Pilot 3: Population Information Integration, Analysis and Modeling

Paul Fearn National Cancer Institute

Georgia Tourassi Oak Ridge National Laboratory

October 18, 2017

Presented at:

Frontiers of Predictive Oncology 2017

Improve the effectiveness of cancer treatment in the "real world" through automation: Surveillance Perspective

Pilot 3: Aims and Technical Overview

Pilot 3

Multi-disciplinary DOE-NCI team w/ clinical & industry partners

Update – Aim 1: Data access and Annotation Pipeline

- Access to Louisiana registry data
 - * 105,523 patients
 - 110,941 cancer diagnoses
 - 256,816 path reports associated with those diagnoses
- 3 registries have received IRB approval: LA, Seattle, KY; pending: GA
- 1,800 pathology reports annotated for ALK, EGFR by Vasta
- Schema for breast cancer biomarkers and recurrence being finalized (HER2, ER, PR, Neu, distant recurrence)
 - Use cases for breast recurrence developed and in pipeline
- NCI Investment for annotation pipeline
 - Enhancements for LabKey
 - Scaling up of Annotation services (Vasta)

Clinical Document Annotation Pipeline

- Infrastructure to support annotation of unstructured text documents for testing and validation of NLP algorithms
- Represents a critical platform for NLP- large volumes of gold standard annotated data are essential
- Infrastructure will be available to all Federal agencies and their partners for use in annotation for testing of algorithms

Complex Annotation Workflow

From Spencer Morris

ENERGY NIH NATIONAL CANCER INSTITUTE

USE CASE 1: Limited dataset of annotated breast and lung cancer pathology reports from 5 different US states

USE CASE 2: Large dataset of pathology reports from Louisiana Cancer Registry

Experimental Pipeline

NIH NATIONAL CANCER INSTITUTE

Preliminary Investigation on the limited dataset

Multi-task Learning Deep Neural Network

"Multi-task Deep Neural Networks for Automated Extraction of Primary Site and Laterality Information from Cancer Pathology Reports." In INNS Conference on Big Data [2016]

Convolutional Neural Network

"Deep Learning for Automated Extraction of Primary Sites from Cancer Pathology Reports," IEEE Journal of Biomedical and Health Informatics [2017]

Hierarchical Attention Network

Hierarchical Attention Networks for Information Extraction from Cancer Pathology Reports," Journal of American Medical Informatics Association [2017]

U.S. DEPARTMENT OF

ENERGY

Micro-F1 Score

Interpretability

CNN

HAN

CNNs associate context with importance based on how often words occur in its neighborhood. Moving along a row, these words may not always capture the required clinical context. HANs interpret context based on most important words in a sentence \rightarrow sentences \rightarrow document. Neighboring words/sentences provide overall importance.

Initial observations with the Louisiana registry data

- 256,816 e-paths total
 - Preliminary experiments with ~5-10% of the path reports
- CNNs for 5 NLP tasks using 10-fold CV and hyper-parameter optimization
 - Primary cancer site
 - Laterality
 - Histology
 - o Behavior
 - o Grade
- Comparison w/ best performing shallow machine learning

Pilot 3 Preliminary results with the LA registry data and Convolutional Neural Network

256,816 e-paths total

26,360 annotated for cancer subsite with >10 cases/subsite 20% reserved for final validation **21,966 cases used for CV 135 classes present** Experiment: 10-fold CV with CNN # of trainable CNN parameters: 5,483,835

Micro-F1 = 0.71

Site	Support	Prec	Recall	F-score	Site	Support	Prec	Recall	F-score
Breast NOS	4068	0.843	0.972	0.903	Urethra	12	0.000	0.000	0.000
Prostate NOS	2301	0.971	0.988	0.979	Sinus NOS	11	0.000	0.000	0.000
Bone Marrow	1422	0.804	0.923	0.859	Maxillary Sinus	11	1.000	0.182	0.308
Lung NOS	1057	0.599	0.737	0.661	Fundus Uteri	11	1.000	0.364	0.533
III-defined NOS	945	0.363	0.551	0.437	Wall of bladder	11	0.000	0.000	0.000
Bladder NOS	871	0.879	0.948	0.912	Spinal Cord	11	0.000	0.000	0.000
Endometr ium	805	0.703	0.909	0.793	Pituitary Gland	11	0.000	0.000	0.000
Colon NOS	766	0.582	0.551	0.566	Salivary Gland	10	0.000	0.000	0.000
Rectum NOS	641	0.678	0.861	0.759	Skin of Lip	10	0.000	0.000	0.000
Kidney NOS	443	0.835	0.937	0.883	Bladder Neck	10	0.000	0.000	0.000

