

The Impact of **Deep Learning on Radiology** Ronald M. Summers, M.D., Ph.D. **Senior Investigator Imaging Biomarkers and CAD Laboratory Radiology and Imaging Sciences NIH Clinical Center** Bethesda, MD

www.cc.nih.gov/drd/summers.html

Disclosures

- Patent royalties from iCAD
- Research support from Ping An & NVidia
- Software licenses to Imbio & Zebra Med.

Overview

- Background
- Radiology imaging applications
- Data mining radiology reports and images

Summers et al. Gastroenterology 2005; Summers et al. JCAT 2011; Hua et al. ARRS 2012; Zhang et al. ISBI 2012; Jiamin Liu et al. CMIG 2014; Images courtesy NIH CIPS, M Linguraru, J Yao

We've Entered the Deep Learning Era

- Hand-crafted features less important
- Large annotated datasets more important
- Impact: More and varied researchers can contribute, accelerating pace of progress

Two Paradigms for Learning

Deep Learning

- Convolutional neural networks (ConvNets, CNNs)
- An improvement to neural networks
- More layers permit higher levels of abstraction
- Similarities to low level vision processing in animals
- Marked improvements in solving hard problems like object recognition in pictures

Deep Learning

- GPU acceleration
- Data augmentation
- Numerous software platforms (TensorFlow, Caffe, MatConvNet)

- Functional components (LSTM, DropOut, Softmax, Max-Pooling, ReLu)
- Widely-used networks (AlexNet, VGG, GoogLeNet, ResNet, U-Net)

Deep Learning Improves CAD

Dataset	# Patients	# Targets
sclerotic lesions	59	532
lymph nodes	176	983
colonic polyps	1,186	252

Dataset	Sensitivity ¹	Sensitivity ²	AUC^1	AUC ²
sclerotic lesions	57%	70%	n/a	0.83
lymph nodes	43%	77%	0.76	0.94
<pre>colonic polyps(>=6mm) colonic polyps(>=10mm)</pre>	58%	75%	0.79	0.82
	92%	98%	0.94	0.99

Summers et al. Gastroenterology 2005; Roth et al. IEEE TMI 2015

Deep Learning Improves CAD

Dataset	# Patients	# Targets		-
sclerotic lesions	59	532	A.	
lymph nodes	176	983		A
colonic polyps	1,186	252		

Dataset	Sensitivity ¹	Sensitivity ²	AUC ¹	AUC^2
sclerotic lesions	57%	70%	n/a	0.83
lymph nodes	43%	77%	0.76	0.94
colonic polyps(>=6mm)	58%	75%	0.79	0.82
colonic polyps(>=10mm)	92%	98%	0.94	0.99

Hua, Liu, Summers et al. ARRS 2012; Roth et al. IEEE TMI 2015

scales	3D translations along v	3D rotations around v
		🧖 🚆

• 90 CTs with 388 mediastinal LNS • 86 CTs with 595 abdominal LNs Sensitivities 70%/83% at 3 FP/vol. and 84%/90% at 6 FP/vol., respectively H Roth et al., MICCAI 2014

- Deeper CNN model performed best
- GoogLeNet for mediastinal LNs
- Sensitivity 85% at 3 FP/vol.

Lymph Node Segmentation

I Nogues et al. RSNA 2016

Lymph Node CT Dataset

- doi.org/10.7937/K9/TCIA.2015. AQIIDCNM
- TCIA CT Lymph Node
- 176 scans, 58 GB
- Annotations, candidates, masks

Pancreas CAD using CNN

H Roth et al., MICCAI 2016

Pancreas CT Dataset

- doi.org/10.7937/K9/TCIA.2 016.tNB1kqBU
- TCIA CT Pancreas
- 82 scans, 10 GB

Wei et al. SPIE, ISBI 2013

J Liu et al. SPIE Med Imaging 2016

- 26 CT scans of patients with colitis
- 260 images
- 85% sensitivity at 1 FP/image

J Liu et al. SPIE Med Imaging and ISBI 2016

80 patients80 controls

93.7% Sensitivity95.0% Specificity0.986 AUC

J Liu et al. Medical Physics 2017

Prostate

Tsehay et al. SPIE MI 2017

Prostate

Cheng et al. SPIE MI 2017

Prostate

 Table 2
 Quantitative comparisons between proposed method and other notable methods from the literature.

