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Five Levels of Vehicle Autonomy

Level 0

No automation:

the driver is in
complete control
of the vehicle at
all times.

Level 1

Driver
assistance:

the vehicle can
assist the driver or
take control of
either the vehicle's
speed, through
cruise control, or its
lane position,
through lane
guidance.

Level 2

Occasional
self-driving:

the vehicle can take
control of both the
vehicle's speed and
lane position in
some situations, for
example on
limited-access
freeways.

Level 3

Limited
self-driving:
the vehicle is in
full control in
some situations,
monitors the road
and traffic, and
will inform the
driver when he or
she must take
control.

Level 4

Full self-driving
under certain
conditions:

the vehicle is in
full control for the
entire trip in
these conditions,
such as urban
ride-sharing.

Level 5

Full self-driving
under all
conditions:

the vehicle can
operate without a
human driver or
occupants.

Source: SAE & NHTSA




Tesla

THE PERSON IN THE DRIVER'S SEAT
IS ONLY THERE FOR LEGAL REASONS.

HE IS NOT DOING ANYTHING.
THE CAR IS DRIVING ITSELF.



Recorded

steering
wheel angle Adjust for shift Desired steering command
and rotation |
- =, Network
Left camera - computed
L ) steering P A\
( ] Random shift command \
hI:'.tnantﬂr camera ™| and rotation S CNN - lr - )
| Right camera | | A

e,

Back propagation Error
weight adjustment

https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/



O Output: vehicle control
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Progress on Reading Minds







Predicting Cardiovascular Risk Factors
from Retinal Fundus Photographs
using Deep Learning

Ryan Poplin, Avinash V. Varadarajan, Katy Blumer, Yun Liu, Michael V. McConnell, Greg S. Corrado,
Lily Peng B4 & Dale R. Webster

Using models trained on data from 284,335 patients,
and validated on two independent datasets of
12,026 and 999 patients, we predict cardiovascular
risk factors not previously thought to be present or
guantifiable in retinal images, such as such as age
(within 3.26 years), gender (0.97 AUC), smoking
status (0.71 AUC), HbA1c (within 1.39%), systolic
blood pressure (within 11.23mmHg) as well as major
adverse cardiac events (0.70 AUC).

Nature Biomedical Engineering (2018)
d0i:10.1038/s41551-018-0195-0
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Model

AUC (95% ClI)

Age

0.66 (0.61-0.71)

Systolic blood pressure (SBP)

0.66 (0.61-0.71)

Body mass index (BMI)

0.62 (0.56-0.67)

Gender

0.57 (0.53-0.62)

Current smoker

0.55 (0.52-0.59)

Algorithm

0.70 (0.65-0.74)

Age + SBP + BMI + gender + current smoker

0.72 (0.68-0.76)

Algorithm + age + SBP + BMI + gender + current smoker

0.73 (0.69-0.77)

Systematic COronary Risk Evaluation (SCORE)®”’

0.72 (0.67-0.76)

Algorithm + SCORE

0.72 (0.67-0.76)




Technical Details

* Inception-v3 architecture

* 28M parameters

* Two models — binary and regression

* 2,000 bootstraps to get AUC and 95% ClI

OOOOO



Original

Age

Actual: 57.6 years
Predicted: 59.1 years

Gender Current smoker

Actual: Female Actual: Nonsmoker
Predicted: Female Predicted: Nonsmoker



THIS 1S YOUR MACHINE (EARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE LIRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.
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Mathematical Model of a Neuron
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Histological Structrure of the Cerebral Cortex
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d Compare outputs with correct
answer to get error derivatives
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Deep Neural Network
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Performance

Why deep learning

Amount of data

Deep learning



Human Vision System

input retina LGN V1 V2 V3 Loc



Increasing Depth Works!

