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OUTLINE 

 Overview of CANDLE project 

 

 Overview of hyperparameter optimization 

– Introduction to hyperparameter optimization 

– Workflow-based solution: EMEWS 

 

 Afternoon tutorial:  

– Hyperparameter optimization of a CANDLE Benchmark 
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CANDLE TUTORIALS 

 May be found here: https://github.com/ECP-CANDLE/Tutorials  

– Subdirectory 2018/NIH 

 

 See the top-level README to get started with the installation 
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CANDLE OVERVIEW 



CANDLE WORKFLOWS: GOALS 
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 Develop an exascale deep learning environment for cancer 

 

 Building on open source deep learning frameworks and middleware 

 

 Optimization for CORAL and exascale platforms 

 

 Support all three pilot project needs for deep learning – common abstractions 

 

 Collaborate with DOE computing centers, HPC vendors and ECP co-design and software 
technology projects  

 

 Mission statement: Enable the most challenging deep learning problems in cancer 
research to run on the most capable supercomputers in the DOE 

 



CANDLE SOFTWARE STACK 
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Hyperparameter Sweeps,  

Data Management (e.g. DIGITS, Swift, etc.) 

Architecture Specific Optimization Layer  

(e.g. cuDNN, MKL-DNN, etc.) 

Tensor/Graph Execution Engine  

(e.g. Theano, TensorFlow, LBANN-LL, etc.)  

Network description, Execution scripting API 

(e.g. Keras, Mocha) 

Workflow 

Scripting 

Engine 

Optimization 



HYPERPARAMETER OPTIMIZATION 

 



WHAT IS HYPERPARAMETER OPTIMIZATION  

 Neural networks have a large number of possible configuration parameters, 

called hyperparameters 

– Avoids collision with NN weights, which are sometimes called parameters 

 Applying optimization can automate part of the design of the neural network 

 

 In the cancer Pilot 1 autoencoder shown,  

the system can determine 

– How many neurons to put in each layer 

– What activation function to use 

– What batch size to use 

– Etc. 

 

Hyperparameter optimization = HPO 
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MATHEMATICAL EXPRESSION FOR HPO 

 For a given problem: 

– A loss function F is determined on a given NN (usually accuracy) 

– The hyperparameter optimization problem is to minimize F(p),  

• for all hyperparameter sets p in the valid parameter space P,  

• however, P is large and F is expensive.   

• P is the cross product of all valid network settings,  

– some of which may be categorical, some integer, some continuous.   

• Evaluating F involves training the network on a training data set and 

applying it to the validation set 

 We can use a generic, previously developed method to optimize F ! 

 These methods require and can use large compute resources 
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BASIC STRATEGIES  

 Grid search 

 

 Random search 

 

 Generic optimization 

– Stochastic gradient descent 

– Evolutionary algorithms 

– Model-based optimization (mlrMBO in R) 

 NN hyperparameter-specific optimization 

– Hyperopt, NEAT, Optunity, … 
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CANDLE HYPERPARAMETER LEARNING 
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Predicting Tumor Cell Line Response to Drug Pairs with Deep Learning, F. Xia, M. Shukla, T. 

Brettin, C. Garcia-Cardona, J. Cohn, J. Allen, S. Maslov, Y. Evrard, S. Holbeck, J. Doroshow, E. 

Stahlberg, and R. Stevens (Computational Approaches for Cancer Workshop @ SC 2017) 

• Search trajectory of mlrMBO 

(R model-based optimization) 

algorithm 

• Each iteration does 300 

evaluations (batch size) 

• Minimum and average 

performance on validation 

data set decreases as the 

ME algorithm learns 



CANDLE: WORKFLOWS 



CANDLE SYSTEM OVERVIEW 
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CANDLE Supervisor 

Workflow Manager 
(Swift-T EMEWS) 

ALCF  
Theta, 

Cooley 

NERSC 
Cori 

OLCF 
Titan, 

SummitDev 

Hyperparameter Optimization 

Frameworks 
Hyperopt, mlrMBO, Spearmint 

Benchmarks 

Datasets 

Models 

Experiments 

Runs 

Metadata Store 
Model 

Store 

Data API 

Model 

Description

s 

Model 

Weights 

CANDLE Database 

Integrator Website 

Hardware Resources 

Benchmark 

Spec 

Hyperparameter 

Spec 

Hardware 

Spec 

CANDLE Specifications 

ML/DL Benchmarks 

Pilot 1 Pilot 2 Pilot 3 



PARALLELISM STRATEGIES 
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Model 

Parallel 

10x-100x ... ... 

