the experimentally verified first exons. Finally, we present the analysis of the predicted first exons for all of the 24 chromosomes of the human genome.

ig Group http://genetics.nature.com

FirstEF (First Exon Finder) Program

Group http://genetics.nature.com

article

© 2001 Nature Publishing Group http://genetics.nature.com

Computational identification of promoters and first exons in the human genome

Ramana V. Davuluri^{1,2}, Ivo Grosse¹ & Michael Q. Zhang¹

Published online: 26 November 2001, DOI: 10.1038/ng780

Predicted first-exon clusters	l. We G
	unc-
68 645	t CpG-
00,040	% of

level by applying it to the finished sequences of human chromosomes 21 and 22 as well as by comparing the predictions with the locations of the experimentally verified first exons. Finally, we present the analysis of the predicted first exons for all of the 24 chromosomes of the human genome.

articles

Initial sequencing and analysis of the human genome

International Human Genome Sequencing Consortium*

* A partial list of authors appears on the opposite page. Affiliations are listed at the end of

The human genome holds an extraordinary trove of information abour Here we report the results of an international collaboration to produc genome. We also present an initial analysis of the data, describing sc

Number of identified genes 32,000

Alternative first-exons / promoters of BRCA1 gene

Production of different protein isoforms with distinct functional activities (e.g., LEF1)

EXAMPLE – 2

Multiple isoforms are produced and differentially expressed in different developmental stages during brain development.

Research

Alternative transcription exceeds alternative splicing in generating the transcriptome diversity of cerebellar development

Sharmistha Pal,^{1,2,4} Ravi Gupta,^{1,2,4} Hyunsoo Kim,¹ Priyankara Wickramasinghe,¹ Valérie Baubet,² Louise C. Showe,^{1,2,3} Nadia Dahmane,² and Ramana V. Davuluri^{1,2,5} ¹Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ²Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, The Wistar Institute, Philadelphia, Pennsylvania 19019, USA; ³Immunology Program, Philadelphia

Next-Gen. DataSets for the Study

Development

Summary – Cerebellar Transcriptome Study

- A total of 61,525 (<u>12,796 novel</u>) distinct mRNAs transcribed by 29,589 (<u>4,792 novel</u>) promoters corresponding to 15,669 protein-coding and 7,624 non-coding genes were identified.
- Aberrant use of alternative promoters in medulloblastoma.
- Gene isoforms that are specifically active in early development (no expression in adult stags) are over-expressed in cancer.
- Numerous gene isoforms are differentially expressed (but not at gene-level) during normal development and in cancer.

Pal et al., Genome Research 2011

Exon skipping is used by tenascin-C to generate alternative mRNAs that are differentially used during early development and adult stages.

TNC is implicated in guidance of migrating neurons as well as axons during development, synaptic plasticity, and neuronal regeneration.

P0

Alternative transcription is used by Gad-1 (glutamate decarboxylase 1 (brain, 67kDa))

Generate alternative pre-mRNAs that are differentially used during early development and adult stages.

Opposite behavior of Alternative Promoters/Transcripts in Primary Medulloblastoma Tumor & derived Cell Lines

Promoters active during early development were turned "ON" in medulloblastoma

Menghi et al, 2011, Cancer Res-" Genome-wide analysis of altersnative splicing in medulloblastoma identifies splicing patterns characteristic of normal cerebellar development."

Pal et al., Genome Research 2011

EXAMPLE – 3

Protein isoforms are prevalent among commonly targeted genes for anti-cancer therapy.

Contents lists available at SciVerse ScienceDirect

霟

Pharmacology

Pharmacology & Therapeutics

journal homepage: www.elsevier.com/locate/pharmthera

Associate editor: B. Teicher

Alternative transcription and alternative splicing in cancer

Sharmistha Pal, Ravi Gupta, Ramana V. Davuluri *

Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, USA Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA

Molecularly targeted therapies (e.g. Avastin binds to circulating VEGF-A rendering it inactive)

 VEGF gene alternative splicing: pro- and anti-angiogenic isoforms in cancer (Biselli-Chicote PM et al. *J Cancer Res Clin Oncol*. 2011 Nov).

