Crosscutting Technologies

Uncertainty Quantification

Tanmoy Bhattacharya

Oct 18, 2017

LA-UR-17-29458

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Why do we need uncertainty quantification?

• *Machine learning* provides description of training data.

- Based only on input data with little expert knowledge.
- Often opaque, based on subtle correlations.
- Generalizes to similar data, but what is *similar* is not clear.

Data is currently

- Unimodal.
- Collected opportunistically.
- Has little gold-standard ground truth.

To reduce human workload,

- Need confidence in individual predictions: triage the highly certain cases.
- Understand both statistical errors and data biases.
- Quantify model transfer uncertainty.

UQ allows division of work between machines and humans

Generalization Error

- No amount of examples can predict an unseen point without assumptions.
- Function space is huge

- Blue data: sin(10 x + x2) + random
- Green fit: sin(10x + x2)
- Red fit: sin(10x + x2) + repeated Gaussian
 - Allow only if evidence very strong
 - Or if a repeated Gaussian is what we expect

- Need to restrict to or favor parts of function space.
- Increase in data allows more complicated models without over-fitting.

There is an unavoidable tradeoff between ability to fit and prediction

Example: Checking if data has signal

- Are we predicting *better than random?*
 - Even random data can be *predicted*, based only on frequencies
 - Remove all signal that one is interested in by permutation
 - Measure estimated error on this random data using the same methodology
 - Allows us to measure whether prediction is based on expected signal

There is a prediction floor one reaches at low sample sizes

Example (continued): Empirical error curves

- In simple machine learning techniques, error for large amount of data typically falls off as a power law.
- One can measure this error for different sample sizes.
- This curve can be extrapolated to estimate the oracle error: the amount of error that is intrinsic to the method.

For simple machine learning, there is an error floor at large sample sizes

Example (continued): Model complexity

- In standard machine learning, one can control model complexity by doing a variable selection.
- As more variables included, fitting better, so *train set error* reduces.
- Test set error stabilizes
- As model complexity increases
 - Each training set is fit better
 - Different training sets give different models

Bias variance tradeoff as model complexity increases.

Rademacher Error

- Ideal situation
 - Model predicts real data well
 - Model does not predict random data at all
- Then, one can be sure that the prediction is *real*, and will generalize.
- Formalized in Rademacher bounds: strictly conservative upper bound.
- Bound becomes tight as data size increases

Example: Autoencoder or Principal Components

Compare

- Principal Components
- Random Components
- Autoencoder Components

Principal Components and Autoencoders give similar Rademacher bound

Rademacher to bound deep learning?

- Traditionally, one gets strong uncertainty guarantees using these
- Shown to not work for deep learning
 - First memorize (really bad and unlearnable solution)
 - Optimize to find a better solution
- What counts as better?

- Function space dimension exponentially large.
- Unreasonable effectiveness of learning IGUs.
- Theory allows *meta*learning across domains: model transfer uncertainty.
- UQ from correlations between generative and analytical models.

Work in progress to use other methods like dropout sensitivity

Uncertainty stratification and Triage

- Measuring average uncertainty only a first step
- If we can separate certain and uncertain situations
 - Can spend expensive resources on uncertain situations

UQ can be used to distill error-free output

UQ on individual instances

- No assumption-free generalization guarantees
- Assume close by train cases inform uncertainty
- Assumptions dictate what is close by.
 - Close by in input space: Similar word use, similar format, ...
 - Close by in output space: Difficulty making a call, boundary of match region, ...

Report ID	Lung	Breast	Colon	Prostat e	
CT-REC- XXXX	0.68	0.12	0.09	0.02	 ← Confident
HI-REC- XXXX	0.28	0.23	0.26	0.07	 Not confident

Example: use highest score

Conclusions

- Uncertainty quantification bounds errors on cases unseen
 - Standard approaches available
 - Need modification for deep learning
- Uncertainty quantification allows optimal design of experiments
 - Simulations can address lacunae in knowledge
 - Effects of sampling biases can be quantified
- Uncertainty quantification can allow certainty distillation
 - Can provide a subset with negligible errors
 - Separate the easy cases from the hard cases

UQ methods in development here will help other deep-learning projects