
Introduction to
CANDLE

ECP-CANDLE : CANcer Distributed Learning Environment

CANDLE Goals

Develop an exscale deep
learning environment for cancer

Building on open source
Deep learning frameworks

Optimization for CORAL
and exascale platforms

Support all three pilot project
needs for deep dearning

Collaborate with DOE computing
centers, HPC vendors and ECP
co-design and software
technology projects

2

Scalable
Data Analytics

Deep
Learning

Large-Scale
Numerical
Simulation

DOE Objective: Dirve Integration of Simulation,
Data Analytics and Machine Learning

CORAL Supercomputers
and Exascale Systems

Traditional
HPC

Systems

Aurora 2021 (A21) Exascale System

Architectural support for three pillars
• Large-scale Simulation (PDEs, traditional HPC)
• Data Intensive Applications (science pipelines)
• Deep Learning and Emerging Science AI

CANDLE Challenge Problem Statement

Enable the most challenging deep learning
problems in Cancer research to run on the most
capable supercomputers in the DOE

Candle Functional Goals

• Enable high productivity for deep learning centric workflows

• Support Key DL frameworks on DOE supercomputers

• Support multiple paths to concurrency

• Manage training data, model search, scoring, optimization,
production training and inference

• CANDLE runtime/supervisor (interface with batch schedulers)

• CANDLE library for improving model development (UQ, HPO, CV,
MV)

• Well documented examples and tutorials

• Leverage as much open source as possible

CANDLE Software Stack

Hyperparameter Sweeps,
Data Management (e.g. DIGITS, Swift, etc.)

Architecture Specific Optimization Layer
(e.g. cuDNN, MKL-DNN, etc.)

Tensor/Graph Execution Engine
(e.g. Theano, TensorFlow, LBANN-LL, etc.)

Network description, Execution scripting API
(e.g. Keras, Mocha)

Workflow

Scripting

Engine

Optimization

7

CANDLE Workflow Layer

• “Convienence and Productivity” layer

• Used to manage large-scale training runs
– Hyperparameter searches O(104) jobs

– Cross validation (5-fold, 10-fold, etc.)

– Data encodings (log2, Z-score, percent, etc.)

– Low-level optimizations (tensor backends)

• Locate and transform input data

• Manage caching on local NV store
– Internal joins, batching management, epochs

• Each job could be 100’s to 1000’s of nodes

• Driver scripts manage runs of 1K >10M core/hrs

9

Pilot1 CANDLE General Workflow

9

Test
Data

Model

Validation
Data

CANDLE System Architecture

CANDLE Supervisor

Workflow Manager
(Swift-T EMEWS)

ALCF
Theta, Cooley

NERSC
Cori

OLCF
Titan, SimmitDev

Hyperparameter Optimization Frameworks
Hyperopt, mlrMBO, Spearmint

Benchmarks
Datasets
Models

Experiments
Runs

Metadata Store Model Store

Data API

Model
Descriptions

Model Weights

CANDLE Database Integrator Website

Hardware Resources

Benchmark
Spec

Hyperparameter
Spec

Hardware
Spec

CANDLE Specifications

ML/DL Models

Pilot 1 Pilot 2 Pilot 3

Model Scripting Interface

• Aimed at the user developing models.. Keras is
our canonical example

• Keras – python interface
– Theano and TensorFlow

– target for LBANN

• Mocha – julia interface
– Pure julia backend

– cuDNN

• Lasagne – python interface
– Theano

DL Frameworks “Tensor Graph Engines”

• TensorFlow (c++, symbolic diff+)

• Theano (c++, symbolic diff+)

• Neon (integrated) (python, symbolic diff+)

• Torch7 TH Tensor (c layer, symbolic diff-, pgks)

• Mxnet (integrated) (c++)

• Caffe (integrated) (c++, symbolic diff-)

• Mocha backend (julia + GPU)

• LBANN (c++, aimed at scalable hardware)

• CNTK backend (microsoft) (c++)

• PaddlePaddle (Baidu) (python, c++, GPU)

Open Source Framework Comparison

Torch7 “Stack”

Hardware Optimization Layers

• cuDNN – NVIDIA low level library

– Caffe, TensorFlow, Theano, Torch, CNTK

– Supports many DL features, forwad and backward
layer types for common topologies

– Forward and backward convolution

• MKL-DNN – intel deep learning library

– Convolution, pooling, ReLU, etc. C API

– Cifar, AlexNet, VGG, GoogleNet and ResNet*.

Parallelism Options and I/O

• Ensemble Parallelism (replications for HPO,
UQ or ensemble prediction)

• Data Parallelism (distributed training by
partitioning training data)

• Model parallelism (parallel training by
partitioning network)

• Streaming training data

• Dashboard reporting progress

Hyper Parameter Search
3 x 3 x 3 x 4 x 3 x 3 x 3 x 4 = 11,664 cases

Parallelism Targets in CANDLE

Model
Parallel

10x-100x

Model
Parallel

10x-100x

Model
Parallel

10x-100x

Model
Parallel

10x-100x

Model
Parallel

10x-100x... ...

Hyper Parameter Search, Ensemble and UQ up to ~10,000x
Depends on search strategy

Data Parallel 10x-1000x Data Parallel
10x-1000x

...

10,000 x 10-1000 x 10-100 = 1M – 1000M “cores”

Model Parallelism

Example from Cancer:
Type Classification

RPKM (reads per kilobase per
million mapped reads)
Upper Quantile (UQ)

Each Sample has > 60,000 columns

One Hot Encoding of Categories

Open Source Framework Comparison

Neural Network for Classification (TC1)

Networks Used to Classify Images

Example Features Learned in
2D Convolution Lower Layers

Convolution vs
Fullly (Dense) Connected Layers
for Drug Response Prediction?

39

Neural Network for Classification

Input (60,464)

1D Conv (128)

Max Pooling (60464, 128)

1D Conv (128)

Max Pooling (6045, 128)

Flatten (773,760)

FC 200

FC 20

Softmax (36)

Setting up the Graph Structure

What Activation Function to Use?

Dropout!

What Loss Function to use?
What Optimizer to use?

Example Loss functions

Cancer Type Classification

Cancer Type Classification
18 types each with ~300 RNAseq profiles

https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/TC1

Cancer Type Classification
18 types each with ~300 RNAseq profiles

https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/TC1

P1B3 Convergence
([C(100)xC(50)]x1000x500x100x50)

(2 layers) CNN + (4 layers) DNN

(4 layers) DNN

~4000 sec per epoch on P100

1000 500 100

https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/P1B3

Tumor/Normal Classification

Normal/Tumor (nt3.py)

https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/NT3

Normal/Tumor (nt3.py)

https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/NT3

How did we know it might work?

• Build autoencoders first with the features you are
going to work with

• If you get reasonable reconstruction error then the
model can learn a representation and that is a good
sign

• Class balance seems to matter

• Number of training examples matters > 1000 is
good > 10,000 better, > 100,000 much better

• Hyper parameter search is also important once you
get something that basically works

55

Autoencoder

Acknowledgements

Many thanks to DOE, NSF, NIH, DOD, ANL, UC, Moore Foundation,
Sloan Foundation, Apple, Microsoft, Cray, Intel, NVIDIA and IBM for
supporting our research group over the years

