	[image: Proposal_cover.jpg]
	National Cancer Institute – caBIG Vocabulary Knowledge Center

Project Title: Evaluation of the Platform Independent Model submitted in response to the Object Management Group’s Request for Proposal for Health Level Seven’s Common Terminology Services – Release 2

June 16, 2011

[image: Proposal_cover.jpg]

		[image: Apelon_Coverpg_footer]
			
	Table of Contents

1	Purpose	1
2	Background	1
2.1	OMG Standards Adoption	3
2.2	OMG Standards Adoption Process	3
2.3	Evaluation Criteria	6
2.3.1	Technical Criteria	6
2.3.2	Management Criteria	6
3	PIM Overview	7
3.1	PIM Structure	7
3.2	Approach	8
4	Evaluation	9
4.1	Architectural Evaluation	9
4.2	Functional Evaluation	19
listValueSetsWithConceptCode()	42
4.2.2	Other Technical Considerations	68
4.3	Management Criteria	70
5	Summary	72

National Cancer Institute – caBIG Knowledge Center	OMG CTS 2 PIM Evaluation

[image: Logo_footer.jpg]		10
	
[bookmark: _Toc296960438]Purpose

This document provides an evaluation of the Platform Independent Model (PIM) submitted in response to the Object Management Group’s (OMG) Request for Proposal (RFP) for Health Level Seven’s (HL7’s) Common Terminology Services – Release 2 (CTS 2) specification. While this document focuses primarily on evaluating the structural and functional components of the RFP response, non-technical evaluation criteria are considered to provide a comprehensive evaluation of the CTS 2 RFP response.
This evaluation is based on the previously developed evaluation criteria for the CTS 2 PIM, which specifies architectural, functional, and management evaluation criteria. In addition, these criteria provide a mapping to existing LexEVS and LexEVS 6.0 functional and architectural components, allowing the CTS 2 PIM to be contrasted directly against the existing LexEVS infrastructure.
With the existence of and substantial investment in LexEVS as the base terminology service infrastructure for the National Cancer Institute (NCI) Vocabulary Knowledge Center (VKC), this evaluation is focused on assessing how the submitted RFP response aligns with the requirements of the CTS 2 SFM, the CTS 2 RFP, as well as the NCI requirements of terminology services as outlined in the LexEVS documentation, to ensure that the continued development of CTS 2 is in alignment with NCI terminology service goals and priorities.
[bookmark: _Toc296960439]Background

The Healthcare Services Specification Project (HSSP) [http://hssp.wikispaces.com] is a joint endeavor between Health Level Seven (HL7) [http://www.hl7.org] and the OMG [http://www.omg.org]. The HSSP was chartered at the January 2005 HL7 meeting under the Electronic Health Records Technical Committee, and the project was subsequently validated by the Board of Directors of both organizations.
The HSSP has several objectives. These objectives include the following:
1. To stimulate the adoption and use of standardized “plug-and-play” services by healthcare software product vendors
1. To facilitate the development of a set of implementable interface standards supporting agreed-upon services specifications to form the basis for provider purchasing and procurement decisions.
1. To complement and not conflict with existing HL7 work products and activities, leveraging content and lessons learned from elsewhere within the organization.

HL7 has primary responsibility for:
· Identifying and prioritizing services as candidates for standardization
· Specifying the functional requirements and conformance criteria for these services in the form of Service Functional Model (SFM) specifications such as this document
· Adopting these SFMs as balloted HL7 standards
These activities are coordinated by the HL7 Services Oriented Architecture SIG in collaboration with other HL7 committees.
Based on the HL7 SFM, OMG developed an RFP that is the basis of the OMG standardization process. This process allows vendors and other submitters (known as “RFP Submitters”) to propose solutions that satisfy the mandatory and optional requirements expressed in the RFP while leaving design flexibility to the submitters and implementation flexibility to the users of the standard. HL7 members will be involved in the RFP creation and evaluation process.
HL7 SFMs will focus on specifying the functional requirements of a service, while OMG specifications will focus on specifying the technical interface requirements of a service. In many cases, SFMs will also describe an overall coherent set of functional capabilities. These capabilities may be specialized or subdivided from both functional and informational (semantic) perspectives to provide specific “profiles” that may be used as the basis for the OMG RFPs.
In September 2009, HL7 published a Draft Standard for Trial Use (DSTU) for CTS 2. The goal of the CTS 2 specification is to expand on the original functionality outlined in HL7’s Common Terminology Service (CTS) specification and define the functional requirements as a set of service interfaces as an SFM that allows the representation, access, and maintenance of terminology content either locally, or across a federation of terminology service nodes.
In October 2009, the OMG issued a RFP based on the CTS 2 DSTU. The goal of the OMG RFP is to solicit responses from industry to develop a technical specification or Platform Independent Model (PIM) that meets the functional requirements outlined in the SFM, as well as to develop a reference implementation or Platform Specific Model (PSM) based off of the PIM.
In April 2010, Mayo Clinic and the International Institute for the Safety of Medicines (II4SM) both submitted separate, initial submissions to the OMG RFP for CTS 2. These submissions were presented at the OMG Technical Meeting in Minneapolis, where the two organizations agreed in principle to develop a collaborative, joint response to the RFP.
In May, 2011, the CTS 2 revised submission was submitted to the OMG for consideration at the June 2011, OMG Technical Meeting.
The revised submission represents a PIM and PSM for CTS 2, which will be evaluated by this document. The submission specifies a platform-independent service interface to a broad set of structured terminology resources by providing a standard service Information Model and Computational Model. The Information Model specifies the structural definition, attributes and associations of Resources common to structured terminologies such as Code Systems, Binding Domains and Value Sets. The Computational Model specifies the service descriptions and interfaces needed to access and maintain structured terminologies.

[bookmark: _Toc296960440]OMG Standards Adoption

The OMG is a standards adoption organization, and specifies a process to be followed to solicit standard development and implementation from industry representatives who are OMG members. This process is outlined in the RFP itself. At a high level, the adoption process for speculations is outlined in Figure 1.

 (
Figure
1
 - High Level Specification Adoption
) (
OMG adopts specifications by explicit vote on a technology-by-technology basis. The specifications selected each satisfy the architectural vision of MDA. OMG bases its decisions on both business and technical considerations. Once a specification adoption is finalized by OMG, it is made available for use by both OMG members and non-members alike.
Request for Proposals
(RFP) are issued by a
Technology Committee
 (TC), typically upon the recommendation of a
Task Force
 (TF) and duly endorsed by the
Architecture Board
 (AB).
Submissions to RFPs are evaluated by the TF that initiated the RFP. Selected specifications are
recommended
 to the parent TC after being
reviewed
 for technical merit and consistency with MDA and other adopted specifications and
endorsed
 by the AB. The parent TC of the initiating TF then votes to
recommend adoption
 to the OMG Board of Directors (
BoD
). The
BoD
 acts on the recommendation to complete the adoption process.
)

[bookmark: _Toc296960441]OMG Standards Adoption Process

The OMG outlines the steps involved in the standards adoption and evaluation process. The goals of the evaluation process are to provide a fair and open process where the RFP responses can be reviewed effectively by OMG membership so that each member organization can make an informed vote on the selection of the most appropriate submission. Figure 2 and Figure 3 outline the steps for the adoption process specified in the OMG RFP.
 (
Figure
2
 - OMG Standards Adoption Process
) (
A T
ask Force (TF
)
F
, its parent T
echnical Committee (T
C
)
, the AB and the Board of Directors participate in a collaborative process, which typically takes the following form:
Development