Hyperparameter Search: up to ~10,000x 
Depends on search strategy 

Data Parallel: 10x-1000x Data Parallel   

10x-1000x 

... 
Model 

Parallel 

10x-100x 

Model 

Parallel 

10x-100x 

Model 

Parallel 

10x-100x 

Model 

Parallel 

10x-100x 

10,000 x 10-1000 x 10-100 = 1M – 1000M  processing elements 
 



CANDLE PERFORMANCE 
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having EMEWS as a generally available and applicable workflow enhancing resource will allow researchers 

and collaborators to identify previously unrecognized similarities in their approaches, thus facilitating the cross-
pollination of advanced modeling methods throughout the cancer community. This in turn holds the promise of 

promoting new collaborations and generating new interactions that can leverage the knowledge being 

generated in the study of cancer. EMEWS is a distinct advance over existing ME workflow systems, 

which typically take one of two approaches, both of which present barriers to entry for researchers 
intent on large-scale exploration of their models. These existing systems either: 

1. Require the ME algorithm to be directly encoded in, i.e., developed in or ported to, the workflow language, 

e.g., Swift/T 
2. Provide the ME algorithm as a built-in feature of the workflow system, e.g., Nimrod/O [3] and Dakota [4]  

In both these circumstances the restriction on the workflow language limits the range of ME tools that 

can be employed, requiring recoding and retesting of the ME tools. For example, many libraries relevant to ME 
being actively developed and implemented as free and open source software in popular data analysis 

programming languages such as R and Python cannot be directly utilized. This can be a significant obstacle 

to researchers who may now need to implement sophisticated algorithms in a new language that may not be 

optimally suited for the task, and greatly limits their ability to fully exploit the advances in ME methodology. 
Additionally, many workflow systems primarily utilize file-based I/O to coordinate the data dependencies 

between tasks. This severely impacts scalability on typical peta-scale class systems. Swift/T, on the other 

hand, generates MPI programs and so can utilize message passing to make calls to leaf tasks, i.e., external 
functions written in C, C++, Fortran, Python, R, Tcl, Julia, Qt Script. This allows for enhanced performance, 

e.g., the ability to launch 1.5 billion tasks/s. This capability complements the ability to call executable programs, 

through shell scripts via command line arguments.  
 

Preliminary Work: 

Scaling Flexibility of EMEWS 

A stated benefit of EMEWS is 
its ability to provide flexibility while 

maintaining performance. Swift/T, the 

underlying EMEWS workflow engine, 
allows us to abstract the scheduler 

and compute layout settings for a 

variety of target computing resources. 

The launch parameters for Swift/T 
allow the specification of the scheduler 

type, processor count, workers per 

node, and other common settings in a 
uniform way. Cancer projects using 

EMEWS have been run on numerous 

HPC resources, as seen in Table 1. 
 

Cancer Epidemiology and Population-

level Decision Support: CISNET 

Applications 
 Cancer Intervention and Surveillance Modeling Network (CISNET: cisnet.cancer.gov) is a consortium of 

NCI-sponsored investigators who use mathematical modeling to improve our understanding of cancer control 

interventions in prevention, screening, and treatment and their effects on population trends in incidence and 
mortality. These models have been used to guide public health research and priorities [5-10], and they can aid 

in the development of optimal cancer control strategies. As part of a series of pilot projects proposed by the 

Department of Energy and NCI collaboration to bring HPC computing resources to cancer (Joint Design of 
Advanced Computing Solutions for Cancer), projects from the CISNET Colorectal Cancer (CRC) Working 

Group were connected with the EMEWS development team. The CRC models all simulate the development of 

precancerous lesions (adenomas), the progression of adenomas to preclinical cancer, and the progression of 

preclinical cancer to clinical cancer. Because this natural history process cannot be informed directly by data, 
the model parameters that describe this process need to be estimated by model calibration. The collaborations 

between CISNET and EMEWS primarily focused on the problem of characterizing the uncertainty associated 

with the mean outputs of these models, a necessary capability to increase the impact and utilization of nearly 