Methods	DSC + Std. dev (%)	HDRFDIST (mm)	AVGDIST (mm)	Images	Evaluation	Trim (α:0.95)
Klein et al. ¹	$\textbf{84.40} \pm \textbf{3.10}$	$\textbf{10.20} \pm \textbf{2.60}$	$\textbf{2.50} \pm \textbf{1.40}$	50	Leave-one-out	Yes
Toth and Madabhushi ⁴	$\textbf{87.66} \pm \textbf{4.97}$		$\textbf{1.51} \pm \textbf{0.78}$	108	Fivefold validation	Yes
Liao et al.7	$\textbf{86.70} \pm \textbf{2.20}$	$\textbf{8.20} \pm \textbf{2.50}$	$\textbf{1.90} \pm \textbf{1.60}$	30	Leave-one-out	Yes
Guo et al. ⁸	$\textbf{87.10} \pm \textbf{4.20}$	$\textbf{8.12} \pm \textbf{2.89}$	$\textbf{1.66} \pm \textbf{0.49}$	66	Twofold validation	Yes
Milletari et al.9	$\textbf{86.90} \pm \textbf{3.30}$	$\textbf{5.71} \pm \textbf{1.20}$		Promise 12(80)	Train:50, test:30	Yes
Yu et al. ¹⁰	89.43	5.54	1.95	Promise 12(80)	Train:50, test:30	Yes
Korsager et al. ²⁰	$\textbf{88.00} \pm \textbf{5.00}$		$\textbf{1.45} \pm \textbf{0.41}$	67	Leave-one-out	Yes
Chilali et al.21	$\textbf{81.78} \pm \textbf{5.86}$	$\textbf{13.52} \pm \textbf{7.87}$	$\textbf{3.00} \pm \textbf{1.50}$	Promise 12(80)	Train:50, test:30	Yes
HNNmri+ced	$\textbf{89.77} \pm \textbf{3.29}$		$\textbf{0.16} \pm \textbf{0.08}$	250	Fivefold validation	No

ProstateX Challenge

- SPIE/AAPM collaboration
- Prostate MRI CADx challenge
- 2 parts: malignancy and Gleason group prediction
- Dozens of competitors
- Winners used deep learning

Whole Body Calcium Scoring

K Chellamuthu, J Liu et al., ISBI 2017

Whole Body Calcium Scoring

>=130HU

DICE=0.41

K Chellamuthu, J Liu et al., ISBI 2017

Segmentation Label Propagation

Gao et al. IEEE ISBI 2016

Segmentation Label Propagation

Original labels

Propagated labels

Verified labels

A Harrison et al. MICCAI 2017

J Yao et al. MICCAI 2017

(a) Ground truth of tumor growth at different time points.

Statistical Learning Prediction Recall: 86.9%; Precision: 91.8%; Dice: 89.3%; RVD: 5.2%

Model-Based Prediction [9] Recall: 73.9%; Precision: 97.8%; Dice: 84.2%; RVD: 27.9%

(b) Prediction at the third time point (Day 720).

