

Pathomics Based Biomarkers, Tools and Methods

Joel Saltz

Department of Biomedical Informatics Stony Brook University

> Imaging Community Call October 24, 2016

SUNY

Hugue Ouellette, M.D. Patrice Tétreault, M.D.

Multi-scale Integrative Analysis in Biomedical Informatics

- Predict treatment outcome, select, monitor treatments
- Reduce inter-observer variability in diagnosis
- Computer assisted exploration of new classification schemes
- Multi-scale cancer simulations

Pathomics, Radiomics

Identify and segment trillions of objects – nuclei, glands, ducts, nodules, tumor niches ... from Pathology, Radiology imaging datasets

Extract features from objects and spatio-temporal regions

Support queries against ensembles of features extracted from multiple datasets

Statistical analyses and machine learning to link Radiology/Pathology features to "omics" and outcome biological phenomena

Principle based analyses to bridge spatio-temporal scales – linked Pathology, Radiology studies

Radiomics

Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach

Hugo J. W. L. Aerts et. Al.

Nature Communications **5**, Article number: 4006 doi:10.1038/ncomms5006

Pathomics

Integrative Morphology/"omics"

Quantitative Feature Analysis in Pathology: Emory In Silico Center for Brain Tumor Research (PI = Dan Brat, PD= Joel Saltz)

NLM/NCI: Integrative Analysis/Digital Pathology R01LM011119, R01LM009239 (Dual PIs Joel Saltz, David Foran)

J Am Med Inform Assoc. 2012 Integrated morphologic analysis for the identification and characterization of disease subtypes.

Lee Cooper, Jun Kong

Tools to Analyze Morphology and Spatially Mapped Molecular Data - U24 CA180924

- **Specific Aim 1** Analysis **pipelines** for multi- scale, integrative image analysis.
- Specific Aim 2: Database infrastructure to manage and query Pathomics features.
- Specific Aim 3: HPC software that targets clusters, cloud computing, and leadership scale systems.
- **Specific Aim 4:** Develop **visualization** middleware to relate Pathomics feature and image data and to integrate Pathomics image and "omic" data.

SEER Virtual Tissue Repository

- Lynne Penberthy MD, MPH NCI SEER
- Ed Helton PhD NCI CBIIT Clinical Imaging Program
- Ulrike Wagner CBIIT Clinical Imaging Program
- Radim Moravec NCI PhD, NCI SEER
- Ashish Sharma PhD Biomedical Informatics Emory
- Joel Saltz MD, PhD Biomedical Informatics Stony Brook
- Tahsin Kurc PhD Biomedical Informatics Stony Brook

Vision – Enable population/epidemiological cancer research that leverages rich cancer phenotype information available from Pathology tissue studies

NCIP/Leidos 14X138 and HHSN261200800001E - NCI

SEER Virtual Tissue Repository

- SEER registries are a potential source of information about unusual outcomes and rare cancers
- Leverage Pathology labs which store FFPE tumors, slides and digital images
- Link to SEER data track long term outcomes
- Accrue linked clinical data, Pathology slides from SEER sites

SEER VIRTUAL TISSUE REPOSITORY

- Create linked collection of de-identified clinical data and whole slide images
- Extract features from a sample set of images (pancreas and breast cancer).
- Enable search, analysis, epidemiological characterization
- Pilot focus on extreme outcome Breast Cancer, Pancreatic Cancer cases
- Display images and analyzed features

Robust Nuclear Segmentation

- Robust ensemble algorithm to segment nuclei across tissue types
- Optimized algorithm tuning methods
- Parameter exploration to optimize quality
- Systematic Quality Control pipeline encompassing tissue image quality, human generated ground truth, convolutional neural network critique
- Yi Gao, Allen Tannenbaum, Dimitris Samaras, Le Hou, Tahsin Kurc

Cell Morphometry Features

Whole Slide Images (WSI)

Compute Cluster Process the images for subjects selected Compute object-level (nucleus-Segmentation level) image features Parameters Compute aggregated patientlevel image features from object-level features

FeatureDB

Load object-level imaging features and segmentation results
Load patient-level imaging features along with a selected subset of clinical and genomic data (e.g. gene mutations, days to death, vital status)