	CNN	$\theta = <_{\text{tugtud}}$		CNN	$\theta >_{\text{tugtud}}$	
θ	Support	TP	Accuracy	Support	TP	Accuracy
0	21966	15782	0.718			
0.2	21220	15674	0.739	746	108	0.145
0.4	19557	15232	0.779	2409	550	0.228
0.6	17572	14459	0.823	4394	1323	0.301
0.8	15627	13434	0.860	6339	2348	0.370
0.9	14276	12612	0.883	7690	3170	0.412
0.95	13210	11898	0.901	8756	3884	0.444
0.99	11143	10364	0.930	10823	5418	0.501
0.99999	4378	4299	0.982	17588	11483	0.653

Subsite Support Size vs. Accuracy

Primary Cancer Site

Name		ICD-O-3 codes		# cases
Bladder		C67		947
Breast		C50		4,414
Colorectal		C18, C19, C20, C21		2,788
Endometrial	C53,	C54, C55, C56, C57, C58	3	1,899
Kidney		C64		458
Leukemia		C42		1,800
Lung	C34		1,569	
Lymphoma	C77		741	
Melanoma	C44, C51, C60, C63		1,272	
Other			4,324	
Pancreatic		C25		151
Prostate		C61		2,313
Thyroid		C73		305
F1 Scores			Т	otal: 22981
		CNN		RF
Micro F	1	0.9128		0.8583
Macro F	1	0.8941		0.8116

Confusion Matrix

CNN

 $\geq = \theta$

0	8	0	16	0	0	0	3	7	4	1	0	908
2	0	0	76	6	15	9	5	0	15	2	4283	1
0	0	0	88	6	1	12	4	2	22	2648	3	2
0	0	0	57	3	5	4	3	0	1795	23	9	0
0	0	0	16	0	2	5	1	428	0	1	0	5
1	2	0	41	9	31	2	1704	2	2	2	3	1
3	2	1	90	1	15	1432	6	2	2	6	9	0
10	15	3	99	15	468	24	43	4	4	7	48	1
2	4	0	84	1133	9	4	4	0	2	10	20	0
13	9	30	3487	100	101	122	39	32	82	133	140	36
0	0	117	29	0	1	0	0	1	0	3	0	0
1	2281	0	7	1	1	1	5	2	1	3	0	10
294	0	0	4	1	5	1	0	0	0	0	0	0

Criti Coutput [®]		
Threshold	Support	PPV
0	22981	0.913
0.2	22978	0.913
0.4	22890	0.915
0.6	22082	0.930
0.8	20745	0.949
0.9	19589	0.961
0.95	18346	0.971
0.96	17941	0.973
0.97	17352	0.976
0.98	16493	0.981
0.99	14808	0.986

Primary Cancer Site

	PPV	94
BLADDER	S	96
	F	95
	PPV	95
BREAST	S	97
	F	96
	PPV	93
COLORECTAL	S	95
	F	94
	PPV	93
ENDOMETRIAL	S	95
	F	94
	PPV	89
KIDNEY	S	93
	F	91
	PPV	94
LEUKEMIA	S	95
	F	94

	עם א	20
	PPV	89
LUNG	S	91
	F	90
	PPV	72
LYMPHOMA	S	63
	F	67
	PPV	89
MELANOMA	S	89
	F	89
	PPV	85
OTHER	S	81
	F	83
	PPV	77
PANCREATIC	S	77
	F	77
	PPV	98
PROSTATE	S	99
	F	98
	PPV	90
THYROID	S	96
	F	93

