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Multi-scale	Integrative	Analysis	in	Biomedical	Informatics

• Predict	treatment	
outcome,	select,	
monitor	treatments

• Reduce	inter-observer	
variability	in	diagnosis

• Computer	assisted	
exploration	of	new	
classification	schemes

• Multi-scale	cancer	
simulations



Pathomics,		Radiomics

Identify	and	segment	trillions	of	objects	– nuclei,	glands,	
ducts,	nodules,	tumor	niches	…	from	Pathology,	
Radiology	imaging	datasets
Extract	features	from	objects	and	spatio-temporal	
regions
Support	queries	against	ensembles	of	features	extracted	
from	multiple	datasets
Statistical	analyses	and	machine	learning	to	link	
Radiology/Pathology	features	to	“omics”	and	outcome	
biological	phenomena
Principle	based	analyses	to	bridge	spatio-temporal	scales	
– linked	Pathology,	Radiology	studies



Radiomics

Decoding	tumour	phenotype	
by	noninvasive	imaging	using	
a	quantitative	radiomics	
approach

Hugo	J.	W.	L.	Aerts et.	Al.
Nature	Communications 5,	Article	
number:	4006	
doi:10.1038/ncomms5006

Features

Patients



Integrative	
Morphology/”omics”

Quantitative Feature Analysis 
in Pathology: Emory In Silico
Center for Brain Tumor 
Research  (PI = Dan Brat, 
PD= Joel Saltz)

NLM/NCI: Integrative 
Analysis/Digital Pathology 
R01LM011119, R01LM009239 
(Dual PIs Joel Saltz, David 
Foran)

J Am Med Inform Assoc. 2012 
Integrated morphologic 
analysis for the 
identification and 
characterization of disease 
subtypes.

Pathomics

Lee	Cooper,		Jun	Kong



Tools	to	Analyze	Morphology	and	Spatially	Mapped	
Molecular	Data	- U24	CA180924	

• Specific	Aim	1	Analysis	pipelines for	multi- scale,	
integrative	image	analysis.

• Specific	Aim	2:	Database infrastructure	to	manage	
and	query	Pathomics features.

• Specific	Aim	3:	HPC	software	that	targets	clusters,	
cloud	computing,	and	leadership	scale	systems.

• Specific	Aim	4:	Develop	visualizationmiddleware	
to	relate	Pathomics feature	and	image	data	and	to		
integrate	Pathomics image	and	“omic”	data.



SEER	Virtual	Tissue	Repository
• Lynne	Penberthy MD,	MPH		NCI	SEER
• Ed	Helton	PhD	NCI	CBIIT	Clinical	Imaging	Program
• Ulrike	Wagner	CBIIT	Clinical	Imaging	Program
• Radim Moravec NCI	PhD,		NCI	SEER
• Ashish	Sharma		PhD	Biomedical	Informatics	Emory
• Joel	Saltz	MD,	PhD	Biomedical	Informatics	Stony	Brook
• Tahsin Kurc PhD	Biomedical	Informatics	Stony	Brook

Vision	– Enable	population/epidemiological	cancer	
research	that	leverages	rich	cancer	phenotype	
information	available	from	Pathology	tissue	studies

NCIP/Leidos 14X138		and	HHSN261200800001E		- NCI



SEER	Virtual	Tissue	Repository

• SEER	registries	are	a	potential	source	of	
information	about	unusual	outcomes	and	rare	
cancers

• Leverage	Pathology		labs	which	store	FFPE	tumors,	
slides	and	digital	images

• Link	to	SEER	data	– track	long	term	outcomes	
• Accrue	linked	clinical	data,	Pathology	slides	from	
SEER	sites



SEER	VIRTUAL	TISSUE	REPOSITORY

• Create	linked	collection	of	de-identified	clinical	data	
and	whole	slide	images

• Extract	features	from	a	sample	set	of	images	
(pancreas	and	breast	cancer).	

• Enable	search,	analysis,	epidemiological	
characterization

• Pilot	focus	on	extreme	outcome	Breast	Cancer,		
Pancreatic	Cancer	cases

• Display	images	and	analyzed	features



Robust	Nuclear	Segmentation
• Robust	ensemble	algorithm	to	segment	nuclei	across	tissue	types
• Optimized	algorithm	tuning	methods
• Parameter	exploration	to	optimize	quality
• Systematic	Quality	Control	pipeline	encompassing	tissue	image	
quality,		human	generated	ground	truth,		convolutional	neural	
network	critique

• Yi	Gao,		Allen	Tannenbaum,		Dimitris Samaras,	Le	Hou,	Tahsin Kurc



Cell	Morphometry Features





Feature	Explorer	Suite

• Explore	Relationship	Between	Imaging	Features,	
Outcome,	”omics”

