
Suggested line of text (optional):

WE START WITH YES.

OPTIMAL DEEP LEARNING ON EXASCALE COMPUTERS

AN INTRODUCTION TO
SCALABLE DEEP
LEARNING WORKFLOWS
WITH CANDLE

erhtjhtyhy

JUSTIN M WOZNIAK
Computer Scientist
Mathematics & Computer Science
Argonne National Laboratory

CANDLE Deep Learning Workshop @ NIH

February 22, 2018

COLLABORATORS

 CANDLE Infrastructure:

Tom Brettin, Jon Ozik, Nick Collier, Rajeev Jain (ANL)

Jamal Mohd-Yusof, Cristina Garcia Cardona (LANL)

George Zaki (NIH)

 Pilot benchmarks

Fangfang Xia (ANL), Brian Van Essen (LLNL), Arvind Ramanathan (ORNL)

 PI

Rick Stevens (ANL)

2

OUTLINE

 Overview of CANDLE project

 Overview of hyperparameter optimization

– Introduction to hyperparameter optimization

– Workflow-based solution: EMEWS

 Afternoon tutorial:

– Hyperparameter optimization of a CANDLE Benchmark

3

CANDLE TUTORIALS

 May be found here: https://github.com/ECP-CANDLE/Tutorials

– Subdirectory 2018/NIH

 See the top-level README to get started with the installation

4

CANDLE OVERVIEW

CANDLE WORKFLOWS: GOALS

6

 Develop an exascale deep learning environment for cancer

 Building on open source deep learning frameworks and middleware

 Optimization for CORAL and exascale platforms

 Support all three pilot project needs for deep learning – common abstractions

 Collaborate with DOE computing centers, HPC vendors and ECP co-design and software
technology projects

 Mission statement: Enable the most challenging deep learning problems in cancer
research to run on the most capable supercomputers in the DOE

CANDLE SOFTWARE STACK

7

Hyperparameter Sweeps,

Data Management (e.g. DIGITS, Swift, etc.)

Architecture Specific Optimization Layer

(e.g. cuDNN, MKL-DNN, etc.)

Tensor/Graph Execution Engine

(e.g. Theano, TensorFlow, LBANN-LL, etc.)

Network description, Execution scripting API

(e.g. Keras, Mocha)

Workflow

Scripting

Engine

Optimization

HYPERPARAMETER OPTIMIZATION

WHAT IS HYPERPARAMETER OPTIMIZATION

 Neural networks have a large number of possible configuration parameters,

called hyperparameters

– Avoids collision with NN weights, which are sometimes called parameters

 Applying optimization can automate part of the design of the neural network

 In the cancer Pilot 1 autoencoder shown,

the system can determine

– How many neurons to put in each layer

– What activation function to use

– What batch size to use

– Etc.

Hyperparameter optimization = HPO

9

MATHEMATICAL EXPRESSION FOR HPO

 For a given problem:

– A loss function F is determined on a given NN (usually accuracy)

– The hyperparameter optimization problem is to minimize F(p),

• for all hyperparameter sets p in the valid parameter space P,

• however, P is large and F is expensive.

• P is the cross product of all valid network settings,

– some of which may be categorical, some integer, some continuous.

• Evaluating F involves training the network on a training data set and

applying it to the validation set

 We can use a generic, previously developed method to optimize F !

 These methods require and can use large compute resources

10

BASIC STRATEGIES

 Grid search

 Random search

 Generic optimization

– Stochastic gradient descent

– Evolutionary algorithms

– Model-based optimization (mlrMBO in R)

 NN hyperparameter-specific optimization

– Hyperopt, NEAT, Optunity, …

11

CANDLE HYPERPARAMETER LEARNING

12

Predicting Tumor Cell Line Response to Drug Pairs with Deep Learning, F. Xia, M. Shukla, T.

Brettin, C. Garcia-Cardona, J. Cohn, J. Allen, S. Maslov, Y. Evrard, S. Holbeck, J. Doroshow, E.