28.2

152 layers

\ 16.4

\ 11.7
22 Iayers 19 Iayers ’

ILSVRC'15 ILSVRC'14 ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
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ImageNet Classification top-5 error (%)
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PUTTING MACHINE
LEARNING TO THE TEST
To provide a seamless user
experience, Skype Translator
uses machine learning to
solve key challenges in
interpreting human language,

including:
)))

Representing the different
ways people really speak

Determining sentence
boundaries, punctuation and
case from speech

there
they’re
their

Disambiguating sound-alike
words in context

ErEe
A *

Mapping words and phrases
from one language to another

The Universal Translator

NOW YOU'RE SPEAKING MY LANGUAGE (LITERALLY)

Skype has always been about making it easy to talk with family and friends all over the world. Now,
by integrating advanced speech recognition and automatic translation into Skype, Skype Translator
lets you speak with those you've always wished you could, even if they speak a different language.

HOW SKYPE TRANSLATOR WORKS

Automatic
Speech
Recognition

“Hi, Grandma! I

am so excited to
speak to you!”

g '~

A deep neural network
analyzes Lydia's speech
against audio snippets
from millions of previously
recorded samples and
transforms the audio to a
set of text candidates.

Speech

Correction

“s-so excited, ah...

"s-so excited

“so excited...”

Speech disfluencies—those
“ums,” “ahs,’ stutters and
repetitions—are removed,
and the top choice among
the sound-alike words is
made, getting the text
ready for translation.

TRANSLATE INSTANT MESSAGES IN

OVER 40 LANGUAGES

> Translation

Espafiol

Skype Translator has learned
how dozens of languages
align with one another by
reviewing millions of pieces
of previously translated
content. Using Microsoft
Translator, the same tool
used in numerous Microsoft
products, it applies this
knowledge to quickly
translate the text into
Spanish.

Text to
Speech

“iHola, abuelita! jEstoy
muy emocionada de
hablar con usted!"

> Using and

Teaching

\ using
| i . the system

teaching
the system T‘\‘

Increased usage and user
feedback, plus constant
refinement by human
transcribers, help Skype
Translator learn and get
better.

Il

))) !A

Register for the preview at www.skype.com/translator and wait
for your invite.

Install the Skype Translator client.

Holding a translated IM conversation is super easy: Choose a contact, tun on the Translation switch
for that person, and start typing. When you hit enter (or tap send), your original message will appear in
the right-hand pane, followed by its translation. Your contact on the other end will see something very
similar, albeit with the translated message in his/her preferred language presented first. While voice
translation initially supports English and Spanish only, IM translation supports over 40 languages, so
feel free to experiment with them all—even Klingon!

Use Skype Translator to call someone who speaks Spanish. Or, if
you speak Spanish, call someone who speaks English.

Every call you make helps Skype Translator get a little bit better.
You won't see the improvement right away, but you will see
gradual improvement over time.




Materials Property Prediction

From: Accelerating materials property predictions using machine learning
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Finding Tumors in MRI Images

Second Phase

Figure 6: Progression of learning in INPuTCASCADECNN*. The stream of figures on the first row from left to right show the learning
process during the first phase. As the model learns better features, it can better distinguish boundaries between tumor sub-classes.
This is made possible due to uniform label distribution of patches during the first phase training which makes the model believe
all classes are equiprobable and causes some false positives. This drawback is alleviated by training a second phase (shown in

second row from left to right) on a distribution closer to the true distribution of labels. The color codes are as follows:
enhanced tumor, ! necrosis, /! non-enhanced tumor.

edema,

With Unbalanced Training Data!



Artificial Intelligence

Machines Just Beat Humans on a Stanford

Reading Comprehension Test

@ Creative Commons

f ¥ & =
The Stanford Question Answering Dataset is a well-respected means of testing
machine reading. For the first time, an artificial intelligence has scored higher than a

human participant.

Brad Jones @

READ ME

Chinese retail giant Alibaba has developed an artificial intelligence model that’s
managed to outdo human participants in a reading and comprehension test designed
by Stanford University. The model scored 82.44, whereas humans recorded a score of
82.304.

The Stanford Question Answering Dataset is a set of 10,000 questions pertaining to
some 500 Wikipedia articles. The answer to each question is a particular span of text
from the corresponding piece of writing.

