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Tissue Image Analysis
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e Tumors are complex and heterogeneous

e Datasets of rich nuclear morphological information
e Nuclear morphology
e Maps of tumor infiltrating lymphocytes



Tissue Imaging

Confluence of several technological advances is
making slide scanning more practical

Image scanning technology has progressed
significantly in recent years
— Sophisticated auto-focus mechanisms

— Slide trays for batch scanning of slides

Time required to scan a slide at high-resolution has
reduced from multiple hours to several minutes

— 200-300 slides / day
Disk storage is getting cheaper



Big Data Challenges in Pathomics

Patients 100’s - 1000’s
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TCGA Microscopy Image Data

e Data from 11,000 subjects
* 30,000+ tissue slide images

* Image resolutions ranging from 4000x6000
pixels to 130,000x250,000 pixels

— On average about 3.6 Billion pixels per image



Big Data: Analyzing Whole Slide Tissue
Images

* Needs large main memory
— 130,000x250,000x3 (RGB) = 90GB

e Takes from 30 minutes to 10-12 hours to
process an image

— A dataset with 100 images would require 8 days
assuming 2 hours per image on average

 Hundreds of thousands to millions of objects
in a whole slide tissue image



Analysis Sensitivity: Generating Robust
Feature Sets

* Image analysis pipelines are sensitive to input
parameters
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Generating Robust Feature Sets

Run multiple analyses
Store, index, interact with results
Computational comparison of results

— Sensitivity analysis for algorithm evaluation and
development

— Parameter tuning

Visual comparison of results

— Curation



Feature Sets

* 40-70 features per object (nucleus)
* Analysis of 4000 images

— About 2 Billion segmented objects
e Multi-analysis of 300+ images

— 6-10 analyses per image

— About 2 Billion segmented objects



Deep Learning

 Tumor infiltrating lymphocytes

Train an unsupervised
Convolutional
Autoencoder (CAE)
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TIL Maps
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Parameter Adjustment Using 3D Slicer Pathology Segmentation and Feature Computation Pipeline
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Visual Exploration of
Features

Partition each image into tiles InpUt lmage Dataset
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Leveraging Hybrid High Performance
Computing Systems

* Lots of nodes
 Multi-core CPUs, GPUs, and other hardware
accelerators per node

 XSEDE, Supercomputing Centers
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Inter-operation Performance Variations
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Analysis on HPC Platforms

RT Application Application Manager instantiates dataflow
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Coordinated Use of CPUs and GPUs
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36,844 4Kx4K-pixel tiles from 340 whole slide tissue images.

On 100 nodes, less than 4 minutes to process 36K tiles.



Support for Spatial Queries

POINT query: human marked point WINDOW query: return markups
inside a nucleus contained in a rectangle

~

CONTAINMENT query: nuclear feature
aggregation in tumor regions

Normal

Tumor



SparkGIS

Global Index Distributed Query Execution

Global& Local Index

Load Balancer
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.
Heatmap Computations: Spatial Joins

+ Dice/Jaccard Metric
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Going Forward

* Containers
— Facilitates a modular design.
— Self-contained, Isolated.

» Software to support tissue image analysis needs to leverage a
variety of existing libraries and tools.

— Flexibility
 Move computation to data
* Move back and forth between Cloud platforms and local resources

* Scripting
— JavaScript: Take advantage of web browsers
— Python: Take advantage of large set of libraries
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Containerized Software for Tissue Image
Analysis

Visual Feature Analytics View
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Containerized Software for Tissue Image Analysis

* The application service group is a single container that hosts a suite of
Web applications to view images and interact with analysis results.

* The image analysis group is made up of three containers, which
collectively execute image analysis requests.

— Analysis service — hosts analysis pipeline
— Job Manager service — tracks jobs
— Image tile service — services image tiles for analysis

* The data management service group is implemented as a set of three
containers for data loading, data management, and query processing.

— Data loader service -- load image metadata and analysis results

— Data manager service — manage and index image data, analysis results,
features

— Feature query service — query feature data for visualization and
exploration

Software: https://github.com/SBU-BMI/quip distro.git



https://github.com/SBU-BMI/quip_distro.git
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Support for Sensitivity Analysis

Sensitivity Analysis (SA) and
Auto-tuning methods
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Scalable and Efficient Execution with Region Templates
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