Table 2

Protein isoforms are prevalent among commonly targeted genes for anti-cancer therapy. Some of the drugs (FDA approved or in clinical trials) known to inhibit the target genes are indicated and none of the drugs show isoform specificity.

Drug target	Transcript variants	Protein isoforms	Targeting drugs	Comments on protein isoforms
VEGF-A	25	19	Bevacizumab	Expressed on vascular endothelial cells, has two families of isoforms, depending on exon8 splice site use, named VEGF _{xxx} and VEGF _{xxx} b.
Met	9	8	Foretinib, onartuzumab, XL184, ARQ197	Protein isoform lacking juxtamembrane domain is expressed in cancer that results in Met upregulation through lack of CBL binding, and this deletion facilitates interaction with p85 subunit of PI3K.
RON	13	6	Foretinib, IMC-RON8, Zt/f2 ^a , PHA665752 ^a , Compound I ^a	Except for RON∆170, other short isoforms promote metastasis and some are also oncogenic.
EGFR/ErbB1	13	10	Cetuximab, erlotinib, lapatinib, gefitinib	Certain isoforms lack TM and ICD domains and are soluble receptors that
HER2/ErbB2	6	5	Lapatinib, trastuz umab	function as dominant negative EGFR.
HGF	11	10	Rilotumumab, AV299	HGF has two c-MET binding sites. One is in the NK1 fragment and the other is in the SPH domain. Shorter forms of HGF lack the SPH domain, and these isoforms can have altered HGF/c-MET interaction.
CD20	12	4	Ofatumumab, rituximab, ibritumomabtiuxetan, tositumomab	In leukemia and lymphoma B cells, a Δ CD20 isoform is generated by AS that is non-membrane anchored and confers resistance to rituximab.
JAK2	6	2	Ruxolitinib	Exon 14 deletion due to AS is seen in some MPN patients in the region containing the common V617F mutation.
VEGFR1	8	6	Pazopanib, sunitinib	Shorter isoform lacking membrane anchorage and ICD is soluble
VEGFR2	3	2	Pazopanib, sunitinib, foretinib	and acts as a decoy receptor for VEGF-A, thereby reducing its availability for signaling.
AKT 1	18	6	Preifosine, VQD-002, MK2206	Both AKT1 and AKT 2 produce isoforms lacking the PH domain, a region
AKT2	28	13		required for binding PtdIns(3,4,5)P3 and for membrane translocation.
AKT3	10	3		Drugs like perifosine target the PH domain of AKT.
mTOR	8	4	Sirolimus/rapamycin, everolimus, AZD8055, AP23573	One of the protein isoform lacks C-terminal rapamycin binding and PI3K interacting domain, while another one lacks N-terminal DUF3385 and part of the FAT domain.

AS - alternative splicing.

^a Denotes drug in preclinical development.

Pal, Gupta & Davuluri (2012) Pharmacology & Therapeutics

"one gene \rightarrow one mRNA \rightarrow one protein" model is too simplistic in the human genome

Gene counts http://useast.ensembl.org

Coding genes	20,300
Small NC genes	7,715
Long NC genes	14,863
Misc NC genes	2,307
Pseudogenes	14,424
Gene transcripts	198,457

Consensus CDS counts		
Gene IDs	18,826	
CCDS IDs	31,826	
Genes with >1 CCDS ID	7,058	

http://www.ncbi.nlm.nih.gov/CCDS/

Sample X Gene expression data matrix

Samples x 0	Genes/Tra	anscripts Ma	atrix	
Genech	1	ID	Sample 1	Sample 2
Genone Ara		ENSG00000185518	3.23	1.68
		ENSG00000147676	2.68	1.34
		ENSG00000006116	1 95	1.95
		ENSG00000072657	1.21	1.85
		ENSG00000102468	2.39	1.85
So have a large		ENSG00000166111	2 53	1 28
		ENSG00000164588	2.30	2.66
	NXM	ENSG00000137766	1.77	2.57
		ENSG00000104888	3.96	1.81
	IVI – INU	mper of sa	mples	>
Gene-level analysis		soform-level	analiv ^e X	ji
20.000 x N	Л		2	200,000