Alibaba claims that its accomplishment is the first time that humans have been
outmatched on this particular test, according to a report from Bloomberg. Microsoft
also managed a similar feat, scoring 82.650 — though, those results were finalized
shortly after Alibaba’s.



Artificial Intelligence

Google’s New Al Is Better at Creating Al Than
the Company’s Engineers

@ Shutterstock / Denis Linine

At its I/O '17 conference this week, Google shared details of its AutoML project, an
artificial intelligence that can assist in the creation of other Als. By automating some
of the complicated process, AutoML could make machine learning more accessible to

non-experts.
Tom Ward

Kristin Houser
Website

GOOGLE’S AUTOML

One of the more noteworthy remarks to come out of Google I/O '17 conference this
week was CEO Sundar Pichai recalling how his team had joked that they have achieved
“Al inception” with AutoML. Instead of crafting layers of dreams like in
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Deep Learning Impacting Science

e Climate Deep Learning

Hinton et al

* Biology

* Drug Design

* Materials Design

* Cosmology

* High-Energy Physics

Multi-layer non-linear
maodel




Hundreds of Researchers Diving
Into Deep Learning at Argonne




Machine [Deep] Learning In Cancer Research

Cancer Susceptibility
Cancer Detection and Diagnosis
Cancer Recurrence

Cancer Prognosis and Survival
Cancer Classification and Clustering
Cancer Drug Response Prediction
Cancer Genomics Analysis



Area | Applications Inpast data ase Method Reference
Cancer diagnosis Ciene expressinn Deep Autoencoders X
2 Gene sclection/classification MicroRNA Deep Belief Network [46]. 1471
= Gene variants Microarray data Digep Meural Metwork [45]
E Drug design Muolecule compounds Dieep Meural Metwork [49]
:E Compound-Protein interaction F'rnlm.n g@mg Dgep Beliet Network [t
= ENA binding protein Molecule compounds
DNA methylation Crenes/RMATINA Digep Mearal Merwork [51]. [52]
SEQUENCes
A0 Brain reconairuction MRIMRI Digep Au!:nl:nmdu:rs [33]. [54]
Newral cells classification Fundus — Comvolutional Neural Metwork [S5]-15%9]
B Brain tissues classification PET scans Deep Beliel Metwork 6], fol]
&b Alzheimer™CI diagnosis Deep Mear Network [62]
g ) i MEVCT Imaoges Convolubonal Deep Beliel Network [63], [6d]
= Tissue classification Endoscopy images Convolutional Meural Network GA 76
B Organ scgmentation Microscopy Deep Auloencoder BRI, [77]
T Cell clostering Fundus Images Group Method of Data Handling [THIET]
= Hemorrhage di_@lulrun X-ray images .
Tumour detection Hyperspectral images Dieep Meurnl Metwork [B2]-[B5]
. EEbLs
gﬂ_ﬁfm‘jﬁﬂim monitoring | ESG _ Decp Belief Network |86 89]
. Implantable device
i H it . Video g:vullaullimt!aﬁm Metwork ENEEE]
& uman activity recognition ) elie .
A e Wearable device D-E'EE Neural Nertwork a6
% Hand gesture recognition Diepth camern Convolutional Mewural Metwork u7
f Obstacle detsction RGB-I¥ camiera .
E Sign language recognition Real-Sense camery Deep Bcl.mt Metwork |E]
Food intike Wearable device Convolutional Newural Metwork R
i RO Image Dieep Neural Network [100]
Energy expenditure Mobile device p Meur ohwor
. [eep hu:penmmiem lor], (102
i g prediction of discise Electronlc health pecords giﬂn?:tllﬁfmlmﬁm Merwork maliﬁ;m
E Human behaviour monitoring Big medical dataset e 5 M T i T
?E Data mining B b tests urrenl Mewml Metwa [1an], [ 106]
=B lood/L. Convolutional Deep Belief Network [T07]
Deep Mewral Merwork LR [ TR
Predicting demograghic info Social media data Digep Auwtoencoders (114
w5 | Lifestyle diseases Mobale phone metsdata Deep Behel Network [1in]. (1]
£ 7 Infectious discase epidemics Creo-tagped images Convolutional Neural Metwork (113]
- Adr pollutant prediction Text messages Deep Meural Nerwork [TT4}-]117]