Stahlberg, and R. Stevens (Computational Approaches for Cancer Workshop @ SC 2017)

• Search trajectory of mlrMBO

(R model-based optimization)

algorithm

• Each iteration does 300

evaluations (batch size)

• Minimum and average

performance on validation

data set decreases as the

ME algorithm learns

CANDLE: WORKFLOWS

CANDLE SYSTEM OVERVIEW

24

CANDLE Supervisor

Workflow Manager
(Swift-T EMEWS)

ALCF
Theta,

Cooley

NERSC
Cori

OLCF
Titan,

SummitDev

Hyperparameter Optimization

Frameworks
Hyperopt, mlrMBO, Spearmint

Benchmarks

Datasets

Models

Experiments

Runs

Metadata Store
Model

Store

Data API

Model

Description

s

Model

Weights

CANDLE Database

Integrator Website

Hardware Resources

Benchmark

Spec

Hyperparameter

Spec

Hardware

Spec

CANDLE Specifications

ML/DL Benchmarks

Pilot 1 Pilot 2 Pilot 3

PARALLELISM STRATEGIES

25

Model

Parallel

10x-100x

Hyperparameter Search: up to ~10,000x
Depends on search strategy

Data Parallel: 10x-1000x Data Parallel

10x-1000x

...
Model

Parallel

10x-100x

Model

Parallel

10x-100x

Model

Parallel

10x-100x

Model

Parallel

10x-100x

10,000 x 10-1000 x 10-100 = 1M – 1000M processing elements

CANDLE PERFORMANCE

26

having EMEWS as a generally available and applicable workflow enhancing resource will allow researchers

and collaborators to identify previously unrecognized similarities in their approaches, thus facilitating the cross-
pollination of advanced modeling methods throughout the cancer community. This in turn holds the promise of

promoting new collaborations and generating new interactions that can leverage the knowledge being

generated in the study of cancer. EMEWS is a distinct advance over existing ME workflow systems,

which typically take one of two approaches, both of which present barriers to entry for researchers
intent on large-scale exploration of their models. These existing systems either:

1. Require the ME algorithm to be directly encoded in, i.e., developed in or ported to, the workflow language,

e.g., Swift/T
2. Provide the ME algorithm as a built-in feature of the workflow system, e.g., Nimrod/O [3] and Dakota [4]

In both these circumstances the restriction on the workflow language limits the range of ME tools that

can be employed, requiring recoding and retesting of the ME tools. For example, many libraries relevant to ME
being actively developed and implemented as free and open source software in popular data analysis

programming languages such as R and Python cannot be directly utilized. This can be a significant obstacle

to researchers who may now need to implement sophisticated algorithms in a new language that may not be

optimally suited for the task, and greatly limits their ability to fully exploit the advances in ME methodology.
Additionally, many workflow systems primarily utilize file-based I/O to coordinate the data dependencies

between tasks. This severely impacts scalability on typical peta-scale class systems. Swift/T, on the other

hand, generates MPI programs and so can utilize message passing to make calls to leaf tasks, i.e., external
functions written in C, C++, Fortran, Python, R, Tcl, Julia, Qt Script. This allows for enhanced performance,

e.g., the ability to launch 1.5 billion tasks/s. This capability complements the ability to call executable programs,

through shell scripts via command line arguments.

Preliminary Work:

Scaling Flexibility of EMEWS

A stated benefit of EMEWS is
its ability to provide flexibility while

maintaining performance. Swift/T, the

underlying EMEWS workflow engine,
allows us to abstract the scheduler

and compute layout settings for a

variety of target computing resources.

The launch parameters for Swift/T
allow the specification of the scheduler

type, processor count, workers per

node, and other common settings in a
uniform way. Cancer projects using

EMEWS have been run on numerous

HPC resources, as seen in Table 1.