and

Issuance of RFP
RFPs are drafted by one or more OMG members who are interested in the adoption of a standard in some specific area. The draft RFP is presented to an appropriate TF, based on its subject area, for approval and recommendation to issue. The TF and the AB provide guidance to the drafters of the RFP. When the TF and the AB are satisfied that the RFP is appropriate and ready for issuance, the TF recommends issuance to its parent TC, and the AB endorses the recommendation. The TC then acts on the recommendation and issues the RFP.
Letter of Intent (LOI)
A Letter of Intent (LOI) must be submitted to the OMG signed by an officer of the member organization which intends to respond to the RFP, confirming the organization’s willingness to comply with OMG’s terms and conditions, and commercial availability requirements. (See section 4.3 for more information.). In order to respond to an RFP the organization must be a member of the TC that issued the RFP.
Voter Registration
Interested OMG members, other than Trial, Press and Analyst members, may participate in specification selection votes in the TF for an RFP. They may need to register to do so, if so stated in the RFP. Registration ends on a specified date, 6 or more weeks after the announcement of the registration period. The registration closure date is typically around the time of initial submissions. Member organizations that have submitted an LOI are automatically registered to vote.
Initial Submissions
Initial Submissions are due by a specified deadline. Submitters normally present their proposals at the first meeting of the TF after the deadline. Initial Submissions are expected to be complete enough to provide insight on the technical directions and content of the proposals.
)
 (
Figure 3 - OMG Standards Adoption Process
) (
Revision Phase
During this time submitters have the opportunity to revise their Submissions, if they so choose.
Revised Submissions
Revised Submissions are due by a specified deadline. Submitters again normally present their proposals at the next meeting of the TF after the deadline. (Note that there may be more than one Revised Submission deadline. The decision to set new Revised Submission deadlines is made by the registered voters for that RFP.)
Selection Votes
When the registered voters for the RFP believe that they sufficiently understand the relative merits of the Revised Submissions, a selection vote is taken. The result of this selection vote is a recommendation for adoption to the TC. The AB reviews the proposal for MDA compliance and technical merit. An endorsement from the AB moves the voting process into the issuing Technology Committee. An eight-week voting period ensues in which the TC votes to recommend adoption to the OMG Board of Directors (
BoD
). The final vote, the vote to adopt, is taken by the
BoD
 and is based on technical merit as well as business qualifications. The resulting draft standard is called the
Alpha Specification
.
Business Committee Questionnaire
The submitting members whose proposal is recommended for adoption need to submit their response to the
BoD
 Business Committee Questionnaire [BCQ] detailing how they plan to make use of and/or make the resulting standard available in products. If no organization commits to make use of the standard, then the
BoD
 will typically not act on the recommendation to adopt the standard - so it is very important to fulfill this requirement.
Finalization
A Finalization Task Force (FTF) is chartered by the TC that issued the RFP, to prepare an Alpha submission for publishing as a Formal (i.e. publicly available) specification, by fixing any problems that are reported by early users of the specification. Upon completion of its activity the FTF recommends adoption of the resulting Beta (draft) specification. The parent TC acts on the recommendation and recommends adoption to the
BoD
. OMG Technical Editors produce the Formal Specification document based on this Beta Specification.
Revision
A Revision Task Force (RTF) is normally chartered by a TC, after the FTF completes its work, to manage issues filed against the Formal Specification by implementers and users. The output of the RTF is a Beta specification reflecting minor technical changes, which the TC and Board will usually approve for adoption
as the
 next version of the Formal Specification.
)

[bookmark: _Toc296960442]Evaluation Criteria

The previously developed CTS 2 evaluation criteria specify two primary categories by which the CTS 2 PIM can be evaluated: Technical Criteria and Management Criteria. In addition, these criteria provide a mapping to existing LexEVS 6.0 functional and architectural components, allowing the CTS 2 PIM to be contrasted directly against the existing LexEVS infrastructure.
[bookmark: _Toc296960443]Technical Criteria

The technical evaluation of the RFP responses takes into account both architectural and functional alignment with the CTS 2 SFM and LexEVS, and is intended to assist in making a determination as to whether the RFP response has addressed the technical requirements outlined conceptually in the SFM. These criteria sets align with the PIM’s service Information and Computational models respectively. The technical evaluation also includes Other Technical Criteria used to capture other technical factors that need to be considered for RFP evaluation that may not directly map to LexEVS on an architectural or functional level.

[bookmark: _Toc296960444]Management Criteria

The managerial evaluation of the RFP is focused on evaluating the responder’s experience with developing and deploying specifications and services, specifically terminology services. The management evaluation is intended to provide a determination as to:
· The RFP responders ability to effectively deliver an implementable PIM and a deployable and functional PSM
· The ability of the RFP to be evaluated by HL7 membership and other Standards Development Organizations (SDO) bodies

[bookmark: _Toc296960445]PIM Overview

As outlined in the Background above, the CTS 2 revised submission was submitted to the OMG for consideration at the June 2011, OMG Technical Meeting. The revised submission is proposed to meet the requirements as outlined in the OMG document number ad/2009-09-17 entitled Common Terminology Services Release 2 (CTS 2) RFP and represents a PIM and PSM for CTS 2 as a platform independent service interface to a broad set of structured terminology resources.
To manage a broad set of terminology resources, the submission outlines a standard service in terms of information and computational models.
The CTS 2 source materials used for this evaluation are located at: http://informatics.mayo.edu/cts2/index.php/Main_Page#tab=Final_Submission

[bookmark: _Toc296960446]PIM Structure

Throughout development of the revised submission, a constant challenge of how to structure the PIM to separate out background technical information that supports terminology structure and services from the terminology service specific information was realized. To address this challenge, the PIM was divided into a number of separately implementable informative and core normative sections.

The informative sections of the PIM are called out in the Main Submission as well as two annexes that serve to provide an introduction to the submission, outline existing work done in support of terminology services, and inventory supporting files for the PIM as described below in figures 4 and 5.

 (
Main CTS 2 Submission
 describes introductory material
pertaining to the submission
 and
provid
es
 a general introduction to the submission and the purpose of common terminology services
.
Annex A
describes the existing work. (
informative
)
Annex B
provides the submission inventory of files. (
informative
)
)
Figure 4 - Informative Sections of PIM
The remaining normative components of the PIM are separate document, each one representing a core infrastructure requirement of CTS 2. These components are structured as follows:

 (
Core Components Document
describes data types, building blocks, abstract resources and abstract service model
Code System and Code System Version Catalog Services Document
describes services for representing and

maintaining a catalog of code systems and/or code system versions.
Entity Description and Association Services Document
describes the model and set of services for representing

collections of assertions about classes, predicates (properties) and individuals.
Map Catalog and Map Content Services Document
describes services for representing and maintaining a catalog of

maps between sets of entities as well as the rules and content.
Value Set Catalog and Value Set Definition Services Document
describes services for

representing and maintaining a

catalog of value sets, their corresponding definitions and their resolution.
Concept Domain Catalog and Concept Domain Binding Services Document
describes services for representing and

maintaining a catalog of concept domains (Data Element Concepts) and their associated bindings (Data Elements).
)
Figure 5 - Normative Sections of PIM

[bookmark: _Toc296960447]Approach

At its most abstract level, the CTS 2 specification is about a collection of resources – specifically code systems, value set definitions, concept domains, concept domain bindings, and value sets. This approach allows support for disparate terminology models.

This approach permits the CTS 2 PIM to be based on a Representational State Transfer, or RESTful architectural style. A RESTful model defines and manipulates resources, where a resource is a conceptual mapping to a set of entities.

 (
Resources can be created, updated, read and/or deleted, and every resource has one or more immutable characteristics - characteristics that, if changed, would change the identity of the
resource
 itself. In the information model we distinguish these characteristics from those that can be modified by declaring the identifying characteristics as
ReadOnly
. The computational model utilizes a pattern based on this information where the create operation(s) supply
the identifying
 characteristics plus any of the non-optional mutable characteristics. The update
operations
 then supply a unique identifier and a set of one or more mutable characteristics to be changed.
)
Figure 6 - PIM Resource Description

[bookmark: _Toc296960448]Evaluation

[bookmark: _Toc296960449]Architectural Evaluation

The purpose of this architectural evaluation is to ensure that the Information Model outlined in the PIM submission contains the necessary conceptual components to address the CTS 2 conceptual model as outlined in section 2.4.2 in the CTS 2 SFM. It is recognizes that the Information Model specified in the PIM will be structurally different from the CTS 2 conceptual model due to the difference in purpose between the conceptual nature of the SFM, and the more tractable nature of the PIM.
The grey columns represent the previously developed evaluation criteria. The rightmost white column represents the PIM response to the requirements.

	[bookmark: _Toc252872774][bookmark: _Toc252872943][bookmark: _Toc252873050][bookmark: _Toc252882167][bookmark: _Toc252882177][bookmark: _Toc252882197][bookmark: _Toc252887507][bookmark: _Toc252887603][bookmark: _Toc253401559][bookmark: _Toc253481876][bookmark: _Toc253498325][bookmark: _Toc253498520][bookmark: _Toc253498628][bookmark: _Toc253498662][bookmark: _Toc253499643][bookmark: _Toc253574771][bookmark: _Toc253647273][bookmark: _Toc253649471][bookmark: _Toc295245608][bookmark: _Toc295313864][bookmark: _Toc295313879][bookmark: _Toc295315522][bookmark: _Toc295315536][bookmark: _Toc295317183][bookmark: _Toc295317269][bookmark: _Toc295318146][bookmark: _Toc295318537]
Architectural Requirement
	CTS 2 Architectural Component
	LexEVS 6.0 Architectural Component
	RFP Architectural Response

	The ability to represent entire terminologies.
	2.4.2.1 CodeSystem
A code system is a resource that makes assertions about a collection of terminological entities.
	codingScheme
A resource that makes assertions about a collection of terminological entities.
	Code System and Code System Version Catalog Services

A code system is a resource that is maintained by individuals and/or organizations, typically has a specific goal or purpose and is published and/or updated at periodic individuals. Its purpose is to declare a collection of codes or identifiers that represent classes, categories, or individuals that are used for reporting, organizing and/or reasoning about knowledge in some discipline, specialty or domain. The CodeSystemCatalogEntry model carries metadata about the code system itself,
while CodeSystemVersionCatalogEntry carries information about the content of a code system.

