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Focused on the practice of computational science as it applies to problems in cancer and biomedical research

Overview of the Imaging Group



Frederick National Laboratory for Cancer Research

Vision of Imaging and Visualization Group
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Goals for Imaging and Visualization Group
Impact on cancer and biomedical research at FNLCR/NCI/NIH

• Reproducibility – Repeatable workflows

• Objective metrics – useful for diagnosis, characterization, therapy

– Augment / Integrate with genomic, proteomic data

• Deterministic process as much as possible

– Validate

• Easily deployable to most users and easy to maintain

• Scalable

• Human Computer Interface (Human is in the loop)

• Workflow optimization to optimize people time

– Automate the tedious/boring stuff as much as possible
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How these are derived/defined matters.
How accurate are the “gold standards”?
Usually derived from human segmentation.
The computer algorithms analyzes images differently from humans.
We may need to collect and process images differently to take advantage of machine analysis

Collection of raw images specifically for machine learning/analysis will facilitate advancement

Challenges of “Ground Truth” / “Gold Standard”



Frederick National Laboratory for Cancer Research

Ground Truth Challenges
Our experience at FNLCR

• Often no “Ground Truth” for the problem at hand

– Tissue Doppler imaging for Chemotherapy induced Cardio Toxicity

– Locating and quantifying metastases in mouse models (usually genetically modified)

– Vessel segmentation for angiography

– Lymphangiography of HIV/SIV infection

– Particle picking in Cryo-EM

– Feature segmentation on digital pathology images

– Apoptosis quantification via Ultrasound imaging

• Can synthetic data and simulations help address the issue as a refinement step

– Cryo-EM is a real possibility (Computationally intensive)

– Generative Adversarial Networks (GAN)
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Ground Truth Challenges
Facilitating more complete pathology annotation

• There is need for more gold 
standard annotations

• Currently looking at tools needed 
for pathologists to label imagery

– Emory/Kitware HistomicsTK

– Cytomine

• What about crowdsourcing 
annotation?

Nuclei classification algorithms (from 3D Slicer) run on 

uploaded pathology imagery
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Ground Truth Challenges
Example of Crowdsourcing Annotations
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Experience using Deep Learning (Segmentation)

Assessing/Understanding Deep Learning Models

Use Cases and Observations
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Understanding HIV/SIV Infection 
DLNN analysis/quantification for RNAscope

• Quantification goals

– Isolated particles

– Aggregation

– Productive Infections

Image provided by TAC/ACVP, FNLCR
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Understanding HIV/SIV Infection 
DLNN analysis/quantification for RNAscope

Patch generation for DLNN training, 3184 patches (256x256) in total, un-augmented

Multi-step label generation for DLNN training

Original Final Label

cropping

DLNN training 

and prediction

Customized Data Analysis Workflow

Counts, statistics, etc.

Training Summary:

• Avg. validation score (Dice coef.): ~0.93

• Avg. testing score (Dice coef.): ~0.96
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DLNN as a component of biomedical research workflows
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Understanding HIV/SIV Infection
Deep Learning in Digital Pathology (collagen segmentation)

• Object detection/classification is popular and easier to implement

• Segmentation, on the other hand, is more challenging, demands more accuracy

SVM+postproccessing

Trained Network

U-Net

LCNN (in house)

etc.

DLNN 

training

Color 

transfer

Training data
Original image Generated label

Quantification

Collagen index: 253

Number of 

branches: 3

Length: 24.14

Curvature: 1.12

Collagen index: 192

Number of branches: 131

Length: 528.22

Curvature: 0.60

New images with different stains

Color 

matched 

images

Quantification based on DLNN prediction
Image provided by TAC, ACVP, FNLCR
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Training Statistics

• Original images utilized for training

– Before augmentation: 800 x 800 in size, 275 images

– After augmentation: 400 x 400 in size, 37,400 images

• Images utilized for Validation

– 91 images, 800 x 800 in size, divided into four, no augmentation

– 400 x 400 in size, 364 images 

• Images utilized for Testing

– 91 images, 800 x 800 in size, divided into four, no augmentation

– 400 x 400 in size, 364 images

• Latest results (single training: 14 hours, 40 epochs, 4x1080 Ti, U-Net variation)

– Training Accuracy: 96.69% (Dice coefficient)

– Validation Accuracy: 95.17% (Dice coefficient) 

– Testing Accuracy: 94.65% (Dice coefficient)
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DLNN as a component of biomedical research workflows
(WSI Tissue Section Collagen Quantification)

Whole slide image 

(17040205.svs, 51,791 x 45,864, ~2.3 billion pixels)

17040205_0

17040205_1

17040205_2

17040205_3

17040205_4

17040205_5

ROI 17040205_5, ~0.2 billion pixels

Avg. len. collagens

Number of collagens

Avg. num. branches

Input Tissue Section Images (Lymph Nodes)

Image provided by PHL, LASP, FNLCR

Preliminary quantification results based on DLNN segmentation 

correlating to anatomical structures
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Deep Learning
Observations

• Training a network is straightforward: DL frameworks are mature and easy to use nowadays

– But much harder to generate good training data (not so bad for classification/detection)