ENERGY NIH NATIONAL CANCER INSTITUTE

Laterality

Code		Description		# cases	С	
0		Not a paired site	1,432			
1	Rigl	nt: origin of primar	2,036			
2	Lef	t: origin of primary	1,926			
4	Bilateral			44		
5	Paired site: midline tumor			12		
9	Paired site, but no information			256		
Total: 5706						
F1 Scores						
		CNN		RF		
Micro F1		0.8747		0.7625		

0.5166

0.4460

Confusion Matrix

56	55	0	0	29
1876	91	0	0	10
113	1752	0	0	5
12	15	1	0	0
3	4	0	0	1
46	44	0	0	69
	56 1876 113 12 3 46	565518769111317521215344644	56 55 0 1876 91 0 113 1752 0 112 15 1 3 4 0 46 44 0	565500187691001131752001215103400464400

$CNN_{output} \ge \theta$

Threshold	SUPPORT	PPV
0	5705	0.875
0.2	5705	0.875
0.4	5612	0.885
0.6	5052	0.925
0.8	4505	0.953
0.9	4070	0.968
0.95	3676	0.977
0.96	3534	0.979
0.97	3322	0.983
0.98	2973	0.986
0.99	2206	0.991

Macro F1

Laterality

	PPV		85
NOT A PAIRED SITE	S		90
	F		87
	PPV		89
RIGHT:ORIGIN OF PRIMARY	S		92
	F		91
	PPV		89
LEFT: ORIGIN OF PRIMARY	S		91
	F		90
	PPV		100
BILATERAL	S		2
	F		4
	PPV	*	
PAIRED SITE: MIDLINE TUMOR	S		0
	F	*	
	PPV		61
PAIRED SITE, BUT NO INFORMATION	S		27
	F		37

ENERGY NIH NATIONAL CANCER INSTITUTE

Behavior

Description	# cases
Benign	735
Borderline malignancy	158
In situ	1,000
Malignant	11,751
Only Malignant 2010+	112
	DescriptionBenignBorderline malignancyIn situMalignantOnly Malignant 2010+

CNN

0.9264

0.6574

Confusion Matrix

458	13	22	238	4
49	22	4	83	0
13	0	739	248	0
117	6	161	11450	15
3	1	2	57	49

$\mathsf{CNN}_{\mathsf{output}}{>}{=}\theta$

	11,751	Threshold	SUPPORT	PPV
		0	13754	0.925
	112	0.2	13754	0.925
		0.4	13712	0.926
Т	otal: 13756	0.6	13149	0.942
		0.8	12163	0.962
		0.9	11177	0.974
		0.95	10131	0.983
	RF	0.96	9743	0.984
	0.0070	0.97	9149	0.987
	0.8979	0.98	8236	0.989
	0.5010	0.99	6392	0.992

F1 Scores

Micro F1

Macro F1

Behavior

	PPV	72
BENIGN	S	62
	F	67
	PPV	52
BORDERLINE MALIGNANCY	S	14
	F	22
	PPV	80
IN SITU	S	74
	F	77
	PPV	95
MALIGNANT	S	97
	F	96
	PPV	72
ONLY MALIGNANT 2010+	S	44
	F	54

ENERGY NIH NATIONAL CANCER INSTITUTE

Histology

Description

Adenocarcinoma

Ductal Carcinoma

Squamous Cell Carcinoma

cases

4,469

1,484

949

Code

8140

8500

8070

Total: 14173

73% of cases distributed among 10 out of 87 classes

8010	Carcinoma in situ	937	CNN>=θ		
8000	Neoplasm, malignant	869	Threshold	SUPPORT	PPV
8720	Melanoma in situ	567	0	14173	0.792
8120	Transitonal cell carcinoma	417	0.2	13914	0.802
8312	Clear cell adenocarcinoma	291	0.4	13023	0.833
9590 Malignant lymphoma		209	0.6	11489	0.874
8130 Papillary trans. Cell carcinoma		ia 192	0.8	9733	0.911
Total 87 classes			0.9	8226	0.935
			0.95	7063	0.951
FISCORES			0.96	6744	0.956
	CNN	RF	0.97	6320	0.961
Micro F	1 0.7922	0.6946	0.98	5812	0.967
Macro F	1 0.4893	0.3113	0.99	4955	0.974