	The ability to represent individual terminological elements.
	2.4.2.3 CodeSystemEntity
A Code System Entity is an abstract class that represents either a node (CodeSystemNode) or an association
 (CodeSystemEntityVersionAssociation) within an overall ontology for a Code System.
	Entity
A set of lexical assertions about the intended meaning of a particular entity code.
	Entity Description Services

EntityDescription represents the set of assertions about a particular entity (class, predicate and/or individual) that are made by a specified version of a code system. It includes the set of designations that signify the entity in various languages or contexts, definitions where appropriate, examples, various forms of comments and any additional properties that are not classified elsewhere. It also contains information and links about where the entity fits in the code system hierarchy, including identifiers and, when available, references to its "parent" entities as well as references to the class(es) that it instantiates.

	The ability to represent multiple version of terminology entities
	2.4.2.13 CodeSystemEntityVersion

Although there are no changes in a code value and its explicit identification of a specific concept (in well
 behaved code systems), associated information may, e.g. associations, designations and concept properties. The Code System Entity Version provides a means to organize and manage variations to these elements over
time.
	Entity is a versionable class in LexEVS.
	Entity Description Services

The EntityDescription describes an entity whose identity is implicit and known only in the context of the describing code system version (CodeSystemVersionCatalogEntry).

	The ability to represent multiple versions of a terminology.
	2.4.2.2 CodeSystemVersion

Code systems are generally not static entities and change over time. A CodeSystemVersion is a static snapshot of a CodeSystem at a given point of time and in force for a period until the subsequent version supersedes it.
	codingScheme is a versionable class in LexEVS.
	Code System and Code System Version Catalog Services

CodeSystemVersionCatalogEntry carries information about the content of a code system and is a collection of assertions about one or more entities.
If the state of a CodeSystemVersion is Final, the set of assertions made the resource is fixed, meaning that if one knows the documentURI assigned to the version and the specific sourceAndNotation from which the version instance was derived, the set of assertions is known as well.

	The ability to represent the idea of a “conceptual” entity within a terminology.
	2.4.2.5 CodeSystemConcept
A Code System Concept defines a unitary mental representation of a real or abstract thing within the context of a specific Code System.
	Concept
An entity that represents a class or category. The entityType for the class concept must be “concept”.
	Entity Description Services

EntityDescription represents the set of assertions about a particular entity (class, predicate and/or individual) that are made by a specified version of a code system. It includes the set of designations that signify the entity in various languages or contexts, definitions where appropriate, examples, various forms of comments and any additional properties that are not classified elsewhere. It also contains information and links about where the entity fits in the code system hierarchy, including identifiers and, when available, references to its "parent" entities as well as references to the class(es) that it instantiates.

	The ability to represent supplements or local extensions to a terminology.
	2.4.2.7 CodeSystemSupplement

A Code System Supplement can be appended to a code system to add additional concepts, their properties and designations to the code system.
	In LexEVS 6.0, Code System Supplement is implemented as a separate Code System containing only the required extensions or “suppliments” to the parent code system.
The Code System Supplement is maintained separately from the Code System that it extends, however queries can search across the both simultaneously.
	Code System and Code System Version Catalog Services

CodeSystemVersionCatalogEntry carries information about the content of a code system and is a collection of assertions about one or more entities.
Implementing a local CodeSystemVersionCatalogEntry would permit the representation of supplements or local extensions to a terminology within its own namespace, which could be maintained separately from the source CodeSystemVersionCatalogEntry, yet queries in conjunction with the source.

	The ability to represent a constraint on a terminology based on local or jurisdiction.
	2.4.2.8 JurisdictionalDomain
A JurisdictionalDomain identifies a country, region, organization or other domain that may define and manage its own code systems or concepts, including localization of a broader code system.
	conceptDomain: Local name of the concept domain. When present, the contents of value set are considered to be binded to this specific concept domain. conceptDomain must match a local id of a supportedConceptDomain.
NOTE: The CTS 2 SFM Distinguished Jurisdictional Domain (realm) from Concept Domain. However, the intent of each is consistent; to put a constraint on all or part of a terminology.

	Core Components

CONTEXT - External and environmental factors that serve to discriminate among multiple possible selections. While
it is assumed that the specific contexts referenced by CONTEXT are represented by entity descriptions contained in
some ontology or coding scheme, the CTS2 specification does not recommend any targets. Note, however, the CTS2
context is intended to represent the notion of "jurisdictional domain" or "realm" as described in the HL7 CTS2 SFM

	The ability to represent properties on the individual elements or entities of a terminology.
	2.4.2.9 DefinedEntityProperty
A defined entity property is a named characteristic of a code system. An example might be “atomic” indicating that there are no composite entities in the code system. Such properties apply to all entities of the code system and can be assigned a value at the code system entity level via the entity property version class.
This explicitly defines the allowable properties for any given CodeSystem and not individual changes or versions or what is supported by a specific version of a code set.
	supportedPropertyType
A propertyType and the URI of the defining resource
	Entity Description Services

Every instance of NamedEntityDescription is also an instance of EntityDescriptionBase.
EntityDescriptionBase contains attributes common to both named and anonymous entity descriptions, including "non-semantic" (annotation) assertions (properties) about the entity being described that do not fit into the designation, definition, note, or example or entityId category.

	The ability to represent multiple versions of a property in a terminology.
	2.4.2.10 EntityPropertyVersion

This explicitly defines the supported properties for any given Version of a Code System Entity.
	Property is a versionable class in LexEVS.
	Entity Description Services

Every instance of NamedEntityDescription is also an instance of EntityDescriptionBase.
EntityDescriptionBase contains attributes common to both named and anonymous entity descriptions, including "non-semantic" (annotation) assertions (properties) about the entity being described that do not fit into the designation, definition, note, or example or entityId category.

The EntityDescription describes an entity whose identity is implicit and known only in the context of the describing code system version (CodeSystemVersionCatalogEntry).

	The ability to represent multiple types of associations or relationships in a terminology.
	2.4.2.12 AssociationType
In the terminology model, allowable relationship types are represented by the AssociationType class. The class provides information about the types of the association class related to it.
	supportedAssociation
An associationName and the URI of the defining resource.
	Entity Description Services

Every instance of NamedEntityDescription is also an instance of EntityDescriptionBase.
EntityDescriptionBase contains attributes common to both named and anonymous entity descriptions, including “semantic" assertions that are assertedBy the describingCodeSystemVersion.

	The ability represent and version associations or relationships within a terminology.
	2.4.2.11 CodeSystemEntityVersionAssociation
Associations define the relationships or linkages between concepts or other associations.
	association
A binary relation from a set of entities to a set of entities and/or data. The entityType for the class concept must be "association".
(entityType=association)
Associations are versionable class in LexEVS.
	Entity Description Services

Every instance of NamedEntityDescription is also an instance of EntityDescriptionBase.
EntityDescriptionBase contains attributes common to both named and anonymous entity descriptions, including “semantic" assertions that are assertedBy the describingCodeSystemVersion.

	The ability to assign meaningful designations to concepts within a terminology.
	2.4.2.15 Designation
Concept designations are representations of concepts. The designation identifier must uniquely map to a given text string, bitmap, etc. within the context of the containing concept.
	presentation
A property this represents or designates the meaning of the entityCode.
	Entity Description Services

Every instance of NamedEntityDescription is also an instance of EntityDescriptionBase.
EntityDescriptionBase contains attributes common to both named and anonymous entity descriptions, including a "string of (UNICODE) characters ... in a given natural language, such as English or Japanese."

A designation provides the strongest clues as to the meaning of a class, predicate or individual. While designations are not mandatory in an entity description, as all that may be available to a service is a code, service implementers are strongly encouraged to provide at least one preferred or alternate designation to make the description visible to text search engines.

	The ability to represent multiple types of designations for a concept within a terminology.
	2.4.2.16 Designation Type
Concept designations are a specific type of property that may be defined for a CodeSystemEntity. This class allows for identification of the "type" of a designation, i.e. a designation category.
	supportedRepresentationalForm
A representationalForm and the URI of the defining resource

	ReferenceType.DESIGNATION_TYPE

The particular form or type of a given designation - can be "short name", "long name","abbreviation", "eponym", ...