L Zhang et al. MICCAI 2017

HC Shin et al. CVPR 2015

- Trained on 216,000 key images (CT, MR, ...)
- 169,000 CT images
- 60,000 patient scans
- Recall-at-K, K=1 (R@1 score)) was 0.56

Topic: Metastases

Topic 77-0:

kidney, images, abdomen, e.g, prior, mass, pancreas, following, cysts, adrenal, liver, f oci,renal,contrast,approximate,includin g,focus,cyst,bilateral,masses,size,enhan cing,for,also,given,possibly,mid, 2.5, vascular, without, due, nephrectomy, please, 1.5, from, few, multiphase, subcentimeter, least, comparison, patien t,dual-phase,length,apparent, complication, obtained, upper, study, low er,vhl

Topic 77-2:

bulky,pelvis,bone,gross,since,liver,abdo men, calcification, vascular, study, lung, m ass, isovue, dfov, without, contrast, admin istration, impression, metastasis, chest, fo r, images, mesenteric, axilla, following, hil um,cc/s,helical,multidetector,ascites, enteric, reason, apparent, complication, p leural, splenomegaly, pericardial, hydron ephrosis, delay, effusion, mediastinum, o btained, 300, spine, gallbladder, report, 130, retroperitoneal, spleen, e.g.

HC Shin et al. CVPR 2015 & JMLR 2016

HC Shin et al. CVPR 2016

HC Shin et al. CVPR 2016

Cluster #23			
Word	Frequency		
liver	524		
abdomen	337		
enhancement	217		
mass	198		
lesion	168		
lobe	161		
adenopathy	119		
lesions	109		
segment	58		
bulky	45		

X Wang et al. WACV 2017

X Wang et al. CVPR 2017

ChestX-ray8

T(IoBB)	Atelectasis	Cardiomegaly	Effusion	Infiltration	Mass	Nodule	Pneumonia	Pneumothorax
T(IoBB) = 0.1								
Acc.	0.7277	0.9931	0.7124	0.7886	0.4352	0.1645	0.7500	0.4591
AFP	0.0823	0.0487	0.0589	0.0426	0.0691	0.0630	0.0691	0.0264

X Wang et al. CVPR 2017

ChestX-ray8 Dataset

- https://nihcc.app.box.com/v/ ChestXray-NIHCC
- "ChestX-ray8 Dataset"
- 112,120 frontal-view chest radiographs, 30,805 unique patients
 42 GB
- Metadata for all images
- Bounding boxes for 1000 images

Gastrointestinal Imaging • Review

Progress in Fully Automated Abdominal CT Interpretation

Ronald M. Summers¹

OBJECTIVE. Automated analysis of abdominal CT has advanced markedly over just the last few years. Fully automated assessment of organs, lymph nodes, adipose tissue, muscle, bowel, spine, and tumors are some examples where tremendous progress has been made. Computer-aided detection of lesions has also improved dramatically.

AJR 2016; 207:67-79

CONCLUSION. This article reviews the progress and provides insights into what is in store in the near future for automated analysis for abdominal CT, ultimately leading to fully automated interpretation.

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 5, MAY 2016

Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique

HAYIT GREENSPAN, Guest Editor BRAM VAN GINNEKEN, Guest Editor RONALD M. SUMMERS, Guest Editor 1153

Acknowledgments

- Le Lu
- Jack Yao
- Jiamin Liu
- Nathan Lay
- Hadi Bagheri
- Holger Roth
- Hoo-Chang Shin
- Xiaosong Wang
- Adam Harrison
- Ke Yan
- Ling Zhang
- Isabella Nogues

- Nicholas Petrick
- Berkman Sahiner
- Joseph Burns
- Perry Pickhardt
- Mingchen Gao
- Daniel Mollura
- Baris Turkbey
- Peter Choyke
- Matthew Greer
- Brad Wood
- Jin Tae Kwak
- Ruida Cheng

- CC
- NCI
- NHLBI
- NIDDK
- NIAID
- FDA
- Mayo Clinic
- DOD
- U. Wisconsin

- NIH Fellowship Programs:
 - Fogarty
 - ISTP
 - IRTA
 - BESIP
 - CRTP

• Nvidia for GPU card donations

To Learn More ...

www.cc.nih.gov/drd/summers.html X Wang et al. RSNA 2016