200,000 x M

Topics of Discussion

- Grows of multi –omics data
 Why "gene" as a unit of measure is too simplistic?
- 3. Exon-arrays and RNA-seq methods
- 4. Gene-level Vs Isoform-level analysis
 - A. Cancer Vs Non-cancer cell-line grouping
 - B. Isoform-level gene signatures for brain tumor sub-typing
- 5. Evaluation of isoform-level expression estimation algorithms for RNA-seq and exon-array platforms

Early days of molecular profiling – Microarrays

Cartoon of spotting/growing oligonucleotide probe on a silicon wafer. Courtesy of Affymetrix

Hybridization to its complementary oligonucleotide probe:

RNA fragments with fluorescent tags from sample to be tested

- The experimental sample, which can be either RNA or DNA, is amplified and labelled with a fluorescent tag.
- The tagged sample is then applied to the microarray.
- The tagged sample can then hybridise to its complementary oligonucleotide probe, as each feature contains millions of oligonucleotide probe, the amount of tagged sample that binds within the feature is comparable to the amount contained within the original sample

Cartoon of hybridisation of fluorescently tagged samples. Courtesy of Affymetrix

Software to analyze gene chip data

- Estimating gene expression indices and finding significantly different genes between conditions
 - BRB-Arraytools (http://linus.nci.nih.gov/BRB-ArrayTools.html)
 - dCHIP (http://www.hsph.harvard.edu/cli/complab/dchip/)
 - SAM (http://www-stat.stanford.edu/~tibs/SAM/)
 - MMBGX (http://www.bgx.org.uk/software/mmbgx.html)
- Clustering (finding groups of samples with similar expression profiles)
 - Cluster analysis can be performed using CLUSTER software and visualize by TREEVIEW software (<u>http://www.eisenlab.org/eisen/</u>)
- Open Source Software for Bioinformatics
 - BioConducter (<u>http://www.bioconductor.org/</u>)

Next-Generation Sequencing Technologies

List of transcript abundance estimation algorithms from RNA-seq

Algorithm	version	Reference	Estimation method	URL
Cufflinks	v2.0.2	(<u>Trapnell, et al.,</u> <u>2010</u>), Nature biotechnology	EM	http://cufflinks.cbcb.umd.ed u/
RSEM	v1.2.3	(<u>Li, et al., 2010</u>), Bioinformatics	EM	http://deweylab.biostat.wisc .edu/rsem/
eXpress	v.1.4.0	(<u>Roberts and</u> <u>Pachter, 2013</u>), Nature methods	online_EM	http://bio.math.berkeley.ed u/eXpress/index.html
IsoformEx	v1.0.0	(<u>Kim, et al., 2011</u>), BMC Bioinformatics	Weighted none- negative least squares	<u>http://bioinformatics.wistar.</u> <u>upenn.edu/isoformex</u>
MMBGX	v0.99.2 0	(<u>Turro, et al.</u> , <u>2010</u>), Nucleic acids research	Bayesian	http://www.bgx.org.uk/soft ware/mmbgx.html

Kim, et al., BMC Bioinformatics 2011, 12:305

Summary of available datasets (series) and samples for human and mouse in different data sources, including GEO

	Exon-array ^s		RNA	∖-seq [@]
Organism	# Series	# Samples	# Series	# Samples
Human	401	14,801	418	4,349
Mouse	203	2,565	376	3,593
Total	604	17,366	794	7,942

^{\$} Exon-array platforms:	Affymetrix Human Exon 1.0 ST Array and Affymetrix Mouse Gene
	1.0 ST Array
[@] NGS Platforms:	Illumina Genome Analyzer, Illumina HiSeq, AB SOLiD and 454 GS
	FLX
Data sources:	GEO, BROAD, TCGA and ArrayExpress

Topics of Discussion

- 1. Grows of multi –omics data
- 2. Why "gene" as a unit of measure is too simplistic?
- 3. Exon-arrays and RNA-seq methods
- 4. Gene-level Vs Isoform-level analysis
 - A. Cancer Vs Non-cancer cell-line grouping
 - B. Isoform-level gene signatures for brain tumor sub-typing
- 5. Evaluation of isoform-level expression estimation algorithms for RNA-seq and exon-array platforms

Cancer Vs Non-cancer cell line grouping

Cancer cell lines, regardless of their tissue of origin, can be effectively discriminated from non-cancer cell lines at <u>isoform level</u>, but not at gene level.

