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Why do we need uncertainty quantification?

10/25/2017 |   2Los Alamos National Laboratory

• Machine learning provides description of training data.

– Based only on input data with little expert knowledge.

– Often opaque, based on subtle correlations.

– Generalizes to similar data, but what is similar is not clear.

• Data is currently

– Unimodal.

– Collected opportunistically.

– Has little gold-standard ground truth.

• To reduce human workload,

– Need confidence in individual predictions: triage the highly certain cases.

– Understand both statistical errors and data biases.

– Quantify model transfer uncertainty.

UQ allows division of work between machines and humans 



Generalization Error
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• No amount of examples can predict an unseen point without assumptions.

• Function space is huge

• Need to restrict to or favor parts of function space.

• Increase in data allows more complicated models without over-fitting.
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• Blue data: sin(10 x + x2) + random

• Green fit: sin(10x + x2)

• Red fit: sin(10x + x2) + repeated Gaussian

• Allow only if evidence very strong

• Or if a repeated Gaussian is what we expect

There is an unavoidable tradeoff between ability to fit and prediction



Example: Checking if data has signal
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• Are we predicting better than random?

– Even random data can be predicted, based only on frequencies

– Remove all signal that one is interested in by permutation

– Measure estimated error on this random data using the same methodology

– Allows us to measure whether prediction is based on expected signal
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There is a prediction floor one reaches at low sample sizes



Example (continued): Empirical error curves
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• In simple machine learning 

techniques, error for large 

amount of data typically falls 

off as a power law.

• One can measure this error 

for different sample sizes.

• This curve can be 

extrapolated to estimate the 

oracle error: the amount of 

error that is intrinsic to the 

method.
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For simple machine learning, there is an error floor at large sample sizes



Example (continued): Model complexity
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• In standard machine 

learning, one can control 

model complexity by doing 

a variable selection.

• As more variables 

included, fitting better, so 

train set error reduces.

• Test set error stabilizes

• As model complexity 

increases

– Each training set is fit better

– Different training sets give 

different models
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Bias variance tradeoff as model complexity increases.



Rademacher Error
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• Ideal situation

– Model predicts real data well

– Model does not predict random data at all

• Then, one can be sure that the prediction is real, and will generalize.

• Formalized in Rademacher bounds: strictly conservative upper bound.

• Bound becomes tight as data size increases



Example: Autoencoder or Principal Components
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• Compare

– Principal Components

– Random Components

– Autoencoder Components

Principal Components and Autoencoders give similar Rademacher bound



Rademacher to bound deep learning?
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• Traditionally, one gets strong uncertainty guarantees using these

• Shown to not work for deep learning

– First memorize (really bad and unlearnable solution)

– Optimize to find a better solution

• What counts as better?

Work in progress to use other methods like dropout sensitivity
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• Function space dimension exponentially large.

• Unreasonable effectiveness of learning IGUs.

• Theory allows metalearning across domains: 

model transfer uncertainty.

• UQ from correlations between generative and 

analytical models.



Uncertainty stratification and Triage
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• Measuring average uncertainty only a first step

• If we can separate certain and uncertain situations

– Can spend expensive resources on uncertain situations

Pilot 3: Machine-assisted extraction

Module Module Module/Human

Decide

Extract Evaluate Triage

Decide

UQ can be used to distill error-free output



UQ on individual instances
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• No assumption-free generalization guarantees

• Assume close by train cases inform uncertainty

• Assumptions dictate what is close by.

– Close by in input space: Similar word use, similar format, …

– Close by in output space: Difficulty making a call, boundary of match region, …

Cancer type 1

Cancer type 3

Cancer type 2
Cancer type 4

Report ID Lung Breast Colon Prostat

e

…..

CT-REC-

XXXX

0.68 0.12 0.09 0.02 …

HI-REC-

XXXX

0.28 0.23 0.26 0.07 …

Confident

Not confident



Example: use highest score
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Conclusions
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• Uncertainty quantification bounds errors on cases unseen

– Standard approaches available

– Need modification for deep learning

• Uncertainty quantification allows optimal design of experiments

– Simulations can address lacunae in knowledge

– Effects of sampling biases can be quantified

• Uncertainty quantification can allow certainty distillation

– Can provide a subset with negligible errors

– Separate the easy cases from the hard cases

UQ methods in development here will help other deep-learning projects