Mapping problems to Images
Enables Deep Learning
Methods to be Applied

Google’s DeepVariant
https://www.biorxiv.org/content/early/201
6/12/14/092890



Actual sequencer output: ~1 billion ~100 True genome sequence: 3 billion bases in
basepair long DNA reads (30x coverage) 23 contiguous chunks (chromosomes)

Readl: cttgggttgatattgtcttggaocatggaggttgtgtcaccgtaatgRcacaggacanace

Head2: patattgtctigpaacatgRagsttgtRtcaccRtant gREACARRACABACCRACLRLCE

Readl: tggaacatggaggltglgtcaccglaatggcacaggacasaccgactglegacatagaget  srrrmeeres CURRERTTEA TARIZLCTLE EANCATERAE EUTLIELCHC cgtantggca

Readd: gRttgtgtcaccgtadtggcacagRacaaaccgactgtegacatagagetggttactgteg CAQEACAAMC CGACTETCEA CATAGAJCTE ETTACAACAD Cagtcagcaa catggcggag
ZLOagatcct ACLECtItga EECOtCAItd TCARICILRE CLECERACIR +ovvrrvars

Read 1,0€0,000,8000: ... .aactgicgacatagagctggttactgtegacatagagetggtte

-L,Jl Eﬁ

Align reads to a Infer the true genomic
reference genome sequence(s)

Reads aligned to a reference genome
Reference: ...ttgtcttggaacatggaggttgtgtcaccgtaatggcacaggacaaacc..

Readl: ...ttgtcttggaacatggaggttgtgtgaccgtaatggecacaggacaaacc
Read2: ...ttgtcttggaacatggaggttgtgtgaccgtaatggcacaggacaaacc. ..
Read3: tggaacatggaggttgtgtgaccgtaatggcacaggacaaacc. .
| ) \ J
T T
Same as reference Same as reference

For any given location in the genome, there are multiple reads among the ~1 billion that include a base at that
position. Each read is aligned to a reference, and then each of the bases in the read is compared to the base of
the reference at that location. When a read includes a base that differs from the reference, it may indicate a
variant (a difference in the true sequence), or it may be an error.
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— DeepVariant
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GATK excluding chr20-22 training data
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Method Type F1 Recall Precision TP FN FP  FP.gt FP.al Version

DeepVariant latest github

(live github) |INDEL 0.99507 0.99347 0.99666 357641 2350 1198 217 840 v0.4.1-b4e8d37d

Strelka INDEL 0.99227 0.98829 0.99628 355777 4214 1329 221 855  2.8.4-3-gbeb58942
DeepVariant precisionFDA
(pFDA) INDEL 0.99112 0.98776 0.99450 355586 4405 1968 846 1027 submission 05/2016
GATK INDEL 0.99010 0.98454 0.99573 354425 5566 1522 343 909 3.8-0-ge9d806836
FreeBayes |INDEL 0.94091 0.91917 0.96372 330891 29100 12569 9149 3347 v1.1.0-54-g49413aa
16GT INDEL 0.92732 0.91102 0.94422 327960 32031 19364 10700 7745 v1.0-34e8f934
samtools INDEL 0.87951 0.83369 0.93066 300120 59871 22682 2302 20282 1.6
DeepVariant latest github
(live github) |SNP  0.99982 0.99975 0.99989 3054552 754 350 157 38 v0.4.1-b4e8d37d
DeepVariant precisionFDA
(pFDA) SNP  0.99958 0.99944 0.99973 3053579 1727 837 409 78 submission 05/2016
Strelka SNP  0.99935 0.99893 0.99976 3052050 3256 732 87 136  2.8.4-3-gbe58942
16GT SNP  0.99583 0.99850 0.99318 3050725 4581 20947 3476 3899 v1.0-34e8f934
GATK SNP  0.99436 0.98940 0.99937 3022917 32389 1920 80 170  3.8-0-ge9d806836

FreeBayes |SNP  0.99124 0.98342 0.99919 3004641 50665 2434 351 1232 v1.1.0-54-g49413aa
samtools SNP  0.99021 0.98114 0.99945 2997677 57629 1651 1040 200 1.6




Generative

Adversarial
Networks



"Generative Adversarial Networks is the most interesting
idea in the last ten years in machine learning."