	The ability to subset terminology for some purpose.
	2.4.2.17 Value Set
A value set represents a uniquely identifiable set of concept codes grouped for a specific purpose. Value set complexity may range from a simple flat list of concept codes drawn from a single code system, to an unbounded hierarchical set of possibly post-coordinated expressions drawn from multiple code systems.
	valueDomainDefinition
A definition of a given value domain. A value domain can be a simple description with no associated value domain entries, or it can consist of one or more definitionEntries that resolve to an enumerated list of entityCodes when applied to one or more codingScheme versions.
	Value Set Services
ValueSetDefinitionEntry

An element of a value set definition that, when resolved yields a set of entity references that are to be included in, excluded from or intersected with the set of elements that represents the full resolution of the definition.

	The ability to represent and manage multiple versions of a terminology subset.
	2.4.2.18 ValueSetVersion
A Value Set Version represents a point in time view of a Value Set definition. The Value Set Version identifies the set of concepts that are available in the value set for any specific version of the value set definition. The versioning of the value set reflects the fact that the value set definition may change over time.
	valueDomainDefinition is a versionable class in LexEVS.
	Value Set Services
ValueSetDefinition
Every instance of ValueSetDefinition is also an instance of ResourceVersionDescription

ResourceVersionDescription provides information about the source, format, release date, version identifier, etc. of a specific version of an abstract resource.

	The ability to represent and version the individual enumerated contents of a terminology subset.
	2.4.2.19 ConceptValueSetMembership
This provides the means to link a Value Set Version to the concepts and/or codes which it includes.
	entityReference
A reference to an entityCode and/or one or more entityCodes that have a relationship to the specified entity code plus the rules(leafOnly, targetToSource..) to be applied.
entityReference is a versionable class in LexEVS
	Value Set Services
AssociatedEntitiesReference
The description of a set of entities that are associated with a referenced entity. This description names a reference entity and an association predicate, which identifies a set of entities that are related to the reference entity according to a given code system.

AssociatedEntitiesReference includes an attribute for “CodeSystemVersion”. CodeSystemVersion specified version of the code system that makes the association assertions. If present, CodeSystemVersion must be a version of codeSystem . If this attribute is present, the referenced version of the code system will always be used to resolve the associations. If absent, the specific version of the code system to be used in resolution is determined in the resolve value set definition call itself.

	The ability to assign alternate designations to the concepts within a terminology subset.
	2.4.2.20 DesignationValueSetVersionMembership
This identifies which Designations for Concepts may be used within a specific Value Set Version for a specific combination of concept domain and usage context.
	pickListEntry
An entity code and corresponding textual representation.
	Value Set Services
The current PIM submission does not implement representation or operations of alternate designations to the concepts within a terminology subsets.
Future versions of the PIM will include a ValueSetResolutionRule class and associated operations to permit the definition and execution of rules permitting alternate designation to be queried on Value Sets .

	The ability to define a semantic constraint on all or part of a terminology.
	2.4.2.21 Concept Domain
Concept domains describe a semantic space. They are a named category of like concepts (a semantic type) that will be bound to one or more attributes in a static model.
	conceptDomain: Local name of the concept domain. When present, the contents of value set are considered to be binded to this specific concept domain. conceptDomain must match a local id of a supportedConceptDomain.
NOTE: The CTS 2 SFM Distinguished Jurisdictional Domain (realm) from Concept Domain. However, the intent of each is consistent; to put a constraint on all or part of a terminology.

	Concept Domain and Concept Domain Binding Services
ConceptDomainCatalogEntry
Metadata about what, in ISO-11179, is called a "Data Element Concept" - "a CONCEPT that can be expressed in the form of a DATA ELEMENT , described independently of any particular representation"

Every instance of ConceptDomainCatalogEntry is also an instance of AbstractResourceDescription

	The ability to create a binding or reference between a terminology element and a concept domain.
	2.4.2.23 Value Set Context Binding
This provides a mechanism to bind a concept domain and a particular value set version in a defined usage context.
	There is currently no support for context binding in LexEVS. This may be managed via an association between valueDomainDefinition and a codingScheme representing concept domains.
	Concept Domain and Concept Domain Binding Services
ConceptDomainBinding
The binding of a ConceptDomain and a ValueSet that supplies the set of permissible value meanings in a given context.
ConceptDomainBinding can also bind specific value set definitions and/or specific code system versions where desired.

	The ability to define annotations on individual terminology entities.
	2.4.2.24 Annotation Attribute
This type class provides a type for an "annotation attribute" within the classes which needs additional annotations beyond basic annotation like the one provided with the attribute “provenanceDetails” present in many classes.
	property
A description, definition, annotation or other attribute that serves to further define or identify a resource.
	Entity Description Services

Every instance of NamedEntityDescription is also an instance of EntityDescriptionBase.
EntityDescriptionBase contains attributes common to both named and anonymous entity descriptions, including "non-semantic" (annotation) assertions (notes) about the entity being described.

Table 1 - Architectural Evaluation

[bookmark: _Toc296960450]Functional Evaluation

The Functional evaluation is focused on ensuring that both the platform independent and ultimately platform specific models from RFP responses contain the functional coverage outlined throughout sections three and sections six of the CTS 2 SFM.
In the same way the architectural analysis was completed by mapping the CTS 2 RFP architecture against the LexEVS 6.0 architecture, the functional analysis and evaluation is performed similarly, by mapping the CTS 2 SFM Functional requirements against the LexEVS functional capabilities. This mapping provides the foundation to evaluate any RFP response against the SFM and the existing LexEVS 6.0 CTS 2 API. The source for the functional references from LexEVS is:
· The LexEVS 6.0 Design and Architecture Guide is located at: https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_Version_6.0#LexEVS_6.0_Design_and_Architecture_Guide
· The LexEVS 6.0 Javadoc at: https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_6.0_Download_Files#LexEVS_Source_Code.2C_JavaDocs.2C_and_Examples
· The LexEVS 6.0 Programmers Guide at https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_6.0_Programmer%27s_Guide
The grey columns represent the previously developed evaluation criteria. The rightmost white column represents the PIM response to the requirements.

	Functional Requirement
	CTS 2 Functional Component
	LexEVS 6.0 CTS 2 Functional Component
(bold indicates LexEVS class name)
	RFP Functional Response (Computational Model)

	The ability to import terminological content into the service.
	6.1.1 Import Code System
	LexEVS CTS 2 API
There are three major load interfaces proved, each for loading specific content:
· Code System loader - Provides capability to load complete or partial contents of Code System plus functions to activate and deactivate loaded Code System.
· Value Sets loader - Provides capability to load Value Sets.
· Association loader - Provides capability to load Associations. Loader
The loader interface validates and/or loads content for a service.
LexEVS Native
LexGrid_Loader
Validates and/or loads content provided in the LexGrid canonical XML format.
NCI_MetaThesaurusLoader
Validates and/or loads the complete NCI MetaThesaurus. Content is supplied in RRF format. Note: To load individual coding schemes, consider using the UMLS_Loader as an alternative.

OBO_Loader
Validates and/or loads content provided in Open Biomedical Ontologies (OBO) text format.

OWL_Loader
Validates and/or loads content provided in Web Ontology Language (OWL) XML format. Note that for LexEVS phase 1 this loader is designed to specifically handle the NCI Thesaurus as provided in OWL format.

Text_Loader
A loader for delimited text type files. Text files come in one of two formats: indented code/designation pair or indented code/designation/description triples.

UMLS_Loader
Load one or more coding schemes from UMLS RRF format stored in a SQL database.

MetaData_Loader
Validates and/or loads content provided in metadata xml format. The only requirement of the xml file is that it be a valid xml file.

NCIHistoryLoader
A loader that takes the delimited NCI history file and applies it to a coding scheme.

OBOHistoryLoader
Load an OBO change history file.
MrMapLoader
Load mappings between coding schemes from UMLS formatted MRMAP.RRF and MRSAT.RRF files.
ClaML Loader
Loads representations sourced in the Classification Markup Language such as ICD-10
Radlex Protégé Frame Loader
Loads the Radlex terminology from a Protege Frames formatted source.

	Core Components
BaseImportService

Operation: import
Load structured content from a specified source.
Operation: getStatus
Return the import status for the supplied process identifier
Operation: validate
Determine whether the source document would import successfully if it were imported

	
	6.1.2 Import Code System Revision
	LexEVS CTS 2 API

There are two different methods available to load Code System :
· Loading Code System from a file - This method provides capability to load complete Code System contents that are present in a file system.
· Loading Code System Object - This method provides capability to load supplied Code System Object.
Load Interfaces
Code System Loader
load()
Loads Code System found in source file using the loader specified.
load()
Loads supplied Code System Object.
	

