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SEER Program Overview
• Funded by NCI to support research on the diagnosis, treatment and outcomes of 

cancer since 1973

• Population-based registries covering ~28% of the US population

– Representing racial and ethnic minorities

– Various geographic subgroups

• 450,000+ incident cases reported annually

– Approximately 85% of cases with real time electronic pathology reporting

– Collect survival and cause of death outcomes

• Impact (1973-2016)

– >4500 downloads per year

– 7398 publications using SEER data for analysis

– 40,230 publications referencing SEER data

– >191,000 SEER*Stat users annually

– Study planning, recruitment, and follow-up

– Annual Report to the Nation on the Status of Cancer
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Cancer Surveillance Pilot: Improve the effectiveness of cancer treatment in 
the “real world” through computing 

SEER Cancer 
Information Resource

Pathology Diagnosis 
Molecular

Characterization
Initial 

Treatment
Subsequent 
Treatment

Survival 
Cause of Death 

Progression
Recurrence

Prospectively support 
development of  new 

diagnostics and treatments

Understand treatment and 
improve outcomes in the 

“real world” 

Genome
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Cancer Pathology Report Processing Pipeline

NCI SEER 

Database

PathologistPatient

Diagnosis by a pathologist analyzing tissue specimen 
from patient

Surgical Pathology report

Regional cancer registries collect case information and 
aggregate for NCI SEER database

Certified Tumor 
Registrar

CTR at a cancer registry reviews complete patient 
medical record + path report

Registry PatientID Record No. Tumor No. Primary Site Source Section Relevant text Primary site 
category

Primary site code

KY 114431 3 Breast Final diagnosis Mammary 
carcinoma

Breast C50.9 Breast,NOS

KY 118420 5 Breast Final diagnosis BREAST PRIMARY BREAST C50.9 Breast, NOS

SE 0084621 500713999 01 Lung Final diagnosis Lung, right lower 
lobe

lung C34.3 lower lobe, 
lung

Integration with structured data from 
Electronic medical records for patients
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NCI-SEER is a primary data source… need to modernize

• NEED

– Abstracting structured data from free-text 
pathology reports is critical for the national cancer 
surveillance program

• CHALLENGE

– Manual abstraction is time-consuming, costly, and 
not scalable

• GOAL

– Develop a scalable framework for automated 
information extraction from pathology reports
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Specific Aims

Data-driven integrated modeling and simulation for precision oncology

Novel data analytic techniques for patient information integration

Deep Text Comprehension for information capture 

Precision modeling 
of patient trajectories

In silico 
clinical trials

Scalable graph and visual analytics to understand the association 
between patient trajectories and patient outcomes 

Advanced machine learning for scalable patient Information      
capture from unstructured clinical reports to semi-automate             

the SEER program
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State-of-the-Art Approaches in Clinical NLP

• Current NLP thinking is TASK-specific

• Rule-based - effective but require intense domain expert involvement

• Task-specific dictionaries of phrases and medical terms

• Manual effort not easily scalable across tasks

• Conventional machine learning - scalable but require intense feature engineering

• N-gram based 

• Concept-extraction-based methods

• Deep Learning - scalable with enough compute power and enough data

• Does not require dictionaries, not susceptible to misspellings etc.

• Lots of new DL architectures proposed for NLP 

• No clear winner – depends on the global semantics required for the task at hand 
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Datasets Used for Preliminary Research

Limited dataset of de-identified breast and lung cancer electronic pathology (e-

path) reports from 5 different SEER registries

~2,500 breast and lung cancer de-identified e-path reports

Partially annotated for subsite, laterality, grade, behavior 

Large dataset of e-path reports from Louisiana Tumor Registry housed at the PHI 

enclave within ORNL

~267,000 reports from Louisiana Tumor Registry (2004-2017)

Gold standard for site, laterality, grade, behavior, histology derived from 

consolidated “Cancer/Tumor/Case” (CTC) records
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Experimental Pipeline
DATA PRE-PROCESSING

• Duplicate records
• Non-contradicting labels
• Incorrect organ annotations
• Small sample sizes
• Corpus curation

FEATURE REPRESENTATION

• TF-IDF
• Bag-of-graphs
• RAKE
• CHUNK
• GLOVE
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RULE-BASED SYSTEMS (RL)
• Contextualize (keywords for 

topics of interest)
• Term identification
• Classification

MACHINE LEARNING (ML)

• Naïve Bayes (NB)
• Logistic Regression (LR)
• Random Forest (RF)
• Support Vector Machines (SVM)
• Extreme gradient boosting tree 

(Xgboost)