Yann LeCun, Director, Facebook Al




What are Generative Models?

Key Idea: our model cares about what distribution generated the input data
points, and we want to mimic it with our probabilistic model. Our learned
model should be able to make up new samples from the distribution, not

just copy and paste existing samples!

. ‘ .uu‘. 1
.
- -
| .u
M A -0)
o & 13

Training examples Model samples
Figure from NIPS 2016 Tutorial: Generative Adversarial Networks (I. Goodfellow)




Generative adversarial networks (conceptual)

Real world
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If you do it right!

Arithmetic in the Latent Vector Space



smiling neutral neutral
woman woman man

smiling man



man man woman
with glasses without glasses without glasses

woman with glasses



t-sne Plot of Matched Normal Pairs Showing
Translation in Latent Vector Space
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Really Large Networks
Multimodal Networks
Multitask Networks
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1000x Model Capacity,
137 Billion Paramgers

. /IVIoE layer

G(x),| [G(x)a

MoE MoE
layer layer Expert 1 Expert 3 oo Expert n

.
.
.
.
.
.
.

Figure 1: A Mixture of Experts (MoE) layer embedded within a recurrent language model. In this
case, the sparse gating function selects two experts to perform computations. Their outputs are
modulated by the outputs of the gating network.

OUTRAGEOUSLY LARGE NEURAL NETWORKS:
THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER https://arxiv.org/abs/1701.06538



Can we create a unified deep learning
model to solve tasks across multiple
domains?

“Last week, Kigali

“Can you give our  The above represents
raised the possibility Yo d P

readers some details  a triumph of either

of military retaliation Y i
after shells..” on this’ apathy or civility
! ! !
To English To Category To French To German To Parse
v v v v v
“A man that is Category 127 “La semaine derniere, “Kdénnen Sie unseren  «g NP DT JJS /NP
sitting in front of (Male Human) Kigali a soulevé la Lesern einige VP VBZ NP NP DT
a suitcase” possibilité de Details dazu geben?” NN /NP PP IN NP
représailles militaires NP NN /NP CC NP
aprés avoir débarqué NN /NP /NP /PP /NP
des coquilles...” NP . /S”

Figure 1: Examples decoded from a single MultiModel trained jointly on 8 tasks. Red depicts a
language modality while blue depicts a categorical modality.

One Model To Learn Them All https://arxiv.org/abs/1706.05137



Aggregating Blocks with Gates

Input
Encoder

Figure 2: The MultiModel, with modality-nets, an encoder, and an autoregressive decoder.



“This leads us to conclude that mixing different computation blocks is in fact a good

way to improve performance on many various tasks.’
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Figure 3: Architecture of the MultiModel; see text for details.
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Alone W/ ImageNet W/ 8 Problems
log(ppl)  acc. full log(ppl)  acc. full log(ppl)  acc. full
Parsing 0.20 97.1% 11.7% 0.16 97.5% 12.7% 0.15 97.9% 14.5%

Problem

Table 3: Results on training parsing alone, with ImageNet, and with 8 other tasks. We report
log-perplexity, per-token accuracy, and the percentage of fully correct parse trees.

Probl All Blocks Without MoE Without Attention
roblem

log(perpexity) accuracy log(perplexity) accuracy log(perplexity) accuracy
ImageNet 1.6 67% 1.6 66% 1.6 67%
WMT EN—F} 1.2 76% 1.3 74% 1.4 72%

Table 4: Ablating mixture-of-experts and attention from MultiModel training.