	
	6.1.3 Import Value Set version
	LexEVS CTS 2 API
Value Set is stored in repository in terms of definitions, in LexEVS, it is known as 'Value Set Definition'. As name indicates, it is a definition of a value set contents, NOT the expanded value set contents that will be loaded. During the runtime, these definitions are resolved against the supplied Code System Version to return expanded Value Set contents. Visit LexEVS 6.0 Value Set and Pick List Definition Guide for detailed information about LexEVS Value Set Definition.
org.lexevs.cts2.admin.load.ValueSetLoadOperation is the main interface which can be used to load Value Set Definition. This interface can be accessed using main LexEVSCTS2 interface, like:
<source> org.lexevs.cts2.admin.load.ValueSetLoadOperation vsLoadOp = new org.lexevs.cts2.LexEvsCTS2Impl().getAdminOperation().getValueSetLoadOperation(); </source>
Similar to Code System, there are two different methods available to load Value Sets :
· Loading Value Set Definition from a file - This method provides capability to load Value Set Definition(s) that are present in a file system.
· Loading Value Set Definition Object - This method provides capability to load supplied Value Set Definition Object.
Load Interfaces
Value Set Loader
load()
Loads Value Set Definition(s) found in source file using the loader specified.
load()
Loads supplied Value Set Definition Object.

	

	
	6.1.4 Import Association Version
	LexEVS CTS 2 API
There are two different methods available to load Associations :
· Load Associations from a file - This method provides capability to load Associations from a file system.
Load Associations from an Object - This method provides capability to load Associations supplied with in a Code System Object. Load Interfaces
Association Loader
importAssociationVersion()
Loads Associations found in source file using the loader specified.
importAssociationVersion()
Loads Associations supplied with in Code System Object.
	

	The ability to export terminological content out of the service.
	6.1.5 Export Association
	LexEVS CTS 2 API
There are three major export interfaces proved :
· Code System exporter - Provides capability to export complete or partial contents of Code System.
· Value Sets exporter - Provides capability to export Value Set Definition or Value Set Resolution (Expanded Value Set).
· Association exporter - Provides capability to export Associations.
LexEVS Native
Exporter
Exporter
Defines a class of object used to export content from the underlying LexGrid repository to another repository or file format.

LexGrid_Exporter
Exports content to LexGrid canonical XML format.

OBO_Exporter
Exports content to OBO text format.

OWL_Exporter
Exports content to OWL XML format.
Export API
Code System Exporter
exportCodeSystemContent()
Exports contents of the code system using the exporter specified.
exportCodedNodeSet()
Resolves the given CodedNodeSet(CNS) and exports the contents.
exportCodedNodeGraph()
Resolves the given CodedNodeGraph(CNG) and exports the contents.
Value Set Exporter
exportValueSetDefinition()
Export Value Set Definition to LexGrid canonical XML format.
exportExpandedValueSet()
Exports contents of the Value Set Definition using the exporter specified.
exportExpandedValueSetinLexGridXML()
Exports contents of Value Set as Code System in LexGrid canonical XML format.
Association Exporter
exportAssociation()
Export Association(s) in LexGrid canonical XML format.
	CoreComponents

BaseExportService
Operation: export
Export structured content to a specified location with a specified format.
Operation: clearLog
Clear the log entries for the supplied process ID of, if not supplied, all processes

Operation: getLog
Retrieve the export log.

Operation: getStatus
Obtain a current status of the export process.

	
	6.1.6 Export Code System Content
	LexEVS CTS 2 API
 There are three different methods available to export Code System :
· Export complete Code System - This method provides capability to export Code System contents using the exporter specified.
· Export Coded Node Set - This method provides capability to export entities that matches certain restrictions (like matching designation, concept code, property etc).
· Export Coded Node Graph - This method provides capability to export entities that are part of selected graph (like association, source code, target code etc).
exportCodeSystemContent()
Exports contents of the code system using the exporter specified.
exportCodedNodeSet()
Resolves the given CodedNodeSet(CNS) and exports the contents.
exportCodedNodeGraph()
Resolves the given CodedNodeGraph(CNG) and exports the contents.
exportValueSetDefinition()
Exports contents of the Value Set Definition using the exporter specified.exportValueSetContents()
Exports contents of Value Set as Code System in LexGrid canonical XML format.exportAssociation()
Export Association(s) in LexGrid canonical XML format.

	

	The ability to register for updates to service contents.
	6.1.8 Register for Notification
	There is currently no notification registration support in LexEVS.
	CTS 2 Revised Submission

SFM Sections out of scope:
• Register for Notification (6.1.8)
• Update Notification Registration (6.1.9)
• Update Notification

Registration Status (6.1.10)
Notification services are considered out of scope.

	
	6.1.9 Update Notification Registration
	There is currently no notification registration support in LexEVS.
	

	
	6.1.10 Update Notification Registration Status
	There is currently no notification registration support in LexEVS.
	

	The ability to search the service for available terminologies.
	6.2.1.1 List Code Systems
	LexEVS CTS 2 API
Code System Query Operations
LexEVS CTS2 Code System Query API provides capability to query contents of Code System that are available in the system.
listCodeSystems()
List the coding systems that are available in cts 2 system.
LexEVS Native
Directory of coding schemes contained in the service.
LexBigServiceMetadata
listCodingSchemes();
List the coding schemes that are represented in the metadata index.restrictToCodingScheme();
Restrict the search to a particular coding scheme.
LexBIGService
getSupportedCodingSchemes();
Return a list of coding schemes and versions that are supported by this service, along with their status.
	Code System and Code System Version Catalog Services

CodeSystemCatalogReadService
Operation: exists
Determine whether a catalog entry exists that has an about or alternateId that matches the supplied URI or that has a codeSystemName that matches the supplied name that is (was) applicable in the supplied context.

Operation: read
Return the catalog entry that has an about or alternateId that matches the supplied URI or that has a codeSystemName that matches the supplied name that is (was) applicable in the supplied context.

	
	6.2.1.2 Return Code System Details
	LexEVS CTS 2 API

Code System Query Operations
LexEVS CTS2 Code System Query API provides capability to query contents of Code System that are available in the system.
getCoodeSystemDetails()
Return details (metadata) for the specified code system

LexEVS Native
Describes and/or defines a code system, comprising a collection of concept codes and relationships.
CodingSchemeSummary
getCodingSchemeDescription();
Gets the codingSchemeDescription value for this CodingSchemeSummary
getCodingSchemeURI();
Gets the codingSchemeURI value for this CodingSchemeSummary.
getFormalName();
Gets the formalName value for this CodingSchemeSummary.
getLocalName();
Gets the localName value for this CodingSchemeSummary.
getRepresentsVersion();
Gets the representsVersion value for this CodingSchemeSummary.

CodingScemeIdentification
getName();
Gets the name value for this CodingSchemeIdentification.
CodingSChemeVersionOrTag
getVersion();
Gets the version value for this CodingSchemeVersionOrTag.
LexBIGService
resolveCodingScheme();
Return detailed coding scheme information given a specific tag or version identifier.
	Code System and Code System Version Catalog Services

A code system is a resource that is maintained by individuals and/or organizations, typically has a specific goal or purpose and is published and/or updated at periodic individuals. Its purpose is to declare a collection of codes or identifiers that represent classes, categories, or individuals that are used for reporting, organizing and/or reasoning about knowledge in some discipline, specialty or domain. The CodeSystemCatalogEntry model carries metadata about the code system itself.

CodeSystemCatalogQueryService
Operation: resolve
Resolve a DirectoryURI that references a set of code system catalog entries and return a summary of the references.
Operation: resolveAsList
Resolve a DirectoryURI that references a set of code system catalog entries and return the set of corresponding catalog
Entries.

CodeSystemCatalogHistoryService
A service that allows access to the history of changes on a code system catalog.

Operation: getEarliestChangeFor
Return an catalog entry that reflects what the state of the entry when it first appeared in the service.

Operation: getLastChangeFor
Return an entry that reflects the result of the last change that was made to the catalog.

Operation: getChangeHistoryFor
Return a list of records that reflects the change in the catalog entry over the specified time span. Records will be sorted from earliest to latest if (a) fromDate is omitted or (b) toDate is omitted, or (c) fromDate is earlier than toDate. In all other cases, records will be sorted from latest to earliest.

	
	6.2.1.3 List Code System Concepts
	LexEVS CTS 2 API
Code System Query Operations
LexEVS CTS2 Code System Query API provides capability to query contents of Code System that are available in the system.
listCodeSystemConcepts()
List the cnepts in the specified code system

LexEVS Native

A set of coded entries in a coding scheme.
LexBigService
getCodingSchemeConcepts();
Returns the set of all (or all active) concepts in the specified coding scheme.

ConceptReference
getConceptCode();
Gets the conceptCode value for this ConceptReference.
CodedNodeReference
getCode();
Gets the code value for this CodedNodeReference.

CodedNodeGraph
resolveAsList();
Resolve all of the coded nodes in the list, sorting by the supplied property (if any), resolving the supplied properties, resolving coded entries to the supplied depth and resolving associations to the supplied * depth.
	EntityDescriptionReadService

A service that provides direct read access to EntityDescriptions by namespace/name or URI in the context of a particular code system or code system version.