Machine Architecture (Nov 2017 Top 500 
ranking) 

Scheduler 

OLCF Titan at Oak Ridge 

National Laboratory 

Cray XK7, AMD Opteron / K20X (5) 

 
PBS   

NERSC Cori at Lawrence 

Berkeley National 
Laboratory 

Cray XC40, Intel Xeon Phi / E5 (8) SLURM 

ALCF Mira at Argonne 
National Laboratory 

BlueGene/Q, PowerPC A2 (11) 
 

Cobalt 

ALCF Theta at Argonne 

National Laboratory 

Cray XC40, Intel Xeon Phi (18) 

	
Cobalt   

NIH Biowulf HP Apollo XL1x0r, Intel Xeon E5 
(66) 

SLURM 

Blues, Bebop at Argonne 
National Laboratory 

Intel Xeon Phi / E5 (148) PBS/SLURM 

Beagle2 at University of 

Chicago 

Cray XE6, AMD Operton (NA) 

 

PBS 

Midway, Midway2 at 
University of Chicago 

Intel various / AMD Opteron (NA) SLURM 

Table 1: Examples of HPC Resources used by EMEWS 	

• Delivers 1+ petaflop! 



LOAD OVER TIME FOR SEARCH 

 

 

 

 

 

 

 

 

 Typical load plot for NT3 workflow on Cori 
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RAMP UP / RAMP DOWN 

 

 

 

 

 

 

 

 

 

 Zoom in on single iteration on Titan 
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SYSTEMS CHALLENGES 

 



NOTES ON REQUIREMENTS 
Simulation Applications 

 64bit floating point 

 Memory Bandwidth 

 Random Access to Memory 

 Sparse Matrices 

 Distributed Memory jobs 

 Synchronous I/O multinode 

 Scalability Limited comm 

 Low Latency High Bandwidth 

 Large Coherency Domains  

help sometimes 

 O typically greater than I 

 O rarely read 

 Output is data 
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Big Data Applications 

 64 bit and Integer important 

 Data analysis Pipelines 

 DB including No SQL 

 MapReduce/SPARK 

 Millions of jobs 

 I/O bandwidth limited 

 Data management limited 

 Many task parallel  

 Large-data in and 

Large-data out 

 I and O both important 

 O is read and used 

 Output is data 

Deep Learning Applications 

 Lower Precision (fp32, fp16) 

 FMAC @ 16 summing to 32 

 Inferencing can be 8 bit (TPU) 

 Scaled integer possible 

 Training dominates dev 

 Inference dominates pro 

 Data pipelines needed 

 Dense FP typical SGEMM 

 Small DFT, CNN 

 Ensembles and search 

 Single Models Small 

 I more important than O 

 Reuse of training data 

 Output is models 



WORKFLOW SUPPORT FOR ML FRAMEWORKS 

 Concurrency: 

– Scalable task distributor 

– Intranode concurrency, accelerators left up to the framework 

– Multinode ML tasks are future work (already basically supported) 

 Data management: 

– Input staging methods have been developed  

– Intermediate caches via DataSpaces 

 Software integration: 

– Usually launch frameworks in separate process 

– Launching within process is a configuration challenge 

– Search methods launched within process 
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 Write site-independent scripts  

 Automatic parallelization and data movement 

 Run native code, script fragments as applications 

 Rapidly subdivide large partitions for  

MPI jobs 

 Move work to data locations 

 

SWIFT/T: ENABLING HIGH-PERFORMANCE 
SCRIPTED WORKFLOWS 
Supports tasks written in many languages 

Swift/T 
control 
process 

Swift worker 
process 

 
 
 
 
 
 

C 
C+
+ 

Fortr
an 

 
 
 
 
 
 

C 
C+
+ 

Fortr
an 

 
 
 
 
 
 

C C++ Fortran 

MPI 

Swift/T worker 

64K cores of Blue Waters 
2 billion Python tasks 
14 million Pythons/s  Interlanguage parallel scripting for 

distributed-memory scientific computing.  