Cancer Epidemiology and Population-

level Decision Support: CISNET

Applications
 Cancer Intervention and Surveillance Modeling Network (CISNET: cisnet.cancer.gov) is a consortium of

NCI-sponsored investigators who use mathematical modeling to improve our understanding of cancer control

interventions in prevention, screening, and treatment and their effects on population trends in incidence and
mortality. These models have been used to guide public health research and priorities [5-10], and they can aid

in the development of optimal cancer control strategies. As part of a series of pilot projects proposed by the

Department of Energy and NCI collaboration to bring HPC computing resources to cancer (Joint Design of
Advanced Computing Solutions for Cancer), projects from the CISNET Colorectal Cancer (CRC) Working

Group were connected with the EMEWS development team. The CRC models all simulate the development of

precancerous lesions (adenomas), the progression of adenomas to preclinical cancer, and the progression of

preclinical cancer to clinical cancer. Because this natural history process cannot be informed directly by data,
the model parameters that describe this process need to be estimated by model calibration. The collaborations

between CISNET and EMEWS primarily focused on the problem of characterizing the uncertainty associated

with the mean outputs of these models, a necessary capability to increase the impact and utilization of nearly

Machine Architecture (Nov 2017 Top 500
ranking)

Scheduler

OLCF Titan at Oak Ridge

National Laboratory

Cray XK7, AMD Opteron / K20X (5)

PBS

NERSC Cori at Lawrence

Berkeley National
Laboratory

Cray XC40, Intel Xeon Phi / E5 (8) SLURM

ALCF Mira at Argonne
National Laboratory

BlueGene/Q, PowerPC A2 (11)

Cobalt

ALCF Theta at Argonne

National Laboratory

Cray XC40, Intel Xeon Phi (18)

	
Cobalt

NIH Biowulf HP Apollo XL1x0r, Intel Xeon E5
(66)

SLURM

Blues, Bebop at Argonne
National Laboratory

Intel Xeon Phi / E5 (148) PBS/SLURM

Beagle2 at University of

Chicago

Cray XE6, AMD Operton (NA)

PBS

Midway, Midway2 at
University of Chicago

Intel various / AMD Opteron (NA) SLURM

Table 1: Examples of HPC Resources used by EMEWS 	

• Delivers 1+ petaflop!

LOAD OVER TIME FOR SEARCH

 Typical load plot for NT3 workflow on Cori

27

RAMP UP / RAMP DOWN

 Zoom in on single iteration on Titan
28

SYSTEMS CHALLENGES

NOTES ON REQUIREMENTS
Simulation Applications

 64bit floating point

 Memory Bandwidth

 Random Access to Memory

 Sparse Matrices

 Distributed Memory jobs

 Synchronous I/O multinode

 Scalability Limited comm

 Low Latency High Bandwidth

 Large Coherency Domains

help sometimes

 O typically greater than I

 O rarely read

 Output is data

30

Big Data Applications

 64 bit and Integer important

 Data analysis Pipelines

 DB including No SQL

 MapReduce/SPARK

 Millions of jobs

 I/O bandwidth limited

 Data management limited

 Many task parallel

 Large-data in and

Large-data out

 I and O both important

 O is read and used

 Output is data

Deep Learning Applications

 Lower Precision (fp32, fp16)

 FMAC @ 16 summing to 32

 Inferencing can be 8 bit (TPU)

 Scaled integer possible

 Training dominates dev

 Inference dominates pro

 Data pipelines needed

 Dense FP typical SGEMM

 Small DFT, CNN

 Ensembles and search

 Single Models Small

 I more important than O

 Reuse of training data

 Output is models

WORKFLOW SUPPORT FOR ML FRAMEWORKS

 Concurrency:

– Scalable task distributor

– Intranode concurrency, accelerators left up to the framework

– Multinode ML tasks are future work (already basically supported)

 Data management:

– Input staging methods have been developed

– Intermediate caches via DataSpaces

 Software integration:

– Usually launch frameworks in separate process

– Launching within process is a configuration challenge

– Search methods launched within process

31

 Write site-independent scripts

 Automatic parallelization and data movement

 Run native code, script fragments as applications

 Rapidly subdivide large partitions for

MPI jobs

 Move work to data locations

SWIFT/T: ENABLING HIGH-PERFORMANCE
SCRIPTED WORKFLOWS
Supports tasks written in many languages

Swift/T
control
process

Swift worker
process

C
C+
+

Fortr
an

C
C+
+

Fortr
an

C C++ Fortran

MPI

Swift/T worker

64K cores of Blue Waters
2 billion Python tasks
14 million Pythons/s Interlanguage parallel scripting for

distributed-memory scientific computing.