Operation: availableDescriptions
Return the available EntityDescriptions for the referenced entity. This returns a list of the latest versions of all of
the code systems that make assertions about the referenced entity.

Operation: exists
Determine if the specified entity description exists in the specified code system version.

Operation: existsInCodeSystem
Determine if the specified entity description exists in the specified code system.

Operation: read
Retrieve an entity description from a specified code system version.

Operation: readByCodeSystem
Retrieve the specified entity description from the specified code system.

Operation: readEntityDescriptions
Retrieve all of the EntityDescriptions for the supplied entityId . This function will return the current EntityDescription for every describing code system version that makes non-semantic assertions about the referenced entity.

	
	6.2.1.4 Return Concept Details
	LexEVS CTS 2 API
Code System Query Operations
LexEVS CTS2 Code System Query API provides capability to query contents of Code System that are available in the system.
getConceptDetails()
Return the details (metadata) for a specified concept
LexEVS Native
Details about a given concept available.
CodedNodeGraph
areCodesRelated();
Determine whether there is an directed edge (or transitive closure of an edge) from the source code to the target code in this graph.
LexBIGServiceConvenienceMethods
codeToName();
getChildrenOf();
getEndNodes();
getParentsOf();
getRenderingDetail();
getTopNodes();
isCodeRetired();
nameToCode();
getTypeDescr();

CodedNodeGraph
areCodesRelated();
Determine whether there is an directed edge (or transitive closure of an edge) from the source code to the target code in this graph. The last parameter determines whether only direct associations are considered or whether the transitive closure of the edge is used.
isCodeInGraph();
Determine whether the supplied concept code is in the graph.
listCodeRelationships();
Return a list of all of the associations in the graph that have the supplied source and target concepts or, if directOnly is false, all associations whose transitive closure has the supplied associations.
	EntityDescriptionQueryService

A service that allows the selection, manipulation and rendering of sets of EntityDescriptions.
Operation: restrictToCodeSystem
Return an EntityDirectoryURI that references only the EntityReferences in directory that have assertions about the Entity.
(EntityDescriptions) in the tagged version of the supplied code system. Note that this does not constrain the known EntityDescription attribute within the EntityReference itself - an EntityReference that has assertions in code system A and B would still have two knownEntityDescription entries even after this restriction is applied. Further constraint can be accomplished via the resolve functions.
Operation: restrictToCodeSystemVersion
Return an EntityDirectoryURI that references only the EntityReferences in directory that have assertions about the (EntityDescriptions) in the tagged version of the supplied code system.
Operation: restrictToEntities
Return an EntityDirectoryURI that represents the set of EntityReferences common to directory and list.
Operation: resolve
Return an EntityDirectory that contains the set of EntityReference s identified by directory .
Operation: resolveAsList
Return a directory containing the set of EntityDescriptions identified by directory . One EntityDescription entry will be returned for each knownEntityDescription in the corresponding EntityReference . This means that it is possible for there to be zero, one or more EntityDescriptions returned per EntityReference . The restrictToCodeSystem or restrictToCodeSystemVersion operations can be used to constrain the set of references to a single code system.
Operation: resolveAsEntityReferenceList
Return a complete EntityReferenceList that contains all of the EntityReferences identified by directory .
Operation: isEntityInSet
Determine whether the supplied entity name or URI is in the set referenced by directory .
Operation: intersectEntityList
Return an EntityReferenceList that represents the intersection of the supplied list and the directory .
EntityDescriptionHistoryService
A service that provides a historical perspective on what changes occurred to a given EntityDescription.
Operation: getEarliestChangeFor
Select from the set of ChangeSet s that contain one or more changes for the referenced entity the ChangeSet that has the
earliest officialEffectiveDate and return the first change for the named entity in the set.

Operation: getLatestChangeFor
Select from the set of ChangeSet s that contain one or more changes for the referenced entity the ChangeSet that has the
latest officialEffectiveDate and return the last change for the named entity in the set.

Operation: getLatestServiceChangeFor
Get the last change that was applied to the named entity from the perspective of the service.

Operation: getChangeHistoryFor
Return a directory of EntityDescriptions matching the supplied namespace/name or URI whose ChangeSet //officialEffectiveDate falls between fromDate and toDate . The order of the dates controls the return order - if fromDate is later than toDate the return order is latest to earliest, otherwise it is earliest to latest.

Operation: getServiceHistoryFor
Return a directory of EntityDescriptions matching the supplied namespace/name or URI whose changes became
visible in the service between fromDate and toDate . The order of the dates controls the return order - if fromDate is
later than toDate the return order is latest to earliest, otherwise it is earliest to latest.

	
	6.2.1.5 List Association Types
	LexEVS CTS 2 API
Code System Query Operations
LexEVS CTS2 Code System Query API provides capability to query contents of Code System that are available in the system.
listAssociationTypes()
List the available association types in the specified code system
LexEVS Native
Each entry identifies the URN and local name for an association.AssociationList
getAssociation();
Gets the association value for this AssociationList
	Entity Description Services
Association Query Service
Operation: restrictToCodeSystemVersion
Return a DirectoryURI that represents the subset of the associations in directory that were assertedBy the named code system version.
Operation: restrictToCodeSystemVersion
Return a DirectoryURI that represents the subset of the associations in directory that were assertedBy the named
code system version.
Operation: restrictToSourceEntity
Return a DirectoryURI that represents the subset of the associations in directory whose subject is sourceEntity.
Operation: restrictToPredicate
Return a DirectoryURI that represents the subset of the associations in directory whose predicate is predicate.
Operation: restrictToTargetEntity
Return a DirectoryURI that represents the subset of the associations in directory having a target of type is predicate.

	
	6.2.1.6 Return Association Type Details
	LexEVS CTS 2 API
Code System Query Operations
LexEVS CTS2 Code System Query API provides capability to query contents of Code System that are available in the system.
listAssociationTypeDetails()
List the details (metadata) for a specified association type
LexEVS Native
A collection of relations across a set of concept codes drawn from one or more coding schemes.
Association
getAssociationName();
Gets the associationName value for this Association.
getAssociatedConcepts();
Gets the associatedConcepts value for this Association.
getDirectionalName();
Gets the directionalName value for this Association.
getAssociationReference();
Gets the associationReference value for this Association.
getTypeDesc();
Return type metadata object
getAssociatedData();
Gets the associatedData value for this Association.
getRoleName();
Gets the roleName value for this Association.

AssociatedConceptList
getAssociatedConcept();
Gets the associatedConcept value for this AssociatedConceptList.

AssociatedConcept
isNavigable();
Gets the isNavigable value for this AssociatedConcept.
getAssociationQualifiers();
Gets the associationQualifiers value for this AssociatedConcept.

CodedNodeGraph
areCodesRelated();
Determine whether there is an directed edge (or transitive closure of an edge) from the source code to the target code in this graph.
isCodeInGraph();
Determine whether the supplied concept code is in the graph.
listCodeRelationships();
Return a list of all of the associations in the graph that have the supplied source and target concepts or, if directOnly is false, all associations whose transitive closure has the supplied associations.

AssociationIdentification
getRelationshipName();
Gets the relationshipName value for this AssociationIdentification.
	Association and Reasoning Services
Operation: read
Retrieve the association instance identified by the entryID URI
Operation: readByExternalStatementId
Retrieve the association identified by the identifierNamespace and externalStatementId.
Operation: existsByExternalStatementId
Determine whether the association identified by the identifierNamespace and externalStatementId is accessible
from the service in the specified (optional) context

	
	6.2.2.1 List Value Sets
	LexEVS CTS 2 API
Value Set Query Operations
listValueSets()
This functions returns all value sets available to the system
listAllValueSets()
Returns all value Sets available to the System

The Value Domain services are integrated parts of the LexEVS core API. They provide the ability to:
1. Load Value Domain definitions programmatically into the LexGrid repository using the domain objects that are available via the LexGrid logical model

2. Apply user restrictions (ex: valueDomain URI) and dynamically resolve the definitions at run time
LexEVS Native
The LexEVS Value Domain Services expose the API particularly for the Value Domain elements of the LexGrid Logical Model.
LexEVSValueDomainServices
listValueDomains();
Utility method that lists all the value domain(s) that matches supplied name.

resolveValueDomain();
Resolves a value domain using the supplied set of coding scheme versions.
getAllValueDomainsWithNoNames();
This method returns all the value domain definition URI's that contains no names.
getValueDomainEntitiesForTerm();
This method resolves the supplied value domain and returns only those concept codes that matches the supplied term.

isValueDomain();
This method checks if the supplied entityCode is of type 'valueDomain' in supplied coding scheme and version.
getValueDomainDefinition();
Returns value domain definition for the supplied value domain URI.
isDomain();
This method checks if the supplied entityCode is of type 'valueDomain' in supplied coding scheme and version.
ValueDomainServices
findByValueDomainName();
This method will return valueDomains via name search.
	Value Set Services
A ValueSetCatalogEntry carries information about the creators, distributors, purpose, use, etc. about a value set. The catalog does not carry the actual definition of a value set as (a) this may vary over time and (b) it is possible for more than one definition to be in use at any given point in time.
The ValueSetCatalogEntry is in entry in a value set catalog that describes the purpose, use, etc. of a value set.
ValueSetCatalogReadService
Operation: exists
Determine if a catalog entry for the named value is known to the service.
Operation: read
Retrieve the specified value set.