Zhang et al. Genome Medicine 2013, 5:33 http://genomemedicine.com/content/5/4/33

Open Access

RESEARCH

Isoform level expression profiles provide better cancer signatures than gene level expression profiles

ZhongFa Zhang¹, Sharmistha Pal¹, Yingtao Bi¹, Julia Tchou² and Ramana V Davuluri^{1*}

Hierarchical clustering dendrograms of 160 datasets (73 cancer and 87 non-cancer cell-lines)

Affymetrix Human Exon 1.0 ST Array (whole-transcript GeneChip) platform, were downloaded from Gene Expression Omnibus (GEO) data depository

Isoform-level expression profiles provide better cancer signatures than gene-level expression profiles

Mean normalized expression estimates of *TPM4* and its transcript variants in HMEC (N) and MCF7 (T) cell-lines

Glioblastoma Multiforme (GBM) – A Deadly Brain Tumor

Statistics

- Estimated new cases (23,130) and death (14,080) from brain and other nervous system cancer for 2013. (http://cancer.gov).
- GBM accounts for 12% to 15% of all intracranial tumors and 50% to 60% of astrocytic tumors (http://www.braintumor.org)
- About 9% of childhood brain tumors are glioblastomas.
- Incidence annually 2 to 3 per 100,000 people (in US or Europe)
- Survival info
 - The median survival time of GBM patients is 12-14 months (Smith and Jenkins, 2000).

GBM sub-typing (Gene level vs Isoform-level)

Molecular sub-type	Number o	of samp	les (n)
	Core	Other	Total
Classical (C)	37	-	
Mesenchymal (M)	55	-	172
Neural (N)	27	-	1/3
Proneural (PN)	54	-	
Other GBM (subtype not known)		246	246
Total GBM samples			419
Normal brain		10	10

 Verhaak et. al. (Cancer Cell 2010): Classified GBM into 4 groups-Proneural (PN), Neural (N), Mesenchymal (M), And Classical (CL).
Identified a 840 gene based signature, uses 210 genes per class.

The Somatic Genomic Landscape of Glioblastoma

Cameron W. Brennan,^{1,2,40,*} Roel G.W. Verhaak,^{3,11,40} Aaron McKenna,^{4,40} Benito Campos,^{5,6} Houtan Noushmehr,^{7,8} Sofie R. Salama,⁹ Siyuan Zheng,³ Debyani Chakravarty,¹ J. Zachary Sanborn,⁹ Samuel H. Berman,¹ Rameen Beroukhim,^{4,5} Brady Bernard,¹⁰ Chang-Jiun Wu,¹¹ Giannicola Genovese,¹¹ Ilya Shmulevich,¹⁰ Jill Barnholtz-Sloan,¹² Lihua Zou,⁴ Rahulsimham Vegesna,³ Sachet A. Shukla,⁵ Giovanni Ciriello,¹³ W.K. Yung,¹⁴ Wei Zhang,¹⁵ Carrie Sougnez,⁴ Tom Mikkelsen,¹⁶ Kenneth Aldape,¹⁵ Darell D. Bigner,¹⁷ Erwin G. Van Meir,¹⁸ Michael Prados,¹⁹ Andrew Sloan,²⁰ Keith L. Black,²¹ Jennifer Eschbacher,²² Gaetano Finocchiaro,²³ William Friedman,²⁴ David W. Andrews,²⁵ Abhijit Guha,²⁶ Mary Iaccocca,²⁷ Brian P. O'Neill,²⁸ Greg Foltz,²⁹ Jerome Myers,³⁰ Daniel J. Weisenberger,⁷ Robert Penny,³¹ Raju Kucherlapati,³² Charles M. Perou,³³ D. Neil Haves,³³ Richard Gibbs,³⁴