Proc. WORKS @ SC 2015 



THE SWIFT PROGRAMMING MODEL 
 

 F() and G() implemented in native code or external programs 

 F() and G()run in concurrently in different processes 

 r is computed when they are both done 

 This parallelism is automatic 

 Works recursively throughout the program’s call graph 

 

All progress driven by concurrent dataflow 
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LANGUAGE GOALS 

 Make it easy to run large batteries of external program or library executions 

 

 Provide rich programming language at the top level – fully generic 

 

 Support implicit concurrency and conventional programming constructs 

 

 Enable complex tasks based in other scripting languages (e.g., Python) or 

parallel MPI tasks 

 

 

Hierarchical, naturally parallel, script-like programming 
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SWIFT SYNTAX 

 Data types 

 

 Shell access 

 

 Structured data 
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 Conventional expressions 

 

 Parallel loops 

 

 Data flow 

 Swift: A language for distributed parallel scripting.   

J. Parallel Computing 2011 

 Compiler techniques for massively scalable implicit task 

parallelism. Proc. SC 2014 

 

 



CENTRALIZED EVALUATION IS A BOTTLENECK 
AT EXTREME SCALES  

36 

Had this (Swift/K):  Now have this (Swift/T):  

 Turbine: A distributed-memory dataflow engine for high performance many-task 

applications. Fundamenta Informaticae 28(3), 2013 



SWIFT/T: FULLY PARALLEL EVALUATION                                  
OF COMPLEX SCRIPTS 
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• Swift/T: Scalable data flow programming for distributed-memory task-

parallel applications . Proc. CCGrid, 2013.  

 



SWIFT FOR REALLY PARALLEL BUILDS 
Plus language features- typed files, arrays, string processing 
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SWIFT/T COMPILER AND RUNTIME 

 

 

 

 

 

 

 

 

 

 

 STC translates high-level Swift 

expressions into low-level  

Turbine operations: 
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– Create/Store/Retrieve typed data 

– Manage arrays 

– Manage data-dependent tasks 

 



ACCESSING PYTHON FROM SWIFT/T 
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global const string numpy = "from numpy import *\n\n";  

typedef matrix string;  

 

(matrix A) eye(int n) {  

  command = sprintf("repr(eye(%i))", n);  

  code = numpy+command;  

  matrix t = python(code);  

  A = replace_all(t, "\n", "", 0);  

}  

 

(matrix R) add(matrix A1, matrix A2) {  

  command = sprintf("repr(%s+%s)", A1, A2);  

  code = numpy+command;  

  matrix t = python(code);  

  R = replace_all(t, "\n", "", 0);  

} 

a1 = eye(3);  

a2 = eye(3);  

sum = add(a1, a2);  

printf("2*eye(3)=%s", sum); 



ASYNCHRONOUS DYNAMIC LOAD BALANCER 

 An MPI library for master-worker  

workloads in C 

 Uses a variable-size, scalable  

network of servers 

 Servers implement  

work-stealing 

 The work unit is a byte array 

 Optional work priorities, targets, types 

 

 For Swift/T, we added: 
– Server-stored data 

– Data-dependent execution 

– Parallel tasks 

 

 

ADLB for short 
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masters 

workers 

 Lusk et al.  More scalability, less pain: A simple 

programming model and its implementation for extreme 

computing. SciDAC Review 17, 2010 



MPI: THE MESSAGE PASSING INTERFACE 

 Programming model used on large supercomputers 

 Can run on many networks, including sockets, or shared memory 

 Standard API for C and Fortran; other languages have working implementations 

 Contains communication calls for  

– Point-to-point (send/recv) 

– Collectives (broadcast, reduce, etc.) 

 Interesting concepts 

– Communicators: collections of  

communicating processing and  

a context 

– Data types: Language-independent 

data marshaling scheme 

– Can recursively create subordinate MPI 

contexts in a variety of ways 
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PARALLEL TASKS IN CANDLE WORKFLOWS 

 Model parallelism: running the same network across nodes 

 

 

 

 

Complex concurrency structures 
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 Library approach: 

– Use Swift/T @par syntax 

– Uses MPI 3 to dynamically create 

communicator from group 

– User task library accepts 

communicator via function input 

– Approach developed for other 

scientific computing cases, 

LAMMPS, NAMD, DIY, etc. 