Deep Learning
Uncertainty
Quantification



Intuition behind UQ

2':' I T T T
flz)=zsin(x)
® » Observations
— Prediction
15 1 Em 95% confidence interval




Three Approaches to DL UQ:

*Train on distributions and predict
distributions

* Bootstrap with ensembles

* Dropout as a Bayesian
approximation



Bootstrapping UQ.in Deep Neural Networks

| 0 ! ) 1 0 i )

(b) Gaussian process posterior  (c) Bootstrapped neural nets
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Adding New
Types of
Functionality



Adding Memory to Deep Networks

lllustration of the DNC architecture

Controller Heads Memory Links Usage

Rad. A

Output

T

' Read

Input

Credit: DeepMind



Generating Explanations (XAl)

Generating Image Captions

A group of people * ACNN is trained to recognize objects in

Vision  lagwge | ghopping at an outdoor ages _ -
DoepCNN. AR market * Alanguage generating RNN is trained to

, Q translate features of the CNN into words and
3. @ There are many captions.
vegetables at the fruit

stand Example Explanations

. . : > This is a Kentucky
Generating Visual Explanations 1N warbler because this

This is a cardinal because ... : is a ye“OW bird with a
(Deep Finegrained Classifier A (" Recurrent explanation generator model h ‘, - black cheek patCh

| it || has ][ a 1'§|hughr|§| red |...-;l'EOS’| and a b‘ack crown.
Hﬁﬂ;

i \ e This is a pied billed
» ,E,Jﬁ,,/; ; ‘ o - grebe because this

i e, e, e s ’ ! is a brown bird with
' along neck and a

Researchers at UC Berkeley have recently extended this idea e large beak.
}ga%grsuig?te explanations of bird classifications. The system Limitations
« Classify bird species with 85% accuracy Limited (indirect at best) explanation of
« Associate image descriptions (discriminative features of the internal logic

image) with class definitions (image-independent Limited utility for understanding
discriminative features of the class) classification errors
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Hendricks, L.A, Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., and Darrell, T. (2016). Generating Visual Explanations,
arXiv:1603.08507v1 [cs.CV] 28 Mar 2016




&‘ RO
L ONHSO0  CEWNN N :
M- MNO0W ...&4 388519 7178 N

0 NOOOVIN
0 M N 9
58858 N M

N NNMOoM o

v N0 NOW W <o

S HONOOMR—OMNWDW <t 609
: v




By 2020, the market for machine
learning will reach 5S40 billion,
according to market research firm IDC
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Integration of Simulation, Data Analytics and
Machine Learning

Traditional

HPC
Systems J

pN

Large-Scale
Numerical
Simulation

Scalable
Data Analytics

Deep
Learning

CORAL Supercomputers
and Exascale Systems

& ENERGY [I[) NATIONAL CANCER INSTITUTE



Differing Requirements = Convergence

Simulation Applications

64bit floating point

Memory Bandwith

Random Access to Memory
Sparse Matrices

Distributed Memory jobs
Synchronous I/0 multinode
Scalability Limited Comm
Low Latency High Bandwidth

Large Coherency Domains
help sometimes

O typically greater than |
O rarely read

Output is data

Big Data Applications

64 bit and Integer important
Data analysis Pipelines

DB including No SQL
MapReduce/SPARK

Millions of jobs

|/O bandwidth limited

Data management limited
Many task parallelism

Large-data in and Large-data
out

| and O both important
O is read and used

Output is data

Deep Learning Applications

* Lower Precision (32 bit)
* FMAC @ 32 okay

* Inferencing can be 8 bit
e Scaled integer possible

* Training dominates dev
* Inference dominates pro
* Reuse of training data
 Data pipelines needed
 Dense FP typical SGEMM
* Small DFT, CNN

* Ensembles and Search

* Single Models Small

* | more important than O

*  QOutput is models
79



ECP-CANDLE : CANcer Distributed Learning Environment

Unsupervised learning
coupled with multi-scale
molecular simulations

S

Supervised learning
augmented by stochastic
pathway modeling and
experimental design

Semi-supervised
learning, scalable data
analysis and agent
based simulations on
population scale data

-~

Pathway

S _
Scope of CANDLE
Deep Learning
Treatment Drug
Strategy Response

NVIDIA.