Marco Marra, 35 Go Matthew Meyerso **Research Network** ¹Human Oncology ar ²Department of Neur New York, NY 10065 ³Department of Bioin ⁴Cancer Program, Th ⁵Department of Medi ⁶Division of Experime 7University of Souther ⁸Department of Gene 14049-900 Ribeirão I ⁹Department of Biom Santa Cruz, CA 9506 ¹⁰Institute for System

Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in *PDGFRA*, *IDH1*, *EGFR*, and *NF1*

Roel G.W. Verhaak,^{1,2,17} Katherine A. Hoadley,^{3,4,17} Elizabeth Purdom,⁷ Victoria Wang,⁸ Yuan Qi,^{4,5} Matthew D. Wilkerson,^{4,5} C. Ryan Miller,^{4,6} Li Ding,⁹ Todd Golub,^{1,10} Jill P. Mesirov,¹ Gabriele Alexe,¹ Michael Lawrence,^{1,2} Michael O'Kelly,^{1,2} Pablo Tamayo,¹ Barbara A. Weir,^{1,2} Stacey Gabriel,¹ Wendy Winckler,^{1,2} Supriya Gupta,¹ Lakshmi Jakkula,¹¹ Heidi S. Feiler,¹¹ J. Graeme Hodgson,¹² C. David James,¹² Jann N. Sarkaria,¹³ Cameron Brennan,¹⁴ Ari Kahn,¹⁵ Paul T. Spellman,¹¹ Richard K. Wilson,⁹ Terence P. Speed,^{7,16} Joe W. Gray,¹¹ Matthew Meyerson,^{1,2} Gad Getz,¹ Charles M. Perou,^{3,4,8} D. Neil Hayes,^{4,5,*} and The Cancer Genome Atlas Research Network ¹The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA ²Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA ³Department of Genetics ⁴Lineberger Comprehensive Cancer Center ⁵Department of Internal Medicine, Division of Medical Oncology ⁶Department of Pathology and Laboratory Medicine University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA ⁷Department of Statistics

TCGA classification has <u>no prognostic significance</u> GBM patients (173 core group) into 4 groups

Verhaak et. al. (Cancer Cell 2010):

PIGExClass – <u>Platform-independent</u> <u>Isoform-level Gene-Expression</u> based <u>Class</u>ification-system

Pal & Bi et al. Nucleic Acids Res. 2014

Yingtao Bi, Ph.D. Staff Scientist (Statistics, UC Riverside)

Pal & Bi et al. Nucleic Acids Res. 2014

TCGA datasets analyzed by our group

Sample type	Data-type	Number of samples	
Normal brain	Gene expression	10	
(control samples)	(exon-array data)	10	
CPM tumor	Gene expression	<i>4</i> 10 –	
	(exon-array data)	419	76
CPM tumor	Gene expression		nmon
GBIVI tumor	(RNA-seq)	109	
GBM tumor	Exome sequencing	323	
GBM matched blood	Exome sequencing	259	
LCC tumor	Gene expression	22	
	(RNA-seq)		
LGG tumor	Exome sequencing	180	
LGG matched blood	Exome sequencing	160	

https://tcga-data.nci.nih.gov/

Gene-level and Isoform-level analysis of transcriptome changes

TCGA Exon-array Data Analysis (q≤0.001 and fold-change ≥2.0)						
Gene-level Isoform (transcript variant)-level						
Upregulated	912	2085				
Downregulated	1922	5228				

symbol	FC
AAK1	-2.09
DCLK1	-2.49
DCLK3	-2.01

Gene-level fold changes

	FC	symbol
	-6.77	AAK1-001
	-2.62	AAK1-004
	3.52	AAK1-011
leofe	3.17	DCLK1-001
fold	-5.04	DCLK1-006
	-2.47	DCLK1-013
	-5.66	DCLK1-201
	7.31	DCLK2-201
	-3.52	DCLK2-202
	-2.15	DCLK3-001

lsoform-level fold changes

Validation in independent brain tumor cohort (UPenn Neurosurgery Dept)

Validated the isoform-level expression changes by RT-qPCR in primary GBM samples for 15 of 16 isoform transcripts corresponding to 6 genes

An example showing isoform specific dysregulation

DCLK2 isoforms show opposite patterns of expression in gliomas versus normal brain