DEEP LEARNING (DL)

• Convolutional neural nets (CNN)
• Hierarchical Attention nets (HAN)
• Multi-task Deep neural net (MT-DNN)

PERFORMANCE METRICS

• Precision (positive predictive 

value) / Recall (sensitivity) / 

F1 per class

• Macro / Micro scores 

(aggregate performance over 

all)

VALIDATION STRATEGIES

• K-fold cross validation (K-fold)

• Leave-one-registry out (LORO)

• Leave-one-case-out per 

registry (LOO_R)
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Document Representation

n-grams

Output tumor shows small cell carcinoma

tumor shows shows 
small

small cell cell 
carcinoma

carcinoma cell

• TF-IDF
• Bag-of-graphs
• RAKE
• CHUNK
• GLOVE

FEATURE REPRESENTATION

t1 t2 … tn

S1

…

Sp

Document Representation
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A ‘gentle’ introduction to convolutional nets (CNN) for text

Meaning of convolution

Averaging neighboring pixels Taking differences between neighboring 
pixels

Given a document represented as a collection of  words, how do we extract features automatically?

• Text is presented in the form of a document matrix – a 

sequence of word embedding vectors

• Multiple convolutional filters capture context along a 

document:

• Word lengths {3,4,5} are used to “slide” along 

the entire length

• Network learns to select context features in via max 

pooling

• Selected features are concatenated and fed though a 

fully connected layer where regularization occurs

• Output is finally a softmax classifier

“Deep Learning for Automated Extraction of Primary Sites from Cancer Pathology Reports,” 
IEEE Journal of Biomedical and Health Informatics [January 2018]
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CNNs perform better in basic information extraction tasks 
compared to conventional ML approaches
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CANDLE hyper-parameter optimization boosts performance

Hyper-parameter Optimization
1. Word embedding method
2. Word embedding size
3. No. of convolution filters
4. Size of convolution filters
5. No. of fully connected layers
6. Size of fully connected layers

Primary Site Grade

Micro-F Macro-F Micro-F Macro-F

Empirical optimization (May 2017) 0.712 0.398 0.716 0.521

HyperSpace optimization (October 2017) 0.763 0.519 0.800 0.755



16

Highlights & Caveats of using CNN for text

Highlights

• CNN learns features automatically:

– Context is discerned directly from word 
embedding

• CNNs can abstract concepts relatively 
well with less user intervention

• Modifications to convolutions is relatively 
simple

Caveats

• Context extraction is sensitive:

– Location variance: where does a word occur 
or co-occur is important

– Compositionality: adjective modifying a 
noun, medical terms have specific meanings 
depending on what occurs before & after.

• Need larger corpus to achieve good 
levels of task-level performance
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Building a slightly sophisticated model for documents

• Documents are formed of sentences read from 
left to right (in order)
– Distinct sequence representation

• Probability of emitting the next word in the 
sequence is dependent on a “hierarchy”:
– Sentences formed of words
– Documents formed of sentences
– 2 level hierarchy

• Can we capture this behavior automatically? 
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Sequential modeling with Recurrent neural networks (RNN)

input

0.1 0.9 0.8

This movie sucks

memory

• Variety of applications: (1) Speech recognition, (2) Language translation, (3) Video 

prediction

• Sequence modeling takes care of location variance in sentences

hidden state
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Capturing context and relevance through attention mechanisms in 
RNN

• xt is a word in a sentence that is being 
generated using some underlying 
“sequence”

• Every yt is produced by some “decoder” 
depends on a weighted combination of all 
the input states, not just the last state

• a’s define the weights for each input state 

Neural Machine Translation by Jointly Learning to Align and Translate

Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio, ICLR 2015
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Layering an RNN with attention… Hierarchical attention network 
(HAN)
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• Word level embedding:

– capture important words in a sentence 

– Output: sentence embedding weighted based on 
word occurrence/ co-occurrence most relevant 
for classification task

• Sentence level embedding:

– capture important sentences within a document

– Output: weighted sentence embedding based on 
relevance for classification task

• Final document embedding is fed into classification 

Hierarchical Attention Networks for Information Extraction from Cancer Pathology 
Reports,” Journal of American Medical Informatics Association [appeared online, 
Nov 2017] 
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CNNs perform better in basic information extraction tasks 
compared to conventional ML approaches

C
o

n
ve

n
ti

o
n

al
 M

ac
h

in
e

 
Le

ar
n

in
g

D
e

e
p

 
Le

ar
n

in
g

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Naïve Bayes

Logistic Regression

Support Vector Machine

Random Forest

XGBoost

MT-DNN

CNN

RNN without attention

RNN with attention

HAN with word attention

HAN with line attention

HAN with word and line attention

HAN with pretraining, word and line attention

GRADE macro-F1

GRADE micro-F1

SUBSITE macro-F1

SUBSITE micro-F1



22

Interpreting what CNNs and HANs learned from ePath reports

HANs interpret context based on most important words in 

a sentence  sentences  document. Neighboring 

words/sentences provide overall importance.