CANDLE Goals

Develop an exscale deep
learning environment for cancer

Building on open source
Deep learning frameworks

Optimization for CORAL
and exascale platforms

Support all three pilot project
needs for deep dearning

Collaborate with DOE computing
centers, HPC vendors and ECP
co-design and software
technology projects

Fom

=
\ EXASCALE
| I— ) — COMPUTING
\ PROJECT
Famgtth

80



Deep Learning in Cancer = many Methods

AutoEncoders — learning data representations for
classification and prediction of drug response,
molecular trajectories

VAEs and GANs — generating data to support
methods development, data augmentation and
feature space algebra, drug candidate generation

CNNs — type classification, drug response,
outcomes prediction, drug resistance

RNNs — sequence, text and molecular trajectories
analysis

Multi-Task Learning — terms (from text) and
feature extraction (data), data translation
(RNAseq <-> uArray)
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ML/DL Benchmarks
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=

CANDLE Specifications
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CANDLE Supervisor

$

CANDLE Database

Metadata Store

Benchmarks
Datasets
Models
Experiments

Model Store

.

~

Model

-——_—-"'--_—-

Model

Descriptions -J

e
Hyperparameter Optimization Frameworks
Hyperopt, mlrMBO, Spearmint
\ 3
p
Workflow Manager
(Swift-T EMEWS)
\
ALCF OLCF
Theta, NERS_C Titan,
Cooley orl SimmitDev

Hardware Resources

U.S. DEPARTMENT OF

ENERGY

Runs

Weights
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TEE

\

CANDLE System Overview

Integrator Website

Layer nformation

UpdateZarameter Ratios (Meas Magnitadest log
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Argonne, Oak Ridge, Los Alamos, Livermore
Frederick National Lab for Cancer Research

™M) NATIONAL CANCER INSTITUTE



Aurora 2021 (A21)
The first US Exascale System

Architecture supports three ways of computing
* Large-scale Simulation (PDEs, traditional HPC)
* Data Intensive Applications (science pipelines)
* Deep Learning and Emerging Science Al



Application Targets for Exascale

Big Data Applications

e APS Data Analysis
 HEP Data Analysis

e LSST Data Analysis

e SKA Data Analysis

* Metagenome Analysis
* Battery Design Search
e Graph Analysis

e Virtual Compound
Library

e Neuroscience Data
Analysis

 Genome Pipelines

Deep Learning Applications
 Drug Response Prediction

e Scientific Image
Classification

e Scientific Text
Understanding

* Materials Property Design

e @Gravitational Lens
Detection

* Feature Detection in 3D
e Street Scene Analysis

* Organism Design

e State Space Prediction

* Persistent Learning

* Hyperspectral Patterns
84



Specialized hardware is emerging
that will be many times (100x) the
performance of general purpose
CPU and GPU designs
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The Matrix Unit: 65,536 (256x256)

8-bit multiply-accumulate units

700 MHz clock rate

Peak: 92T operations/second
o 65536*2*700M

>25X as many MACs vs GPU

>100X as many MACs vs CPU
4 MiB of on-chip Accumulator

memory

24 MiB of on-chip Unified Buffer,, .,

(activation memory)

3.5X as much on-chip memory
vs GPU

Two 2133MHz DDR3 DRAM
channels

8 GiB of off-chip weight DRAM
memory

14 GIB/s

&

PCle Gen3 x16
Interface

N

ey

D Off-Chip IO

D Data Buffar
D Computation

. Control

Not to Scale

Host Interface

TPU: High-level Chip

Architecture

14 GiBfs
)

DDR3
Interfaces

¥ 30GIBfs (

—

Unified
Buffer
{Local
Activation
Storage)

Data
Setup

Systolic

~

Weight FIFO
(Weight Fetcher)

30 GiB/s

| Accumulators
Actlvation
Normalize / Pool

15






Groq (grok)



400

TOp/s

125

Competition

groq

0.5

TOp/s per Watt

Our first machine learning product. Single chip. 2018.