Histologic Grade

Code	Description	# cases	Cor
1	Well differentiated	220	
2	Moderately differentiated	473	
3	Poorly differentiated	367	
4	undifferentiated	19	۲C
6	t-cell; t-precursor	50	
9	Unknown	1,173	
		Total: 2302	
F1 Scores			
	CNN		

0.8240

0.5980

Confusion Matrix

163	24	12	0	0	21
16	385	22	0	1	49
4	40	272	0	0	51
0	1	6	0	0	12
1	0	0	0	14	35
19	44	38	0	9	1063

$CNN_{output} \ge \theta$

	Threshold	SUPPORT	PPV		
	0	2302	0.824		
	0.2	2302	0.824		
	0.4	2248	0.835		
	0.6	1986	0.875		
00	0.8	1618	0.916		
02	0.9	1282	0.934		
	0.95	1008	0.947		
	0.96	931	0.951		
	0.97	830	0.955		
	0.98	682	0.965		
	0.99	483	0.979		

Micro F1

Macro F1

Histologic Grade

	PPV		80
WELL DIFFERENTIATED	S		74
	F		77
	PPV		78
MODERATELY DIFFERENTIATED	S		81
	F		91
	PPV		80
POORLY DIFFERENTIATED	S		74
	F		76
	PPV	Х	
UNDIFFERENTIATED	S		0
	F	Х	
	PPV		58
T-CELL; T-PRECURSOR	S		28
	F		38
	PPV		86
UNKNOWN	S		91
	F		88

ENERGY NIH NATIONAL CANCER INSTITUTE

Training Requirements

- Training a single task CNN with 250,000 path reports requires ~23.9 hours on NVIDIA P100 GPU
- At least 350 trials to obtain optimal hyper-parameter set
- Approximately 1,750 machine days required to complete the 5 NLP tasks

	Baseline	DGX-1	Amazon AWS Cloud	Titan	Summitdev
Platform Specs	1 x P100 GPU	8 x V100 GPU	P2, 16 nodes 8 x K80 GPU	18,688 nodes 1 x K20 GPU	4,600 nodes 6 x V100 GPU
Time	1,750 days	90.8 days	23.24 days	2.7 days	4.15 hours

Summary & Conclusions

Deep learning for clinical NLP

- offers competitive and often state-of-the-art performance
- CNNs are scalable and effective
- HANs provide best performance but at the expense of scalability
- Multi-task learning can exploit task relatedness and provide better results

Next steps with DL development

- Handling heavily imbalanced datasets
- Multi-task learning with CNNs and HANs
- Semi-supervised learning

Next steps with clinical translation

- Integrate DL NLP tools with prediction-level UQ
- Address human factor engineering issues

Pilot 3

Next Steps for Aims 2-3

- STEP 1: Selection of Appropriate Data Sources
 - Ensure feasibility (Legal, IRB and logistic issues) and relevance to aims
 - Research and methodological questions for each data package
- STEP 2: Data Linkages and Analytics
 - Standard operating procedures and infrastructure for data linkages
 - Data analytics and visualization
 - » Parallel coordinates and other multivariate longitudinal visualizations for patient trajectories
 - » Prototyping a scalable, parallel, flexible framework with support for R and python

Building Patient Trajectories

- What events happened to individual patients?
- What events happened across a population of patients?
- What do the (statistical) distributions look like across patients?
- What covariates (eg location, payor, sex, age, biomarkers, cancer characteristics) associated with the most commonly used treatment regimes in a real world population?
- Set the stage for analysis of individual and population outcomes

~15,000 primary tumor trajectories for breast cancer, demonstrates variation meriting further analysis

ENERGY NIH NATIONAL CANCER INSTITUTE

Scientific Outcomes since 10/2016

• Peer-Reviewed Journal Publications:

- J.X. Qiu, H.-Y. Yoon, P.A. Fearn, G.D. Tourassi, "Deep Learning for Automated Extraction of Primary Sites from Cancer Pathology Reports," IEEE Journal of Biomedical and Health Informatics [05/2017]
- S. Gao, M.T. Young, J.X. Qiu, J.B. Christian, P.A. Fearn, G.D. Tourassi, A. Ramanathan, "Hierarchical Attention Networks for Information Extraction from Cancer Pathology Reports," Journal of American Medical Informatics Association [accepted 10/2017].