Feature Explorer Suite

- Explore Relationship Between Imaging Features, Outcome, "omics"
- Explore relationships between features and explore how features relate to images

Feature Explorer - Integrated Pathomics Features, Outcomes and "omics" – TCGA NSCLC Adeno Carcinoma Patients

Feature Explorer - Integrated Pathomics Features, Outcomes and "omics" – TCGA NSCLC Adeno Carcinoma Patients

Collaboration with MGH – Feature Explorer – Radiology Brain MR/Pathology Features

Collaboration with SBU Radiology – TCGA NSCLC Adeno Carcinoma Integrative Radiology, Pathology, "omics", outcome

Mary Saltz, Mark Schweitzer SBU Radiology

Pathomics

Relationship Between Image and Features

size, shape, color) and non-intuitive features (i.e. wavelets, texture) to the ground truth of source images through an interactive web-based user interface.

FeatureScape: u24 case preview prototype 🐱

Preview of using featurescape to explore different patient case ids. For an interactive visualization of Pathology results (including links to the cBio reccord) see TCGAscope.

preview Case IDs

 TCGA-34-2605-01Z-00-DX1, (cbio) random seed: 0.559, feature sample size: 1000 TCGA-38-4625-01Z-00-DX1, (cbio) random seed:0.628, feature sample size: 1000 TCGA-38-4626-01Z-00-DX1, (cbio) random seed:0.700, feature sample size: 1000 TCGA-38-4628-01Z-00-DX1, (cbio) random seed:0.016, feature sample size: 1000 TCGA-38-4629-01Z-00-DX1, (cbio) random seed:0.185, feature sample size: 1000 TCGA-38-6178-01Z-00-DX1, (cbio) random seed:0.317, feature sample size: 1000 TCGA-38-A44F-01Z-00-DX1, (cbio) random seed: 0.906, feature sample size: 1000 TCGA-50-5044-01Z-00-DX1, (cbio) random seed:0.055, feature sample size: 1000 TCGA-50-5045-01Z-00-DX1, (cbio) random seed: 0.946, feature sample size: 1000 TCGA-50-5045-01Z-00-DX2, (cbio) random seed: 0.551, feature sample size: 1000 TCGA-50-5055-01Z-00-DX1, (cbio) random seed:0.127, feature sample size: 1000 TCGA-34-5232-01Z-00-DX1, (cbio) random seed: 0.208, feature sample size: 1000 13. TCGA-50-5055-01Z-00-DX2, (cbio) random seed:0.321, feature sample size: 1000 14. TCGA-50-5066-01Z-00-DX1, (cbio) random seed:0.711, feature sample size: 1000 TCGA-50-5066-02Z-00-DX1, (cbio) random seed:0.008, feature sample size: 1000 TCGA-50-5942-01Z-00-DX1, (cbio) random seed: 0.031, feature sample size: 1000 TCGA-50-5946-01Z-00-DX1, (cbio) random seed: 0.768, feature sample size: 1000 TCGA-50-6590-01Z-00-DX1, (cbio) random seed: 0.668, feature sample size: 1000 TCGA-50-6591-01Z-00-DX1, (cbio) random seed: 0.498, feature sample size: 1000

featurescape of sampled features featurescape of sampled features

Select Feature Pair – dots correspond to nuclei

FeatureScape a reliminary demo of integrative use of multiple FeatureScape tools

1000 entries sampled from https://tahsin175.informatics.stonybrook.edu:4500/?limit=1000&find={%22randval%22: {%22\$gte%22:0.149},%22provenance.analysis_execution_id%22:%22lung-features-v4%22,%22image.caseid%22:%22TCGA-38-4628-01Z-00-DX1%22}

+ Load Data

Cross-tabulated feature correlations

000000000000000000000000000000000000000
0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
00000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000

- PrincipalMoments0
- EquivalentEllipsoidDiameter1

Resample from selected region (under development)

Subregion selected – form of gating analogous to flow cytometry

FeatureScape a reliminary demo of integrative use of multiple FeatureScape tools

1000 entries sampled from https://tahsin175.informatics.stonybrook.edu:4500/?limit=1000&find={%22randval%22: {%22\$gte%22:0.149},%22provenance.analysis_execution_id%22:%22lung-features-v4%22,%22image.caseid%22:%22TCGA-38-4628-01Z-00-DX1%22}