	
	6.2.2.2 Return Value Set Details
	LexEVS CTS 2 API
Value Set Query Operations
getValueSetDetails()
Returns the details (metadata) of the value set (expand Value Set)
LexEVS Native
LexEVSValueDomainServices
getValueDomainDefinition();
Utility method that returns value domain definition for the supplied value domain URI.
getCodingSchemesInValueDomain();
This method returns all the coding scheme referenced by supplied value domain.

	Value Set Services
ValueSetCatalogQueryService
Operation: restrictToCodeSystem
Return a reference to the subset of the supplied value sets whose definitions reference the named code system
Operation: restrictToContainedValueSet
Return a reference to the subset of the supplied value sets whose definitions include the supplied value set
Operation: restrictToPropertyReference
Return a reference to the subset of the supplied value sets whose definitions include a reference to the named property
predicate
Operation: restrictToDefinitionEntities
Return a reference to the subset of the supplied value sets whose definitions directly reference one or more of the referenced
entities. Note that this query only returns definitions that include the entities in either the SpecificEntityList or the
AssociatedEntitiesReference variations. It does not include entities that would be include in the resolution of the
definition nor entities that are referenced indirectly via the CompleteValueSetReference variant.
Operation: resolve
Resolve a ValueSetCatalogDirectoryURI to a set of valueSetCatalogSummaryEntries.
Operation: resolveAsList
Resolve a ValueSetCatalogDirectoryURI to a set of ValueSetCatalogEntries

ValueSetCatalogHistoryService
Operation: getEarliestChangeFor
Return the first known state of the specified ValueSetCatalogEntry
Operation: getLastChangeFor
Return the last known changed to the specified ValueSetCatalogEntry
Operation: getChangeHistoryFor
Return a list of ValueSetCatalogEntries that reflect the various states that the ValueSetCatalogEntry went
through between fromDate and toDate.

ValueSetDefinitionReadService
Operation: exists
Determine if the specified value set definition exists on the service.
Operation: read
Retrieve the specified value set definition.
Operation: existsDefinitionForValueSet
Determine if the value set definition for the specified value set exists on the service.
Operation: readDefinitionForValueSet
Return the definition for the supplied value set and version tag
ValueSetDefinitionQueryService
Operation: restrictToCodeSystem
Restrict the set of referenced definitions to those which reference the named code system.
Operation: resolve
Resolve a ValueSetDefinitionDirectoryURI to a directory summarizing the referenced definitions.
Operation: resolveAsList
Resolve a ValueSetDefinitionDirectoryURI to a directory containing the referenced definitions.

	
	6.2.2.3 List Value Set Contents
	LexEVS CTS 2 API
Value Set Query Operations
listValueSetContents()
Returns the contents of the value set (expand Value Set)
LexEVS Native
LexEVSValueDomainServices
isConceptInDomain();
Determines if the supplied entity code is a valid result for the supplied value domain and, if it is, returns the particular codingSchemeVersion that was used.
	Value Set Definition Resolution Rule Services
Value Set Definition Resolution
Operation: resolveAsEntityDirectory
Returns an EntityDirectory the members of the Value Set
Operation:contains
Operation:resolveAsCompleteSet
Returns the complete set of Entities that exist as members of the Value Set

	
	6.2.2.4 Check Value Set Subsumption
	LexEVS CTS 2 API
Value Set Query Operations
checkValueSetSubsumption()
This function determines whether one of the two supplied value sets subsumes the other.
LexEVS Native
LexEVSValueDomainServices

isSubDomain();
Checks whether childValueDomainURI is a child of parentValueDomainURI.
	Value Set Services
ValueSetDefinitionQueryService
Operation: resolve
Resolve a ValueSetDefinitionDirectoryURI to a directory summarizing the referenced definitions.
Operation: resolveAsList
Resolve a ValueSetDefinitionDirectoryURI to a directory containing the referenced definitions
ValueSetDefinitionReadService
Operation: exists
Determine if the specified value set definition exists on the service.

	
	6.2.2.5 Check Concept Value Set Membership
	LexEVS CTS 2 API
Value Set Query Query Operations
checkConceptValueSetMembership()
Determine whether the supplied coded concept exists in the supplied value set.
[bookmark: _Toc296960451]listValueSetsWithConceptCode()
This function returns all the value set identifiers that contains supplied concept code.

LexEVS Native
LexEVSValueDomainServices
isConceptInDomain();
Determines if the supplied entity code is a valid result for the supplied value domain and, if it is, returns the particular codingSchemeVersion that was used.
	Value Set Services
ValueSetDefinitionQueryService
Operation: restrictToCodeSystem
Restrict the set of referenced definitions to those which reference the named code system.
ValueSetDefinitionReadService
Operation: exists
Determine if the specified value set definition exists on the service.

	
	6.2.3.1 List Concept Domains
	LexEVS CTS 2 API
Concept Domain Query Operations
getConceptDomainCodingScheme()
This operations returns the concept domain coding scheme
listAllConceptDomainEntities()
Return all concept domain entities for the supplied codingScheme
getConceptDomainEntitiesWithName()
Return all Concept Domain entities that match the name
LexEVS Native
There is currently no support in LexEVS for Concept Domains. Concept Domains in LexEVS may be supported via codingScheme functionality.
LexBigServiceMetadata
listCodingSchemes();
List the coding schemes that are represented in the metadata index.
restrictToCodingScheme();
Restrict the search to a particular coding scheme.
	Concept Domain and Concept Domain Binding Services
Concept Domain Catalog Read Service
Operation: exists
Determine whether the service has a catalog entry for a concept domain with the supplied name or URI in the supplied context
Operation: read
Return the ConceptDomainCatalogEntry
Operation: existsDefiningEntity
Determine whether there is a catalog entry that is defined by the referenced entity or "concept".
Operation: readByDefiningEntity
Return the ConceptDomainCatalogEntry whose defining entity is represented by the supplied entity URI or namespace
and name.
Concept Domain Catalog Query Service
Operation: resolve
Return a summary of the catalog entries referenced by directory.
Operation: resolveAsList
Return a summary of the catalog entries referenced by directory.

	
	6.2.3.2 Return Concept Domain Details
	LexEVS CTS 2 API
Concept Domain Query Operations
getConceptDomainEntity()
This function returns the detailed concept domain entity.
LexEVS Native
Concept domain support in LexEVS may be supported via coding scheme functionality.
CodingSchemeSummary
getCodingSchemeDescription();
Gets the codingSchemeDescription value for this CodingSchemeSummary
getCodingSchemeURI();
Gets the codingSchemeURI value for this CodingSchemeSummary.
getFormalName();
Gets the formalName value for this CodingSchemeSummary.
getLocalName();
Gets the localName value for this CodingSchemeSummary.
getRepresentsVersion();
Gets the representsVersion value for this CodingSchemeSummary.

CodingSchemeIdentification
getName();
Gets the name value for this CodingSchemeIdentification.
	Concept Domain and Concept Domain Binding Services
Concept Domain Catalog History Service
Operation: getEarliestChangeFor
Retrieve the earliest change made to the catalog entry for the supplied concept domain.
Operation: getLatestChangeFor
Return the latest known change to the catalog entry for the supplied concept domain

	
	6.2.3.3 List Usage Contexts
	LexEVS CTS 2 API
Usage Context Query Operations
listAllUsageContextEntities()
This function returns all the Usage Context entities found in supplied code system version.
listAllUsageContextIds()
Returns all the Usage Context identifiers found in supplied code system version.

LexEVS Native
Usage context support in LexEVS may be supported via coding scheme functionality.

LexBigServiceMetadata
listCodingSchemes();
List the coding schemes that are represented in the metadata index.
restrictToCodingScheme();
Restrict the search to a particular coding scheme.
	Core Components

CONTEXT - External and environmental factors that serve to discriminate among multiple possible selections. While
it is assumed that the specific contexts referenced by CONTEXT are represented by entity descriptions contained in
some ontology or coding scheme, the CTS2 specification does not recommend any targets. Note, however, the CTS2
context is intended to represent the notion of "jurisdictional domain" or "realm" as described in the HL7 CTS2 SFM

	
	6.2.3.4 List Usage Context Details
	LexEVS CTS 2 API
Usage Context Query Operations
getUsageContextEntity()
This function returns the detailed usage context entity.
LexEVS Native
Usage context support in LexEVS may be supported via coding scheme functionality.
CodingSchemeSummary
getCodingSchemeDescription();
Gets the codingSchemeDescription value for this CodingSchemeSummary
getCodingSchemeURI();
Gets the codingSchemeURI value for this CodingSchemeSummary.
getFormalName();
Gets the formalName value for this CodingSchemeSummary.
getLocalName();
Gets the localName value for this CodingSchemeSummary.
getRepresentsVersion();
Gets the representsVersion value for this CodingSchemeSummary.