Proc. WORKS @ SC 2015

THE SWIFT PROGRAMMING MODEL

 F() and G() implemented in native code or external programs

 F() and G()run in concurrently in different processes

 r is computed when they are both done

 This parallelism is automatic

 Works recursively throughout the program’s call graph

All progress driven by concurrent dataflow

33

LANGUAGE GOALS

 Make it easy to run large batteries of external program or library executions

 Provide rich programming language at the top level – fully generic

 Support implicit concurrency and conventional programming constructs

 Enable complex tasks based in other scripting languages (e.g., Python) or

parallel MPI tasks

Hierarchical, naturally parallel, script-like programming

34

SWIFT SYNTAX

 Data types

 Shell access

 Structured data

35

 Conventional expressions

 Parallel loops

 Data flow

 Swift: A language for distributed parallel scripting.

J. Parallel Computing 2011

 Compiler techniques for massively scalable implicit task

parallelism. Proc. SC 2014

CENTRALIZED EVALUATION IS A BOTTLENECK
AT EXTREME SCALES

36

Had this (Swift/K): Now have this (Swift/T):

 Turbine: A distributed-memory dataflow engine for high performance many-task

applications. Fundamenta Informaticae 28(3), 2013

SWIFT/T: FULLY PARALLEL EVALUATION
OF COMPLEX SCRIPTS

37

• Swift/T: Scalable data flow programming for distributed-memory task-

parallel applications . Proc. CCGrid, 2013.

SWIFT FOR REALLY PARALLEL BUILDS
Plus language features- typed files, arrays, string processing

38

SWIFT/T COMPILER AND RUNTIME

 STC translates high-level Swift

expressions into low-level

Turbine operations:

39

– Create/Store/Retrieve typed data

– Manage arrays

– Manage data-dependent tasks

ACCESSING PYTHON FROM SWIFT/T

40

global const string numpy = "from numpy import *\n\n";

typedef matrix string;

(matrix A) eye(int n) {

 command = sprintf("repr(eye(%i))", n);

 code = numpy+command;

 matrix t = python(code);

 A = replace_all(t, "\n", "", 0);

}

(matrix R) add(matrix A1, matrix A2) {

 command = sprintf("repr(%s+%s)", A1, A2);

 code = numpy+command;

 matrix t = python(code);

 R = replace_all(t, "\n", "", 0);

}

a1 = eye(3);

a2 = eye(3);

sum = add(a1, a2);

printf("2*eye(3)=%s", sum);

ASYNCHRONOUS DYNAMIC LOAD BALANCER

 An MPI library for master-worker

workloads in C

 Uses a variable-size, scalable

network of servers

 Servers implement

work-stealing

 The work unit is a byte array

 Optional work priorities, targets, types

 For Swift/T, we added:
– Server-stored data

– Data-dependent execution

– Parallel tasks

ADLB for short

41

masters

workers

 Lusk et al. More scalability, less pain: A simple

programming model and its implementation for extreme

computing. SciDAC Review 17, 2010

MPI: THE MESSAGE PASSING INTERFACE

 Programming model used on large supercomputers

 Can run on many networks, including sockets, or shared memory

 Standard API for C and Fortran; other languages have working implementations

 Contains communication calls for

– Point-to-point (send/recv)

– Collectives (broadcast, reduce, etc.)

 Interesting concepts

– Communicators: collections of

communicating processing and

a context

– Data types: Language-independent

data marshaling scheme

– Can recursively create subordinate MPI

contexts in a variety of ways

42

PARALLEL TASKS IN CANDLE WORKFLOWS

 Model parallelism: running the same network across nodes

Complex concurrency structures

43

 Library approach:

– Use Swift/T @par syntax

– Uses MPI 3 to dynamically create

communicator from group

– User task library accepts

communicator via function input

– Approach developed for other

scientific computing cases,

LAMMPS, NAMD, DIY, etc.