+ Load Data

Cross-tabulated feature correlations

FeretDiameter	000000000000000000000000000000000000000
MeanR	000000000000000000000000000000000000000
MeanG	000000000000000000000000000000000000000
MeanB	000000000000000000000000000000000000000
StdR	000000000000000000000000000000000000000
StdG	000000000000000000000000000000000000000
StdB	000000000000000000000000000000000000000
EquivalentSphericalRadius	000000000000000000000000000000000000000
EquivalentEllipsoidDiameter0	000000000000000000000000000000000000000
EquivalentEllipsoidDiameter1	00000000000000000000000000000000000000
Perimeter	000000000000000000000000000000000000000
EquivalentSphericalPerimeter	rooooooooooooooooooooooo
PrincipalMoments0	000000000000000000000000000000000000000
PhysicalSize	000000000000000000000000000000000000000
PrincipalMoments1	000000000000000000000000000000000000000
Area	000000000000000000000000000000000000000
NumberOfPixels	000000000000000000000000000000000000000
NumberOfPixelsOnBorder	00000000000000000000000000000000000000
Roundness	000000000000000000000000000000000000000
Elongation	000000000000000000000000000000000000000
Flatness	000000000000000000000000000000000000000

PrincipalMoments0

Pearson correlation between

- PrincipalMoments0
- EquivalentEllipsoidDiameter1

Resample from selected region (under development)

Sample Nuclei from Gated Region

Gated Nuclei in Context

🖉 🖉 🖉 🛛 🔍 🖉 📘 📔 🛛 🚺

1

caMicroscope

SubjectID :TCGA-38-4628-01Z-00-DX1

Algorithm Comparison, Validation, Uncertainty Quantification

- High quality image analysis algorithms are essential to support biomedical research and diagnosis
 - Validate algorithms with human annotations
 - Compare and consolidate different algorithm results

e.g.: what are the distances and overlap ratios between markup boundaries from two algorithms?

Cross matching of two spatial data sets

Green: algorithm 1 Red: algorithm 2

Introduction

caMicroscope/MongoDB - Multiple Algorithm Comparison; Generate and Curate Pathomics Feature set

Compare Algorithm Results

Heatmap – Depicts Agreement Between Algorithms

caMicroscope

SubjectID :TCGA-12-1090-01Z-00-DX1

3D Slicer Pathology – Generate High Quality Ground Truth

ITCR - Tools to Analyze Morphology and Spatially Mapped Molecular Data

0 🖈

Whole Slide Images (WSI)

300 \$

25 2

1.00 . .

Apply Segmentation Algorithm

0

ITCR - Tools to Analyze Morphology and Spatially Mapped Molecular Data

Adjust algorithm parameters, manual fine tuning

Auto-tuning and feature extraction

- Goal correctly segment trillions of objects (nuclei)
- Adjust algorithm parameters
- Autotuning finds parameters that best match ground truth in an image patch
- Region template runtime support to optimize generation and management of multi-parameter algorithm results
- Eliminates redundant computation, manages locality
- Active Harmony Jeff Hollingsworth!!
- Collaboration George Teodoro, Tahsin Kurc

E-Eliminate Duplicate Compuations

Performance Optimization

256 nodes of Stampede. Each node of the cluster has a dual socket Intel Xeon E5-2680 processors, an Intel Xeon Phi SE10P co-processor and 32GB RAM.The nodes are inter-connected via Mellanox FDR Infiniband switches.

Classification

- Automated or semi-automated identification of tissue or cell type
- Variety of machine learning and deep learning methods
- Classification of Neuroblastoma
- Classification of Gliomas
- Quantification of lymphocyte infiltration

- RISTI//NIBIB Center for Grid Enabled Image Analysis P20 EB000591, PI Saltz computer Ontology Schwannian
- Analyze the whole tissue, several slides
- Provide quantitative information to the pathologist
- Reduce inter- and