 

 

 MPI_Launch approach 

– Use Swift/T launch() function 

– Creates MPI 3 group 

– Launches mpiexec on those 

resources, creating a new 

MPI_COMM_WORLD and separate 

processes (fault tolerance) 

– Works on clusters 

– Working with Cray on support – 

available soon 

 



EXTREME-SCALE MODEL EXPLORATION WITH 

SWIFT (EMEWS) 



EMEWS WORKFLOW STRUCTURE 
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 The core novel contributions of EMEWS are shown in green, these allow the Swift 

script to access a running Model Exploration (ME) algorithm, and create an 

inversion of control (IoC) workflow 

 Both green and blue boxes accept existing multi-language code 

 



EMEWS: EXTREME-SCALE MODEL 
EXPLORATION WORKFLOWS IN SWIFT/T 

 To query the state of the EA, we designate one worker on location L for exclusive 

use by DEAP. Other optimizers can easily be used (e.g., mlrMBO in CANDLE) 

 

 

 

 

 

 

 

 

 

 

 

 http://www.mcs.anl.gov/~emews/tutorial 
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http://www.mcs.anl.gov/~emews/tutorial
http://www.mcs.anl.gov/~emews/tutorial
http://www.mcs.anl.gov/~emews/tutorial


PREVIOUS WORK ON HPC WORKFLOWS 

Other uses of workflows to control model exploration (ME) typically take 

one of two approaches 

1. They provide rich support for arithmetic operations so that ME 

algorithms can be constructed (ported) 
– requires that algorithm be coded from scratch 

– impossible to reuse code in other languages  

2. The ME algorithm is provided as a built-in feature of the system  
– does not allow the end users much control over the algorithm used  

– may require access to workflow system source code in order to 

incorporate external ME algorithms or to modify built-in algorithms 

In both cases, the many libraries being actively developed and 

implemented as free and open source software in programming languages 

such as R and Python cannot be directly/easily utilized.  
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SUMMARY OF KEY SYSTEM POINTS 

 What about Swift/T enables CANDLE? 

– A workflow system that is actually a hierarchical programming language 

– Runs entirely on the compute nodes 

– Uses standard APIs for HPC (MPI), allows for minimal OS environment 

– Very scalable 

– Supports MPI tasks, embedded Python, R interpreters 

 What about EMEWS enables CANDLE? 

– Allows user to focus on two sequential codes 

• The optimizer 

• Their objective function code 

– Everything else is managed by the system 
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Application 

Dataflow,  

annotations 

FEATURES FOR BIG DATA ANALYSIS 
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• Location-aware scheduling 

User and runtime coordinate data/task 

locations 

• Collective I/O 

User and runtime coordinate data/task 

locations 

Runtime 

Hard/soft locations 

Distributed data 

Application 

I/O hook 

Runtime 

MPI-IO transfers 

Distributed data 

Parallel FS 
• F. Duro et al. Flexible data-aware scheduling 

for workflows over an in-memory object 

store. Proc. CCGrid, 2016.  



INTERACTION WITH ECP CODAR, ECP CANDLE 
With Justin M. Wozniak (CANDLE) and Tong Shu (CODAR) 
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 CANDLE workflows produce a great number of 

medium-sized ML models 

 Goal: Cache these on compute node storage for 

possible later use 

 Need to flush to global FS before end of run, but 

many models will be discarded 

 Plan: Integrate Swift/T workflow system used in 

CANDLE with Mochi client 

 Accelerate CANDLE workflow performance, enable 

novel training strategies (parameter sharing) 

 Provide an opportunity for workflow-based data 

analysis and I/O reduction 

 Demonstrate the utility of node-local storage for 

complex workflows 

Swift/T training workflow 

CANDLE 

benchmark 

TensorFlow 

CANDLE 

TensorFlow 

… 

Parallel FS 

Mochi Services 

Good NN model 



THANKS 

 Thanks to the organizers 

 

 Code and guides: 

– CANDLE GitHub Organization: https://github.com/ECP-CANDLE 

– Swift/T Home: http://swift-lang.org/Swift-T 

– EMEWS Tutorial: http://emews.org 

 

 This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the 

U.S. Department of Energy’s Office of Science and National Nuclear Security Administration, 

responsible for delivering a capable exascale ecosystem, including software, applications, and hardware 

technology, to support the nation’s exascale computing imperative. 
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TUTORIAL: SUPERVISOR 



HANDS-ON TUTORIAL: SUPERVISOR 

 May be found here: https://github.com/ECP-CANDLE/Tutorials 

directory 2018/NIH 

 

 See the top-level README to get started with the installation 
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