Dclk2 isoforms are developmentally regulated

DCLK2 isoform 1 is tissue specific in humans

DCLK2 isoform 1, which is brain specific and expressed higher in adult brain than in early development is down-regulated in cancer (GBM)

Stable clustering at isoform-level can be achieved in four groups

- Data matrix isoform expression data of 197 (or 419) samples and 1600 isoforms
- Consensus non-negative matrix factorization (NMF) clustering method
- Silhouette width was computed to filter out samples that were included in a subclass, but that were not a robust representative of the subclass

NMF clustering of 419 GBM patient samples based on the expression of 1,600 of the most variable isoforms across the patients

A total of **342** as most representative of the four groups, "isoform-based core samples" Concordance in cluster membership calls between our isoformbased and gene-based groupings in the TCGA publication

Survival plots of gene vs isoform-level grouping of 169 samples

Gene-based clustering of 169 samples (Verhaak et al Grouping) Isoform-based clustering of 169 samples (Our Grouping)

Survival plot for the four groups based on isoform-level clustering

С

Isoform-based clustering of 341 core-samples (Our Grouping)

Brain tumor sub-typing \rightarrow Precision Medicine

GBM patient group

Predictive classifiers – composite gene signatures as biomarkers

Isoform-level classifier for GBM patient stratification

A diagnostic assay to predict the molecular subtype of a future GBM patient is currently lacking

Kotliarova & Fine (2012) SnapShot: glioblastoma multiforme. Cancer Cell.

	DRUG
-	Distances
2	Mitheman
	Antipercept
3	Aratimit
4	Bevacizumab
5	Brivanio
0	Cadranio
6	Clienatida
8	Clangida Lasestatistis mandata
10	Lerwatinib mesytate
10	Enzastaurn
11	Enotinio
12	Gentinib
18	Imagnip
14	Intedanio
15	Lapatinib
10	BKM120
17	Noffnavir
18	Pazopanio
19	Perifosine
20	Soratonib
21	suntinio
22	Tandutinib
23	lamsroimus
24	Vandetanib
25	Cabozantinib
20	XL/05
27	Tipitamib
28	H04V2V0V7
29	Voliparib
30	ATN-161
31	AZD8055
32	AZD2014
33	BKM120
34	Iniparib
35	Rindopepimut
30	Peganetanio
37	Matuzumab
38	Everolimus
30	Foretinib
40	Ramucirumab
41	Olavatumab
42	I-125 MAB-425
43	Lonafamib
44	ABT-800
45	MK2200
40	Nimotuzumab
47	Lacomitinio
48	PX-800
40	Panobinostat
50	Fedaforolimus
51	Strolimus
52	vatalahib
53	XL147
54	Bornezomib

Feature Selection & Classification: RandomForest

The majority vote of the trees determines the classification result of an observation.

An estimate of the classification error is supplied by the out-of-bag sample

Platform Transition: Converting FCs to discrete values

E T								
Con Mark		ID	Sample 1	Sample 2		ID	Sample 1	Sample 2
	$c \rightarrow$	ENSG00000185518	3.23	1.68		ENSG00000185518	1	2
	()	ENSG00000147676	2.68	1.34		ENSG00000147676	2	3
		ENSG0000006116	1.95	1.95		ENSG0000006116	4	2
	$ Y \cdots =$	ENSG0000072657	1.21	1.85	\Box	ENSG0000072657	5	2
	I · IJ I –	ENSG00000102468	2.39	1.85		ENSG00000102468	3	2
- <u></u>		ENSG00000166111	2.53	1.28		ENSG00000166111	2	3
		ENSG00000164588	2.30	2.66		ENSG00000164588	3	1
		ENSG00000137766	1.77	2.57		ENSG00000137766	4	1
		ENSG00000104888	3.96	1.81		ENSG00000104888	1	2

Data-discretization is an important step in platform transition

Performance of gene-based vs isoform-based model to discriminate the four molecular subgroups of GBM

While the isoform-based randomForest model achieved 90% accuracy with as few as 50 isoforms as feature variables, the genebased model required more than 100 genes as feature variables for comparable accuracy to the isoform-based model

