
Introduction to 
CANDLE



ECP-CANDLE : CANcer Distributed Learning Environment

CANDLE Goals

Develop an exscale deep 
learning environment for cancer

Building on open source 
Deep learning frameworks

Optimization for CORAL
and exascale platforms

Support all three pilot project
needs for deep dearning

Collaborate with DOE computing 
centers, HPC vendors and ECP 
co-design and software 
technology projects 
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DOE Objective: Dirve Integration of Simulation, 
Data Analytics and Machine Learning

CORAL Supercomputers
and Exascale Systems

Traditional
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Systems



Aurora 2021 (A21) Exascale System

Architectural support for three pillars
• Large-scale Simulation (PDEs, traditional HPC)
• Data Intensive Applications (science pipelines)
• Deep Learning and Emerging Science AI



CANDLE Challenge Problem Statement

Enable the most challenging deep learning 
problems in Cancer research to run on the most 
capable supercomputers in the DOE



Candle Functional Goals

• Enable high productivity for deep learning centric workflows

• Support Key DL frameworks on DOE supercomputers

• Support multiple paths to concurrency

• Manage training data, model search, scoring, optimization, 
production training and inference

• CANDLE runtime/supervisor (interface with batch schedulers)

• CANDLE library for improving model development (UQ, HPO, CV, 
MV)

• Well documented examples and tutorials

• Leverage as much open source as possible



CANDLE Software Stack

Hyperparameter Sweeps, 
Data Management (e.g. DIGITS, Swift, etc.)

Architecture Specific Optimization Layer 
(e.g. cuDNN, MKL-DNN, etc.)

Tensor/Graph Execution Engine 
(e.g. Theano, TensorFlow, LBANN-LL, etc.) 

Network description, Execution scripting API
(e.g. Keras, Mocha)

Workflow

Scripting

Engine

Optimization
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CANDLE Workflow Layer

• “Convienence and Productivity” layer

• Used to manage large-scale training runs
– Hyperparameter searches O(104) jobs

– Cross validation (5-fold, 10-fold, etc.)

– Data encodings (log2, Z-score, percent, etc.)

– Low-level optimizations (tensor backends)

• Locate and transform input data

• Manage caching on local NV store
– Internal joins, batching management, epochs

• Each job could be 100’s to 1000’s of nodes

• Driver scripts manage runs of  1K >10M core/hrs
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Pilot1 CANDLE General Workflow
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CANDLE System Architecture

CANDLE Supervisor

Workflow Manager
(Swift-T EMEWS)

ALCF 
Theta, Cooley

NERSC
Cori

OLCF
Titan, SimmitDev

Hyperparameter Optimization Frameworks
Hyperopt, mlrMBO, Spearmint

Benchmarks
Datasets
Models

Experiments
Runs

Metadata Store Model Store

Data API

Model 
Descriptions

Model Weights

CANDLE Database Integrator Website

Hardware Resources

Benchmark 
Spec

Hyperparameter
Spec

Hardware 
Spec

CANDLE Specifications

ML/DL  Models

Pilot 1 Pilot 2 Pilot 3



Model Scripting Interface

• Aimed at the user developing models.. Keras is 
our canonical example

• Keras – python interface
– Theano and TensorFlow

– target for LBANN

• Mocha – julia interface 
– Pure julia backend

– cuDNN

• Lasagne – python interface
– Theano







DL Frameworks “Tensor Graph Engines”

• TensorFlow (c++, symbolic diff+)

• Theano (c++, symbolic diff+)

• Neon (integrated) (python, symbolic diff+)

• Torch7 TH Tensor (c layer, symbolic diff-, pgks)

• Mxnet (integrated) (c++)

• Caffe (integrated) (c++, symbolic diff-)

• Mocha backend (julia + GPU)

• LBANN (c++, aimed at scalable hardware)

• CNTK backend (microsoft) (c++)

• PaddlePaddle (Baidu) (python, c++, GPU)



Open Source Framework Comparison



Torch7 “Stack”



Hardware Optimization Layers

• cuDNN – NVIDIA low level library

– Caffe, TensorFlow, Theano, Torch, CNTK

– Supports many DL features, forwad and backward 
layer types for common topologies

– Forward and backward convolution

• MKL-DNN – intel deep learning library

– Convolution, pooling, ReLU, etc. C API

– Cifar, AlexNet, VGG, GoogleNet and ResNet*.



Parallelism Options and I/O

• Ensemble Parallelism (replications for HPO, 
UQ or ensemble prediction)

• Data Parallelism (distributed training by 
partitioning training data)

• Model parallelism (parallel training by 
partitioning network)

• Streaming training data 

• Dashboard reporting progress



Hyper Parameter Search
3 x 3 x 3 x 4 x 3 x 3 x 3 x 4 = 11,664 cases  



Parallelism Targets in CANDLE

Model
Parallel

10x-100x

Model
Parallel

10x-100x

Model
Parallel

10x-100x

Model
Parallel

10x-100x

Model
Parallel

10x-100x... ...

Hyper Parameter Search, Ensemble and UQ  up to ~10,000x
Depends on search strategy

Data Parallel  10x-1000x Data Parallel  
10x-1000x

...

10,000 x 10-1000 x 10-100 = 1M – 1000M  “cores”





Model Parallelism



Example from Cancer:
Type Classification







RPKM (reads per kilobase per 
million mapped reads)
Upper Quantile (UQ)



Each Sample has > 60,000 columns



One Hot Encoding of Categories



Open Source Framework Comparison









Neural Network for Classification (TC1)









Networks Used to Classify Images



Example Features Learned in 
2D Convolution Lower Layers



Convolution vs 
Fullly (Dense) Connected Layers
for Drug Response Prediction?
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Neural Network for Classification

Input (60,464)

1D Conv (128)

Max Pooling (60464, 128)

1D Conv (128)

Max Pooling (6045, 128)

Flatten (773,760)

FC 200

FC 20

Softmax (36)



Setting up the Graph Structure



What Activation Function to Use?





Dropout!



What Loss Function to use?
What Optimizer to use?



Example Loss functions



Cancer Type Classification



Cancer Type Classification
18 types each with ~300 RNAseq profiles

https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/TC1



Cancer Type Classification
18 types each with ~300 RNAseq profiles

https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/TC1



P1B3 Convergence
([C(100)xC(50)]x1000x500x100x50)

(2 layers) CNN + (4 layers) DNN

(4 layers) DNN

~4000 sec per epoch on P100

1000        500        100

https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/P1B3



Tumor/Normal Classification



Normal/Tumor  (nt3.py)

https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/NT3



Normal/Tumor  (nt3.py)

https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/NT3



How did we know it might work?

• Build autoencoders first with the features you are 
going to work with

• If you get reasonable reconstruction error then the 
model can learn a representation and that is a good 
sign

• Class balance seems to matter

• Number of training examples matters > 1000 is 
good > 10,000 better, > 100,000 much better

• Hyper parameter search is also important once you 
get something that basically works
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Autoencoder
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