CNNs blindly associate context with importance based on 

how often words occur in its neighborhood. Moving along a 

row, these words may not always capture the required 

clinical context.

CNN HAN
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Extending the number of classification tasks

N-gram	Feature

Primary	Site	Category Laterality

Single Task DNN

• Output layer produces class probability over k classes 

using the softmax nonlinearity

• Stochastic gradient descent 
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Multi-Task DNN

• Exploits tasks relatedness

• Multiple tasks solved simultaneously

• Trained with same optimization technique and 

document representation as singe task DNN

HJ Yoon, A. Ramanathan, G.D. Tourassi, "Multi-task Deep Neural Networks for 
Automated Extraction of Primary Site and Laterality Information from Cancer 
Pathology Reports." In INNS Conference on Big Data [ 2016]
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• The same convolutional layers are used for all tasks

• These convolutional layers find shared features that 
are useful across all tasks

• Each task has its own softmax classifier

• Each task has its own set of convolutional layers

• A cross stitch operation learns the best linear 
combination of features from each task

• Each task has its own softmax classifier

Multi-Task CNNs: Two different implementations
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STUDY 2: Benchmarking CNN on Louisiana Registry 
Path Corpus

• 2004-2017 

• 71,223 tumors

• 2-fold cross-validation on 2004-
2015 (59,427 cases)

• Additional testing 2016-2017 
(11,796 cases)  
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5 information extraction tasks: Site, Histology, 
Laterality, Grade, Behavior)
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Number of cases by site

~85% cases represent 20 cancer types 



27

Comparative Analysis: Multi-task CNNs perform better in 
information extraction tasks compared to single task CNN 

Single Task CNN
Multi-task CNN

(Hard Parameter Sharing)

Task Micro-F1 Macro-F1 Micro-F1 Macro-F1

Site 0.8874 0.3643 0.9401 0.5401

Laterality 0.9079 0.6814 0.9333 0.8222

Behavior 0.9469 0.8840 0.9746 0.9521

Histology 0.7353 0.3638 0.8206 0.6488

Grade 0.7508 0.6820 0.8023 0.7657
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28 28

Additional testing on 2016-17 cases
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How fast can we train?
• CNN Training on LA data

❖ 23,771 training cases

❖ 5,942 validation cases

❖ 29,714 testing cases

❖ 50 epochs

Titan Summit

Platform
Specs

18,688 nodes
1 x K20 GPU

4,600 nodes
6 x V100 GPU

Time 16.67 hrs 1.67 hours

Experiments performed on OLCF infrastructure
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HAN is slow: Tweaking the network to accelerate training

Computationally expensive!!!

Gao, S., Ramanathan, A., in review (ACL)

Pubmed

Naïve Bayes
76.63

--, 0.2s

Logistic Regression
76.46
--, 15s

CNN Baseline
77.25

13ms, 1hr

Hierarchical Attention Network
78.45

111ms, 9hr

Hierarchical Convolutional
Attention Network

78.14
35ms, 3hr
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Can the H(C)AN be used on other types of data? E.g., Protein 
alignments to understand co-evolutionary modules

• Predict “hotspots” across protein sequence databases

Table A : AUC and F1 scores for all protein domains analyzed in this

word (full sequence method). Bold values are the highest for each category

(AUC/ F1).

9

Catanho, M., Gao, S., Ramanathan, A., Coleman, T. P., 2018 (submitted)
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Summary & Conclusions

• CANDLE provides an enabling infrastructure for information extraction from 
clinical/pathology reports:
– Simple DL networks provide good precision and sensitivity 

– Selection of DL networks is important to obtain good representations of data

– Multi-task learning can exploit task relatedness and provide better results

• Development of semi-supervised learning approaches:

– Lack of annotated text documents (labels)

– Adversarial networks 

• Predict the next “clinical state” of the patient from partial current clinical 
observations

– Reinforcement learning/ Q-learning
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Tomorrow’s session

• Some lessons learned from working with CANDLE:

– Preparing text (or related sequence) datasets for deep learning

– Hyperparameter optimization

– Any other questions regarding software or use

Questions/ Comments
ramanathana@ornl.gov

mailto:ramanathana@ornl.gov