Classification model from RandomForest

Number of variables/ features selected by RandormForest feature selection	OOB error rate	Error rate based on independent test set
213 transcript variants	0.0661	0.07

Assay design- Open array platform

<u>121 variable transcripts - 18 Non-coding transcripts</u>

- 8 transcripts- consistently up
- 7 transcripts- consistently down
- 4 house keeping genes- Polr2a, GAPDH, B2M, b-Actin

Accuracy of 121 transcript-based classifier on exon-array data

Predicted labels

		Ν	PN	Μ	CL	Class Error
S	N (78)	63	5	3	5	0.17
labe	PN (95)	0	92	1	2	0.03
ue_	M (85)	3	0	82	0	0.04
È.	CL (86)	4	1	1	80	0.07

Confusion matrix based on 121 selected transcripts (Number of bins equal to 15)

OOB estimate of error rate: 7.31%

Accuracy of 121 transcript-based classifier on RNA-seq data (76 samples)

Predicted labels

		Ν	PN	Μ	CL	Class Error
S	N (22)	16	1	1	4	0.27
labe	PN (18)	0	18	0	0	0.00
en.	M (20)	0	0	20	0	0.00
Ì	CL (16)	0	0	0	16	0.00

Confusion matrix based on 121 selected transcripts (Number of bins equal to 15)

OOB estimate of error rate: 7.89%

Sub-typing of 206 GBM patients using RT-qPCR assay (based on 121 assays/transcripts)

Sample	Pro					
ID.	CL	М	Ν	PN	Sub-type	
1409	0.16	0.16	0.43	0.25	N	
1470	0.02	0.96	0.01	0.01	Μ	High
1621	0.02	0.01	0.88	0.09	N	
1716	0.04	0.02	0.17	0.77	PN	predictions
1770	0.08	0.01	0.36	0.55	PN	91%
1817	0.53	0.23	0.10	0.14	CL	
1961	0.87	0.05	0.05	0.03	CL	$\left \right\rangle$
1659	0.03	0.02	0.49	0.46	N	Low-
1730	0.09	0.11	0.39	0.41	PN	confidence
						predictions

9%

	Ν	PN	Μ	CL	Total
TCGA	76 (22%)	95 (27.8%)	85 (24.9%)	86 (25.2%)	342
PENN	41 (19.9%)	52 (25.2%)	50 (24.2%)	63 (30.5%)	206

Validation of our classifier-PENN GBM cohort

Expression of specific markers for each subgroup

Group	Marker	gene
-------	--------	------

PN	DCX
PN	DCX

- N GABRA1
- CL NES
- M CHI3L1 and MET

Summary

- Isoform-level expression clustering identified four GBM subgroups with significant (p=0.0103) survival differences
- A four-class classifier, built with 121 transcript-variants, assigns GBM patients' molecular subtype with 92% accuracy
- The GBM classifier was translated to an RT-qPCR-based assay and validated on an independent cohort of 206 glioblastoma samples, and maintained highconfidence subtype calls for 91% of the patients.
- We found the proneural subtype to have the worst prognosis for patients, except for the younger group (<40 years) who showed significantly better survival (p=0.007), while a better prognosis for the neural subtype was observed (p=0.02) in older patients (≥40 years).

Clinical Significance of the Assay

- This assay could be used in prospective clinical trials to select specific groups of GBM patients for treatment with drugs targeting subtype-specific pathways
- GBM patients can be stratified into 4 subgroups, so that patients within a group can receive treatments that have been tailored specifically for them

Topics of Discussion

- 1. Grows of multi –omics data
- 2. Why "gene" as a unit of measure is too simplistic?
- 3. Exon-arrays and RNA-seq methods
- 4. Gene-level Vs Isoform-level analysis
 - A. Cancer Vs Non-cancer cell-line grouping
 - B. Isoform-level gene signatures for brain tumor sub-typing
- 5. Evaluation of isoform-level expression estimation algorithms for RNA-seq and exon-array platforms

Comparative assessment of isoform-level expression estimation algorithms (for RNA-Seq, exon-array)