Hiro Shimada, Metin Gurcan, Jun Kong, Lee Cooper Joel Saltz

Gurcan, Shamada, Kong, Saltz

Neuroblastoma Classification

FH: favorable histology UH: unfavorable histology CANCER 2003; 98:2274-81

Multi-Scale Machine Learning Based Shimada Classification System

- Background Identification
- Image Decomposition (Multi-resolution levels)
- Image Segmentation (EMLDA)
- Feature Construction (2nd order statistics, Tonal Features)
- Feature Extraction (LDA) + Classification (Bayesian)
- Multi-resolution Layer Controller (Confidence Region)

Fig. 8. Sample classification results after processing a whole-slide NB image. (a) and (d) are the H&E stained NB slides associated with stroma-rich and stroma-poor by an expert pathologist. (b) and (e) are the classification maps identified by the computerized system where the red color corresponds to stroma-rich regions and the green color corresponds to stroma-poor regions. (c) and (f) are the corresponding decision level statistics that show in log-scale the number of image tiles classified at a certain resolution level. In the resolution level map on the upper right, cyan color represents the lowest resolution and green color represents the highest resolution, respectively.

Brain Tumor Classification – CVPR 2016

Combining Information from Patches

Engineering details

- CNN architecture: AlexNet and VGG16
- Patch size: 500x500, Multiple scale

- Dataset: TCGA [gdc-portal.nci.nih.gov]
- Number of Patches: 1000 per WSI

Brain Tumor Classification Results

Methods Accuracy

- VGG16 features + BoW + SVM 0.667
 - Patch-CNN + Voting 0.710
 - Patch-CNN + Max-pooling 0.710
 - Our method 0.771
- Pathologists' Agreement [M. Gupta 2015] 0.7-0.8 (on a similar dataset)

Confusion Matrix: OA is very hard even for pathologists	GBM	OD	OA	DA	AA	AO
Glioblastoma, Grade IV (GBM)	214		2		1	
Oligodendroglioma, Grade II (OD)	1	47	22	2		1
Oligoastrocytoma, Grade II & III (OA)	1	18	40	8	3	1
Diffuse Astrocytoma, Grade II (DA)	3	9	6	20		1
Anaplastic Astrocytoma, Grade III (AA)	3	2	3	3	4	
Anaplastic Oligodendroglioma, Grade III (AO)	2	2	3			1

Le Hou, Dimitris Samaras, Tahsin Kurc, Yi Gao, Liz Vanner, James Davis, Joel Saltz

Glioma is

٠

The most common brain cancer

 The leading cause of cancer-related deaths in people under age 20

Tumor Infiltrating Lymphocyte quantification

- Convolutional neural network to classify lymphocyte infiltration in tissue patches
- Convolutional neural network and random forest to classify individual segmented nuclei
- Extensive collection of ground truth
- Joint work with Emory and TCGA PanCanAtlas Immune group

Unsupervised Autoencoder – 100 feature dimensions

Lymphocyte identification

Lymphocytes Infiltration

No Lymphocyte Infiltration

Receiver Operating Characteristic – Area Under Curve – 95%

Lymphocyte Classification Heat Map

Trained with 22.2K image patches Pathologist corrects and edits

Machine Learning and Quality Critiquing

	Good	Bad
Test as Good	2916	33
Test as Bad	28	2094

Dissemination

- Containers
- Cloud
- TCIA
- HPC via NSF and DOE
- TCGA PanCanAtlas Lymphocyte characterization
- Integrated Features/NLP joint with TIES

ITCR Team

Stony Brook University

Joel Saltz Tahsin Kurc Yi Gao Allen Tannenbaum **Erich Bremer** Jonas Almeida Alina Jasniewski Fusheng Wang Tammy DiPrima Andrew White Le Hou **Furgan Baig** Mary Saltz

Emory University

Ashish Sharma Adam Marcus

Oak Ridge National Laboratory

Scott Klasky Dave Pugmire Jeremy Logan

Yale University Michael Krauthammer

Harvard University Rick Cummings

Funding – Thanks!

- This work was supported in part by U24CA180924-01, NCIP/Leidos 14X138 and HHSN261200800001E from the NCI; R01LM011119-01 and R01LM009239 from the NLM
- This research used resources provided by the National Science Foundation XSEDE Science Gateways program under grant TG-ASC130023 and the Keeneland Computing Facility at the Georgia Institute of Technology, which is supported by the NSF under Contract OCI-0910735.

Thanks!