– DLNN performance is important, what’s more important is how much knowledge extracted from DLNN

– Deep Learning can be used even without ‘big data’

– Deep Learning can be very useful in medical imaging, incremental training data generation is possible solution to solve the 
scarcity of good labels

• Incremental means using existing algorithms/ML/manual process to generate small number of labels to train a initial 
network and use it to predict more labels  labels to be refined to re-train the network to increase number of data points

– Careful data augmentation on medical images: enhancement should follow the original data distribution so it has to be guided 
and fit the context

• Data augmentation not always necessary: in our PDX whole-tumor segmentation task, 76*36 256x256 un-augmented 
images reached 95% average segmentation accuracy  connect back to ground truth issue

– Computationally demanding

• 4 X 1080 Ti GPUs can only train networks with batch size 8 for 400x400 input image size (larger batch size is better)

• 3D CNNs for volumetric image data demand more resource (roughly one 672x672x40 volume per 64GB V100 card)
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Investigating DL Sensitivity

• Computation - IBM Power Systems

– 2 POWER8 processor modules 

• (8/10 cores, 3.259/2.860 GHz)

– 4 NVIDIA Tesla P100 GPUs

• 136 Mouse MRIs

– 130 mice with tumor

– 6 mice without tumor

A single frame from MRI of a mouse

Corresponding label

✕ 36 frames

✕ 36 frames

Each Mouse MRI

• DL Network

• Convolutional neural network: U-net

• Learning rate: 3.0e⎼5

• Epochs: 80 (2742 images/epoch)

• Batch size: 8

• Image size: 400 x 400 pixels (original image size: 672 

x 672)

• No data augmentation

• Duration per training: 2h 50 min

Image provided by SAIP, LASP, FNLCR
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Data Selection (“Fixed” data set)

• Six mice without tumor are included in training data only

– Dice coefficient (evaluation metric) is penalized heavily when mice without tumor are 
included in validation/testing data

• Fixed data set is utilized for training convolutional neural network (CNN)

– Repeated the training 10 times

6 mice w/o tumor 130 mice w/ tumor

Training data (76 mice) Validation data (30) Testing data (30)

Out of 130, randomly 

selected 70 mice

Out of 60, randomly 

selected 30 mice
Rest of the 30 mice6 mice w/o tumor

Fig. Simple diagrams showing how data is partitioned into training, validation, and testing data sets 

for training convolutional neural network
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Data Selection (“Random” data sets)

• Six mice without tumor are included in training data only

– Dice coefficient (evaluation metric) is penalized heavily when mice without tumor are included in 
validation/testing data

• Data partitioning is repeated 10 times to generate 10 different data sets

– Repeated the training 10 times

• Per training, the CNN is trained with a different sampling of total data set

6 mice w/o tumor 130 mice w/ tumor

Training data (76 mice) Validation data (30) Testing data (30)

Out of 130, randomly 

selected 70 mice
Out of 60, randomly 

selected 30 mice
Rest of the 30 mice6 mice w/o tumor

Fig. Simple diagrams showing how 10 different data sets are created for training convolutional neural network

Repeated 10 times

10 data sets
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Individual Results plotted for Comparison

Normal distribution curves on validation and testing scores
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Individual Results plotted for Comparison
Initializers
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What is the “truth”?
How can we tell?

• If we could evaluate images 
using multiple human 
evaluators (Expert Evaluation) 
with different conditions and 
different machine learning 
models (Machine Evaluation), 
then we could compare the 
distributions and estimate the 
probability that they represent 
the same distributions.

• HPC/Advanced Computing 
could enable this type of 
evaluation.

Expert 

Evaluation
Machine

Evaluation
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Investigating DL Sensitivity (Optimization Effects)

• Training data

– 3184 256x256 RGB training patches

– B&W training labels created using semi-manual methods

– No data augmentation

• Testing data

– 120 256x256 manually annotated patches

• Training Strategy (DLNN tested: U-Net)

– Repeat training multiple times (~40) and up to 50 epochs each time

• In each run, randomly select 75% for training and 25% for validation

• Other parameters kept the same across multiple runs

– With vs. without Early Stopping and Reduce Learning Rate on Plateau 

• Learning rate starting at 1e-4

– Trained networks with <0.9 validation score excluded in reporting

DLNN 

Segmentation
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Individual Results plotted for Comparison

Normal distribution curves on testing scores

Early Stopping and Reduce Learning Rate help to reduce variations in testing scores
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Investigating DL Sensitivity (Random Seeds)

• Machine learning algorithms are 
stochastic in practice

• Fixed seeding

– Use an arbitrarily selected 
random seed across all trainings

• Randomized seeding

– Restart training from the 
beginning every 10 runs to use 
new random seeds
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Questions?

Thank you
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Deep Learning Questions

• How robust / sensitive are the models with respect to training parameters

• Image Augmentation

– Currently ad-hoc “black box” used to improve training accuracy 

– Research really needed to determine the effect of different augmentation techniques 
on training accuracy, specificity in biomedical imaging

• Neural Network Architectures

– Innovation with different connectivity

• Standards

– Open Neural Network Exchange (onnx) format proposed for support across libraries 
(https://github.com/onnx/onnx)