 MPI_Launch approach

– Use Swift/T launch() function

– Creates MPI 3 group

– Launches mpiexec on those

resources, creating a new

MPI_COMM_WORLD and separate

processes (fault tolerance)

– Works on clusters

– Working with Cray on support –

available soon

EXTREME-SCALE MODEL EXPLORATION WITH

SWIFT (EMEWS)

EMEWS WORKFLOW STRUCTURE

45

 The core novel contributions of EMEWS are shown in green, these allow the Swift

script to access a running Model Exploration (ME) algorithm, and create an

inversion of control (IoC) workflow

 Both green and blue boxes accept existing multi-language code

EMEWS: EXTREME-SCALE MODEL
EXPLORATION WORKFLOWS IN SWIFT/T

 To query the state of the EA, we designate one worker on location L for exclusive

use by DEAP. Other optimizers can easily be used (e.g., mlrMBO in CANDLE)

 http://www.mcs.anl.gov/~emews/tutorial

46

http://www.mcs.anl.gov/~emews/tutorial
http://www.mcs.anl.gov/~emews/tutorial
http://www.mcs.anl.gov/~emews/tutorial

PREVIOUS WORK ON HPC WORKFLOWS

Other uses of workflows to control model exploration (ME) typically take

one of two approaches

1. They provide rich support for arithmetic operations so that ME

algorithms can be constructed (ported)
– requires that algorithm be coded from scratch

– impossible to reuse code in other languages

2. The ME algorithm is provided as a built-in feature of the system
– does not allow the end users much control over the algorithm used

– may require access to workflow system source code in order to

incorporate external ME algorithms or to modify built-in algorithms

In both cases, the many libraries being actively developed and

implemented as free and open source software in programming languages

such as R and Python cannot be directly/easily utilized.
47

SUMMARY OF KEY SYSTEM POINTS

 What about Swift/T enables CANDLE?

– A workflow system that is actually a hierarchical programming language

– Runs entirely on the compute nodes

– Uses standard APIs for HPC (MPI), allows for minimal OS environment

– Very scalable

– Supports MPI tasks, embedded Python, R interpreters

 What about EMEWS enables CANDLE?

– Allows user to focus on two sequential codes

• The optimizer

• Their objective function code

– Everything else is managed by the system

48

Application

Dataflow,

annotations

FEATURES FOR BIG DATA ANALYSIS

49

• Location-aware scheduling

User and runtime coordinate data/task

locations

• Collective I/O

User and runtime coordinate data/task

locations

Runtime

Hard/soft locations

Distributed data

Application

I/O hook

Runtime

MPI-IO transfers

Distributed data

Parallel FS
• F. Duro et al. Flexible data-aware scheduling

for workflows over an in-memory object

store. Proc. CCGrid, 2016.

INTERACTION WITH ECP CODAR, ECP CANDLE
With Justin M. Wozniak (CANDLE) and Tong Shu (CODAR)

50

 CANDLE workflows produce a great number of

medium-sized ML models

 Goal: Cache these on compute node storage for

possible later use

 Need to flush to global FS before end of run, but

many models will be discarded

 Plan: Integrate Swift/T workflow system used in

CANDLE with Mochi client

 Accelerate CANDLE workflow performance, enable

novel training strategies (parameter sharing)

 Provide an opportunity for workflow-based data

analysis and I/O reduction

 Demonstrate the utility of node-local storage for

complex workflows

Swift/T training workflow

CANDLE

benchmark

TensorFlow

CANDLE

TensorFlow

…

Parallel FS

Mochi Services

Good NN model

THANKS

 Thanks to the organizers

 Code and guides:

– CANDLE GitHub Organization: https://github.com/ECP-CANDLE

– Swift/T Home: http://swift-lang.org/Swift-T

– EMEWS Tutorial: http://emews.org

 This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the

U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,

responsible for delivering a capable exascale ecosystem, including software, applications, and hardware

technology, to support the nation’s exascale computing imperative.

51

TUTORIAL: SUPERVISOR

HANDS-ON TUTORIAL: SUPERVISOR

 May be found here: https://github.com/ECP-CANDLE/Tutorials

directory 2018/NIH

 See the top-level README to get started with the installation

53

