

Frontiers of Predictive Oncology and Computing

October 17-19, 2017

SUNY

New York City

Topics

-Scale of data available

-Challenge of accessing and using that data

-Some examples

ATOM Consortium

Accelerating Therapeutics for Opportunities in Medicine

ATOM Consortium Membership

Actively encouraging additional members who share in the vision

Elements of membership:

- 1. Augment knowledge and capabilities
- 2. Senior leadership participation
- 3. Data, equipment, and/or resources
- 4. Staff with expertise to work at the ATOM lab
- 5. Financial support for the consortium
- 6. Commitment to a new pre-competitive balance ...

Examples of contributions from founding members

2M compounds and associated data from terminated projects and screening collections

Access to DOE supercomputers for purposes of carrying out Consortium related activities

Frederick National Laboratory

Scientific expertise in cancer, computational chemistry and biology, data science, and predictive oncology

Access to UCSF facilities, expertise from UCSF faculty, cancer center

• • •

Access to additional items

- Study Reports on Safety/Tox, ~345 compounds 5000+ reports
 - SAPAD table entries for compounds that were terminated because of animal or human safety issues, indicating the tissues and pathologies observed.
- Crystal structures (ligand/protein): 1,356 in review. Will include mostly targets along with a smaller number of off target related assays
- Human clinical reports for 68 compounds
 - EKG data and other outcomes will be valuable for linking larger collections of experimental data with human outcomes

What is GSK doing to be more data enabled...?

- GSK has appointed a Chief Data Officer and a built a department to ensure that historic and future data are in a searchable format.
- We have built our internal compute and data transfer infrastructure to enable deep analytics, from target to clinic.
- We have hired people from traditional and nontraditional Pharma backgrounds to accelerate use of data in problem solving.
- We have put in place collaborations to jumpstart our efforts to use data and deep analytics to solve problems.
- We are a founding member of ATOM, a precompetitive govt, academic and pharma collaboration to share data for algorithm development.

Examples...

Objective: co-registration MALDI images and optical images

- Align high resolution whole slide histology images (H&E stained) and MALDI (optical) image.
- Example below: rat brain tissue slices

Whole Slide Histology Image

Optical image of MALDI slide

Rigid Transformation

Non-rigid transformation

Optical Image of MALDI

Whole Slide Histology Image

Non-rigid registered Image

Deformable transformation: visualization

Objective: A broader interrogation of cell biology through automation

Dealing with unseen phenotypes

Minimize learning unimportant features instead of true discriminators

Training set

Unseen test set

Presentation title

Comparing workflows

Handling of complex images, increased objectivity and time saving

High Content Imaging – Deep Learning Workflow

Two proposed pipelines and use cases

Bioprinting ExVive™ Human Tissues Translational human relevant models of disease

Up to 100% cellular

Human Cells

- Primary or iPS cells
- Normal or diseased

NovoGel® Bio-Ink

- Cell mixture
- Proprietary media
- Optional temporary matrix

NovoGen Bioprinter® Platform

- Biocompatible
- Multimodal
- Spatial control

Human Tissues

- Reproducible
- Scalable
- 100% cellular

Bioprinting: The <u>automated fabrication</u> of a tissue through the <u>spatially-controlled</u> deposition of cells and/or cell-containing materials in user-defined, geometric patterns.

ExVive Human Liver Tissue

Bioprinted

Tissue

Medium

- Fully human, multicellular structure
- Large size (2mm² X 0.5mm; >10⁶ cells)
- Compartmentalized architecture
- Sustained function and viability

HCs.

NPCs

3D Human Liver Tissue Models may bridge translational gap in NASH with fibrosis

ExVive™ Human Liver can be analyzed at any stage of disease

- Induced by high fat / high sugar 'diet'
- Driven by producing tissues from Disease-Origin Cells

Tissue-of-origin features are recapitulated in bioprinted tissues

In-Vivo Optical Biopsy of Mouse

Bower AJ, Li J, Arp Z, Marjanovic M, Zhao Y, Chaney EJ, Boppart SA. Longitudinal in vivo tracking of adverse effects following topical steroid treatment . Experimental Dermatology, 25:362-367 2016.

Combination of Methods – The Power of Multi-Modal

Tu H, Liu Y, Marjanovic M, Chaney EJ, You S, Zhao Y, Boppart SA. Concurrence of extracellular vesicle enrichment and metabolic switch visualized label-free in the tumor microenvironment. Science Advances, 3:e1600675 2017.