• Peer-Reviewed Conference Articles & Posters:

- H.-J. Yoon, A. Ramanathan, G.D. Tourassi. "Multi-task Deep Neural Networks for Automated Extraction of Primary Site and Laterality Information from Cancer Pathology Reports." In INNS Conference on Big Data, pp. 195-204. Springer International Publishing, 2016.
- H.-J. Yoon, L.W. Roberts, G.D. Tourassi, Automated histologic grading from free-text pathology reports using graph-of-words features and machine learning. 2017 IEEE International Conference on Biomedical and Health Informatics, Orlando, Florida, February 16-19, 2017 [Available in IEEE Xplore 04/2017].
- J. Boten, D. Rivera, M. Myneni, G.D. Tourassi, T. Bhattacharya, A.P. de Oliveira Sales, T. Brettin, P. Fearn, L. Penberthy, "Leveraging Large-Scale Computing for Population Information Integration," AMIA 2017 Annual Symposium, November 4-8, 2017, Washington, DC [Accepted].
- G. Abastillas, S. Morris, J. Boten, T. Tumurchudur, K. Vora, P. Fearn, "Characterizing a Learning Curve for Annotating Data for Training and Validation of Natural Language Processing Systems,' AMIA 2017 Annual Symposium, November 4-8, 2017, Washington, DC [Accepted].

Invited Presentations:

- L. Penberthy, G.D. Tourassi, ""Population Information Integration, Analysis and Modeling", Computational Approaches for Cancer Workshop, Supercomputing 2016, Salt Lake City, UT, November 13, 2016.
- A. Ramanathan, "Exascale deep text comprehension tools for cancer surveillance", GPU Tech Conference (GTC), San Jose, May 2017.
- G.D. Tourassi, "Deep Learning Enabled National Cancer Surveillance to Support Precision Oncology", 21st Century Cures: Southeast Conference, Knoxville, TN, June 1, 2017.
- T. Bhattacharya, "Surveillance in an Era of Emerging Technology and Precision Medicine," NAACCR 2017 Annual Symposium, June 16-23, 2017, Albuquerque, NM.
- J. Boten, "The Development of the Clinical Document Annotation and Processing Pipeline to Facilitate the Integration of Natural Language Processing to Enhance Cancer Surveillance," NAACCR 2017 Annual Symposium, June 22, 2017, Albuquerque, NM.

Educational Outreach:

.

- o G.D. Tourassi, "Advanced Deep Learning for NLP", NCI NLP Workshop, Rockville, MD, December 8, 2016
- A. Ramanathan, "Building deep text comprehension tools for cancer surveillance", NCI-DOE Workshop on Cancer Deep Learning Environment (CANDLE), National Cancer Institute, Bethesda, MD, April 2017.

Future Directions

 DUAs: gain access to additional registries data and regular updates as new data arrives

Pilot 3

- Aim 1:
 - * Annotate pathology reports for breast cancer biomarkers & recurrence
 - * Scale up annotation pipeline to up to 10,000 documents per month
 - * Identify and prioritize other key biomarkers for inclusion in the annotation pipeline
 - Test and scale supervised and semi-supervised DL algorithms for automated extraction of 5 key variables (histology, laterality, behavior, grade and organ site) with uncertainty information for use by registries

• Aim 2:

- Develop integrated data packages to provide initial resources for more comprehensive modeling of critical concepts (distant recurrence, response to initial and subsequent therapy) working with internal and external partners;
- Incorporate detailed treatment data on a subset of the population for use in algorithms and modeling (e.g. recurrence and response to therapy)
- Develop scalable visual and graph analytics to study the association between trajectory variations and health outcomes
- Aim 3:
 - Leverage Aims 1 and 2 targets (NLP captured data and linked data sets) to support development of recurrence modeling and modeling response to initial and subsequent therapies for selected cancer sites

NERGY NIH NATIONAL CANCER INSTITUTE

THANK YOU!!!

BENERGY NIH NATIONAL CANCER INSTITUTE