• Explore	relationships	between	features	and	explore	
how	features	relate	to	images



Feature	Explorer	- Integrated		Pathomics Features,	Outcomes		
and	“omics”	– TCGA	NSCLC	Adeno	Carcinoma	Patients



Feature	Explorer	- Integrated		Pathomics Features,	Outcomes		
and	“omics”	– TCGA	NSCLC	Adeno	Carcinoma	Patients



Collaboration	with	MGH	– Feature	Explorer	– Radiology	Brain	
MR/Pathology	Features



Collaboration	with	SBU	Radiology	– TCGA	NSCLC	Adeno	Carcinoma
Integrative	Radiology,	Pathology,	“omics”,	outcome

Mary	Saltz,	Mark	Schweitzer	SBU	Radiology



Pathomics
Relationship	Between	Image	and	FeaturesLeveraging Visualization to Aid in Feature Management

Step 1: Choose a case from the TCGA atlas (case #20)
Step 2: Select two features of interest; X 
axis (area), Y axis (perimeter)

Step 3: Zoom in on region of interest

Step 4: Pick a specific nucleus of interest. 
Each dot represents a single nucleus

Step 5: Evaluate the features selected in the context of 
the specific nucleus and where this nucleus is located 
within the whole slide image

The tool provides visual context for feature evaluation. This technique maps both intuitive features (i.e. 
size, shape, color)  and non-intuitive features (i.e. wavelets, texture) to the ground truth of source 
images through an interactive web-based user interface.

Selected nucleus 
geolocated within 
whole slide image

Detects 
elongated 
nucleus

 Going from the whole slide data set to selected features and back to the image
 Adding a visual perspective by using a live web-based interactive tool (http://sbu-bmi.github.io/featurescape/u24/Preview.html)





Select	Feature	Pair	– dots	correspond	to	nuclei	



Subregion selected	– form	of	gating	analogous	to	flow	
cytometry	



Sample	Nuclei	from	Gated	Region



Gated	Nuclei	in	Context



Algorithm	Comparison,	Validation,	Uncertainty	Quantification

• High	quality	image	analysis	algorithms	are	essential	to	
support	biomedical	research	and	diagnosis

• Validate	algorithms	with	human	annotations
• Compare	and	consolidate	different	algorithm	results

e.g.:	what	are	the	distances	and	overlap	ratios	between	
markup	boundaries	from	two	algorithms?

Green: algorithm 1
Red:    algorithm 2

Cross matching of two 
spatial data sets

MICCAI	2014
Brain	Tumor	

Introduction



caMicroscope/MongoDB	- Multiple	Algorithm	Comparison;		
Generate	and	Curate	Pathomics Feature	set



Compare	Algorithm	Results



Heatmap – Depicts	Agreement	Between	Algorithms



3D	Slicer	Pathology	– Generate	High	Quality	
Ground	Truth



Apply	Segmentation	Algorithm



Adjust	algorithm	parameters,	manual	fine	tuning



Auto-tuning	and	feature	extraction

• Goal	– correctly	segment	trillions	of	objects	(nuclei)
• Adjust	algorithm	parameters
• Autotuning – finds	parameters	that	best	match	ground	
truth	in	an	image	patch

• Region	template	runtime	support	to	optimize	
generation	and	management	of	multi-parameter	
algorithm	results

• Eliminates	redundant	computation,	manages	locality
• Active	Harmony	– Jeff	Hollingsworth!!
• Collaboration	– George	Teodoro,	Tahsin Kurc





E=Eliminate	Duplicate	Compuations



Performance	Optimization
256	nodes	of	Stampede.	Each	node	of	the	cluster	has	a	dual	socket	Intel	Xeon	
E5-2680	processors,	an	Intel	Xeon	Phi	SE10P	co-processor	and	32GB	RAM.The

nodes	are	inter-connected	via	Mellanox FDR	Infiniband switches.