Images per second

25000

20000

15000

10000

5000

ResNet 50 Inference DeepBench Single Layer LSTM Inference

150000
125000
100000

75000

50000

Inferences per second

25000

0

Competition  groq Competition  groq

2018 performance estimates. Single chip. <1ms latency.



Wave Computing



Wave's Compute Appliance is Redefining How Machine Learning is Done

2.9 PetaOps per second of

performance

More than 2TB of high-speed memory ..". Wave Computing.

Up to 256,000 processing elements

per appliance

Scales up to four appliances per data center node

Initially supporting TensorFlow




Specifications for each Wave Compute Appliance

Performar

Dataflow Processing Elements (PE’s)

Wave machine learning computers
per data center

High-si i memory
SD storage

Bulk storage

Data center backbone connection

High-speed Inter-computer
communication within a single
data center

Data center form factor

Dimenslons per each 3U computer

0 perating temperature

Machine learning framework

Operating system for Wave Sesslon

Mar

Library

Development toolkit

Data runtime

2.9 PetaOPS/second

11.6 PetaOPS/second

Up to 256,000 (16,000 PE’s pet
Wave DPU chip)

o 4 computers dellvering
00.000 PE’s

128 GB HMC DRAM

16 TB

2 TB DDR4 DRAM

10 GbE or 40 GbE

Wave's proprietary
communication system that
connects up to 4 computers
within a single data center node
Each Wave computer comes
Ina 3U form factor, up to 4
computers can be added per

data center node

866D x 444W x 131TH (mm)

TensorFlow (Initially)

Linux Server

veFlow Agent Library

eFlow SDK

eFlow Execution Engine




Graphcore.ai
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Neuromorphic Computing

Computing devices inspired by the
computational model and physical
construct of biological neurons.

Brain Inspired Computing
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5 lessons from your brain

(that could really help your computer)

Parallelism

Deep learning

The brain breaks fasks intfo many
People learn as they’re exposed little ones that it computes
fo new situations. In deep simultaneously. We're getting better

learning, a computer refines at writing software to do this, too.
algorithms to improve its ability

to understand data.

Intuition

A person can draw
Low power fairly accurate
The brain uses about as conclusions from
much electrical current
as a 20-watt light bulb.

Memristors, which

incomplete data.
Neuromorphic logic
allows computers to

retain information when calculate based on

powered off, could ' e approximate
Locality ) .
eventually replace information.
today’s power-hungry In the brain, the same cells
computer memory and remember and calculate.
storage. Neuromorphic computers
put those functions as

close together as possible.



Synapses Dominate Area

each neuron is connected to 256 to 10,000 others

Axons Crossbar Synapses Type

Neurons
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IN SYNAPSE DENDRITE AXON ouT

YN

l core_id
axon_id Ly axon_id
e —————— s (A = NN <r | [TEITETETPRRRRS > —l

DENDRITE
ACCCUM

ch E Nsdelay ch ch Naxout
LEARNING ~—— Input spike handling
bAP notification e ongEamentapate
Output spike generation
- Synaptic update

Fig. 4: Core Top-Level Microarchitecture. The SYNAPSE unit processes all incoming spikes and reads out the associated
synaptic weights from the memory. The DENDRITE unit updates the state variables u and v of all neurons in the core.
The AXON unit generates spike messages for all fanout cores of each firing neuron. The LEARNING unit updates synaptic
weights using the programmed learning rules at epoch boundaries.



Summary

Deep Learning is Accelerating

Broadening of DL Applications

New DL Architectures Emerging (10x-100x)
Brain Inspired Computing

Many NIH Computing Challenges could be
addressed with DL Approaches

A Grand Synthesis might be possible



Deep Dream