- 1. TCGA data:
 - 103 tumor- and 4 normal-tissue glioblastoma multiforme (GBM) samples
 - Samples feature both RNA-seq and exon array data available in TCGA
- 2. Exon array analysis:
 - Estimates obtained using Multi-Mapping Bayesian Gene eXpression (MMBGX)
 - Ensembl 70 (GRCh37.p8) reference annotation
- 3. RNA-seq analysis:
 - Genome alignments were made using Bowtie2, Ensembl 70.
 - Tested the following tools: **TopHat/Cufflinks**, **RSEM**, **eXpress**, and **Sailfish**.
- 4. RT-qPCR:
 - GBM samples obtained from the Human Brain Tumor Tissue bank at the University of Pennsylvania
 - RT-qPCR performed on 159 transcripts previously selected for tumor subtyping
- 5. Expression and fold change correlations:
 - Sample-by-sample correlations between RNA-seq and exon array evaluated using Spearman's correlation.
 - Fold changes calculated using mean values from 4 normal-tissue GBM samples.
 - RNA-seq expression estimates (FPKM) were normalized using upper quartile normalization.
 - For RT-qPCR correlations, estimates were further normalized by POL2A expression.

Table 1

Program	Cufflinks	RSEM	eXpress	Sailfish	Salmon	Kallisto	isoformEx	
Cufflinks	100873	0.93	0.65	0.75	0.73	0.90	0.66	Еx
RSEM	88912	96012	0.64	0.75	0.79	0.94	0.67	r Sa
eXpress	98594	94903	148026	0.56	0.52	0.61	0.63	ssion
Sailfish	70536	68674	82495	96308	0.59	0.76	0.59	e (S
Salmon	84061	84557	96757	66658	99099	0.77	0.62	pea
Kallisto	91796	91416	103668	76141	88102	111866	0.64	atior rma
isoformEx	66526	64747	79182	58664	65881	71034	89535	ר (נ
	Number of Overlapping Resolved Isoforms per Sample							

Table 1: Correlations Between RNA-seq Abundance Estimates. Expression estimates from each of the tested RNA-seq quantification methods were compared with one another. The number of resolved transcripts shared between each pair of methods is shown in orange, lower-left. The Spearman correlation between each pair of methods is shown in green, upper right.

Scatter plots of average expression and fold change (tumor vs. normal) estimates between exon array and RNA-seq

Spearman correlation coefficients between MMBGX and different RNA-seq quantification methods

RT-qPCR Correlations

The transcripts included in RT-qPCR analysis (red), according to their average expression estimates (a) and fold-changes (b) from the RNA-seq and MMBGX exon array tumor results

RT-qPCR Correlations

Algorithm	Expression	Fold Change	#
	Correlation (r _s)	Correlation (r _s)	Transcripts
eXpress	0.470	0.900	139
isoformEx	0.292	0.873	127
Salmon	0.115	0.864	131
Kallisto	0.287	0.860	132
TopHat/ Cufflinks	0.223	0.849	133
Exon Array - MMBGX	0.424	0.836	142
RSEM	0.231	0.835	132
Sailfish	0.259	0.812	126

The Spearman correlations and number of shared, resolved transcripts between the various programs tested and the RT-qPCR estimates
Summary

- Better concordance between RNA-seq/exon-array and RT-qPCR platforms for fold change estimates than for raw abundance estimates, suggesting that fold-change normalization against a control is an important step for integrating expression data across platforms.
- Potentially important isoform-level expression changes can be masked by gene-level estimates
- While eXpress and MMBGX programs achieved the best performance for RNA-seq and exon-array platforms respectively for deriving the isoform-level fold change values, there is an urgent need to improve the methods for abundance estimation.

Acknowledgement

Funding :

- NHGRI/NIH (R01)
- Pennsylvania State Dept of Health
- Philadelphia Healthcare Trust Professorship, Wistar Institute, Philadelphia, PA
- Tobin Kestenbaum Family Professorship, Wistar Institute, Philadelphia, PA
- Zell Scholar, Robert H. Lurie Comprehensive Cancer Center, NU-FSM, Chicago, IL.
- NLM/NIH (R01 LM011297)
- NCI SPORE in Prostate Cancer (P50 CA090386)
- Intelligence Advanced Research Projects Activity