Classification

• Automated	or	semi-automated	identification	of	
tissue	or	cell	type

• Variety	of	machine	learning	and	deep	learning	
methods

• Classification	of	Neuroblastoma
• Classification	of	Gliomas
• Quantification	of	lymphocyte	infiltration



Classification	and	Characterization	of	Heterogeneity

Gurcan,		Shamada,	Kong,		Saltz

Hiro Shimada,	Metin Gurcan,		Jun	Kong,	Lee	Cooper	Joel	Saltz

BISTI/NIBIB	Center	for	Grid	Enabled	Image	Analysis	- P20	EB000591,	PI	Saltz

Classification	and	Characterization	of	
Heterogeneity



Neuroblastoma Classification

FH:	favorable	histology	UH: unfavorable	histology
CANCER	2003;	98:2274-81

<5 yr

Schwannian
Development

≥50%
Grossly visible Nodule(s)

absent

present

Microscopic 
Neuroblastic

foci

absent

present

Ganglioneuroma
(Schwannian stroma-dominant)

Maturing subtype
Mature subtype

Ganglioneuroblastoma, Intermixed
(Schwannian stroma-rich)

FH

FH

Ganglioneuroblastoma, Nodular
(composite, Schwannian stroma-rich/
stroma-dominant and stroma-poor) UH/FH*

Variant forms*

None to <50%

Neuroblastoma
(Schwannian stroma-poor)

Poorly differentiated
subtype

Undifferentiated
subtype

Differentiating
subtype

Any age UH

≥200/5,000 cells
Mitotic & karyorrhectic cells

100-200/5,000 cells

<100/5,000 cells

Any age

≥1.5 yr

<1.5 yr

UH

UH

FH

≥200/5,000 cells

100-200/5,000 cells

<100/5,000 cells

Any age UH

≥1.5 yr

<1.5 yr

≥5 yr

UH

FH

UH

FH



Multi-Scale	Machine	Learning	Based	Shimada	Classification	System

• Background	Identification

• Image	Decomposition	(Multi-resolution	
levels)

• Image	Segmentation	(EMLDA)

• Feature	Construction	(2nd order	statistics,	
Tonal	Features)

• Feature	Extraction	(LDA)	+	Classification	
(Bayesian)

• Multi-resolution	Layer	Controller	
(Confidence	Region)

No

Yes
Image	Tile Initialization

I = L
Background? Label

Create	Image	I(L)

Segmentation

Feature	Construction

Feature	Extraction

Classification

Segmentation

Feature	Construction

Feature	Extraction

Classifier	Training

Down-sampling

Training	Tiles

Within	Confidence
Region	?

I = I -1

I > 1?

Yes

Yes

No

No

TRAINING

TESTING





Brain	Tumor	Classification	– CVPR	2016



Combining	Information	from	Patches



Brain	Tumor	Classification	Results

Le	Hou,		Dimitris Samaras,		Tahsin	Kurc,	Yi	Gao,		Liz	Vanner,		James	
Davis,	Joel	Saltz



Tumor	Infiltrating	Lymphocyte	quantification

• Convolutional	neural	
network	to	classify	
lymphocyte	
infiltration	in	tissue	
patches	

• Convolutional	neural	
network	and	random	
forest	to	classify	
individual	
segmented	nuclei

• Extensive	collection	
of	ground	truth

• Joint	work	with	
Emory	and	TCGA	
PanCanAtlas
Immune	group

Unsupervised	Autoencoder – 100	feature	dimensions



Lymphocyte	identification	

Lymphocytes	Infiltration No	Lymphocyte
Infiltration	



Receiver	Operating	Characteristic	– Area	Under	Curve	– 95%



Lymphocyte	Classification	Heat	Map

Trained	with	22.2K	image	patches
Pathologist	corrects	and	edits



Good Bad

Test	as	Good 2916 33

Test	as	Bad 28 2094

Machine	Learning	and	Quality	Critiquing



Dissemination	

• Containers
• Cloud
• TCIA
• HPC	via	NSF	and	DOE
• TCGA	– PanCanAtlas – Lymphocyte	characterization
• Integrated	Features/NLP	joint	with	TIES



ITCR	Team

Stony	Brook	University
Joel	Saltz
Tahsin Kurc
Yi	Gao
Allen	Tannenbaum
Erich	Bremer
Jonas	Almeida
Alina	Jasniewski
Fusheng Wang
Tammy	DiPrima
Andrew	White
Le	Hou
Furqan Baig
Mary	Saltz

Emory	University
Ashish	Sharma
Adam	Marcus

Oak	Ridge	National	Laboratory
Scott	Klasky
Dave	Pugmire
Jeremy	Logan

Yale	University
Michael	Krauthammer

Harvard	University	
Rick	Cummings



Funding	– Thanks!
• This	work	was	supported	in	part	by	U24CA180924-
01,	NCIP/Leidos 14X138		and	HHSN261200800001E		
from	the	NCI;	R01LM011119-01	and	R01LM009239	
from	the	NLM	

• This	research	used	resources	provided	by	the	
National	Science	Foundation	XSEDE	Science	
Gateways	program	under	grant	TG-ASC130023	and	
the	Keeneland Computing	Facility	at	the	Georgia	
Institute	of	Technology,	which	is	supported	by	the	
NSF	under	Contract	OCI-0910735.
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