CodingSchemeIdentification
getName();
Gets the name value for this CodingSchemeIdentification.
	Core Components

CONTEXT - External and environmental factors that serve to discriminate among multiple possible selections. While
it is assumed that the specific contexts referenced by CONTEXT are represented by entity descriptions contained in
some ontology or coding scheme, the CTS2 specification does not recommend any targets. Note, however, the CTS2
context is intended to represent the notion of "jurisdictional domain" or "realm" as described in the HL7 CTS2 SFM

	
	6.2.3.5 List Concept Domain Bindings
	LexEVS CTS 2 API
Concept Domain Query Operations
getConceptDomainBindings()
Returns list of value set definition URIs that are bound to given concept domain.
Concept domain support in LexEVS may be supported via coding scheme functionality. Concept to concept domain mappings may be implemented as cross codingScheme mappings.
These “domain” values can be linked to the conceptDomain attribute on the ValueDomain model to implement a Concept Domain binding.
CodedNodeGraph
areCodesRelated();
Determine whether there is an directed edge (or transitive closure of an edge) from the source code to the target code in this graph.
AssociatedConceptList
getAssociatedConcept();
Gets the associatedConcept value for this AssociatedConceptList.
	Concept Domain and Concept Domain Binding Services
Concept Domain Binding Services
Concept Domain Binding Read Services
Operation: exists
Determine whether a concept domain binding exists for the specified domain, value set, realm and context. Note that only the conceptDomain name and/or valueSet names must be validated. A service implementation may choose whether to validate the URI’s or simply assume that, if not found in the service, they reference external elements.

Operation: read
Return the concept binding for the specified domain, value set, realm and context. Note that only the conceptDomain name and/or valueSet names must be validated. A service implementation may choose whether to validate the URI’s or simply assume that, if not found in the service, they reference external elements.

Operation: existsURI
Determine whether a concept domain binding with the supplied DocumentURI exists
Operation: readByURI
Return the concept domain binding with the supplied DocumentURI.
Concept Domain Binding Query Services
Operation: restrictToConceptDomain
Restrict the set of bindings referenced by directory to those that are bound to the supplied conceptDomain.
Operation: restrictToContexts
Return a directory URI that references all of the concept domain bindings in directory that have apply in one or more of the supplied contexts.

Operation: restrictToValueSets
Return a directory URI that references all of the concept domain bindings in directory that bind to the supplied value set(s)

Operation: resolve
Return a directory that summarizes the set of bindings referenced by the directory URI
Operation: resolveAsList
Return the set of bindings referenced by the directory URI

	
	6.2.3.5.1 Check Concept to Concept Domain Association
	LexEVS CTS 2 API
Concept Domain Query Operations
isEntityInConceptDomain()
This function determines whether the supplied coded concept exists in a code system in use for the specified concept domain, optionally within specific usage contexts.
LexEVS Native
Concept domain support in LexEVS may be supported via coding scheme functionality. Concept to concept domain mappings may be implemented as cross codingScheme mappings.
These “domain” values can be linked to the conceptDomain attribute on the ValueDomain model to implement a Concept Domain binding.
CodedNodeGraph
areCodesRelated();
Determine whether there is an directed edge (or transitive closure of an edge) from the source code to the target code in this graph.
AssociatedConceptList
getAssociatedConcept();
Gets the associatedConcept value for this AssociatedConceptList.
	Concept Domain and Concept Domain Binding Services
ConceptDomainBindingQueryService
Operation: restrictToValueSets
Return a directory URI that references all of the concept domain bindings in directory that bind to the supplied value
set(s).
Operation: restrictToContexts
Return a directory URI that references all of the concept domain bindings in directory that have apply in one or more of
the supplied contexts.
Operation: restrictToConceptDomain
Restrict the set of bindings referenced by directory to those that are bound to the supplied conceptDomain.

	
	6.2.4.1 List Associations
	LexEVS CTS 2 API
Association Query Operations
listAssociations()
This function returns the resolved concept reference (which contains the associations) according to given node.
LexEVS Native
CodedNodeGraph
listCodeRelationships();
Return a list of all of the associations in the graph that have the supplied source and target concepts or, if directOnly is false, all associations whose transitive closure has the supplied associations.
	Association and Reasoning Services
AssociationReadService
Operation: read
Retrieve the association instance identified by the entryID URI
Operation: exists
Determine whether an association identified by the entryID URI is accessible from the service in the specified (optional)
Context
Operation: readByExternalStatementId
Retrieve the association identified by the identifierNamespace and externalStatementId.
Operation: existsByExternalStatementId
Determine whether the association identified by the identifierNamespace and externalStatementId is accessible
from the service in the specified (optional) context

	
	6.2.4.2 Determine Transitive Concept Relationship
	LexEVS CTS 2 API
Association Query Operations
determineTransitiveConceptRelationship()
Returns the path according to given two nodes.
LexEVS Native
CodedNodeGraph
areCodesRelated();
Determine whether there is an directed edge (or transitive closure of an edge) from the source code to the target code in this graph.
	Association and Reasoning Services
Reasoning Service
Operation: resolveAsGraph
Operation: restrictToTargetExpression

	
	6.2.4.3 Compute Subsumption Relationship
	LexEVS CTS 2 API
Association Query Operations
computeSubsumptionRelationship()
Return whether the two nodes has a transitive closure path.

LexEVS Native
CodedNodeGraph
areCodesRelated();
Determine whether there is an directed edge (or transitive closure of an edge) from the source code to the target code in this graph.
	Association and Reasoning Services
ReasoningService
Operation: resolveAsGraph
Operation: restrictToTargetExpression

	
	6.2.4.4 Return Association Details
	LexEVS CTS 2 API
Association Query Operations
getAssociationDetails()
Return whether the two nodes has a transitive closure path.
LexEVS Native
AssociationIdentification
getRelationshipName();
Gets the relationshipName value for this AssociationIdentification.
getTypeDesc();
Return type metadata object
	Association and Reasoning Services
AssociationReadService
Operation: read
Retrieve the association instance identified by the entryID URI
Operation: exists
Determine whether an association identified by the entryID URI is accessible from the service in the specified (optional)
Context
Operation: readByExternalStatementId
Retrieve the association identified by the identifierNamespace and externalStatementId.
Operation: existsByExternalStatementId
Determine whether the association identified by the identifierNamespace and externalStatementId is accessible
from the service in the specified (optional) context

	The ability to alter terminologies loaded in the service
	6.1.7 Change Code System Status
	LexEVS CTS 2 API
Code System Authoring Operations
updateCodeSystem()
Modify the meta-data that describes the Code System.
Native LexEVS
Status Change Operations
updateCodeSystemVersionStatus()
This function modifies the status of a code system.

	Code System and Code System Version Catalog Services
CodeSystemVersionCatalogMaintenanceService
Operation: updateCodeSystemVersion
Update an existing code system version catalog entry.
Operation: restrictToCodeSystemVersion
Return a DirectoryURI that represents the subset of the associations in directory that were assertedBy the named
code system version.
Operation: restrictToSourceEntity
Return a DirectoryURI that represents the subset of the associations in directory whose subject is sourceEntity.
Operation: restrictToPredicate
Return a DirectoryURI that represents the subset of the associations in directory whose predicate is predicate.
Operation: restrictToTargetEntity
Return a DirectoryURI that represents the subset of the associations in directory having a target of type is predicate.

	The ability to create and maintain terminologies in the service.
	6.3.1.1 Create Code System
	LexEVS CTS 2 API
Code System Authoring Operations
createCodeSystem()
Create a new Code System.
Native LexEVS
Code System creation can be managed through the Loader class by loading code systems created external to the service. There is currently no support for creating code systems outside of loading content from external sources.
Loader functionality is outlined above in 6.1.1.
Additionally the LexEVS 6.0 Constructors support code system creation
· createCodeSystem()
· createAbsoluteCodingSchemeVersionReference()
· createCodingSchemeVersionOrTag()
· createCodingSchemeVersionOrTagFromTag()
· createCodingSchemeVersionOrTagFromVersion()

	Code System and Code System Version Catalog Services
CodeSystemVersionCatalogMaintenanceService
Operation: createCodeSystemVersion
Create a new code system version catalog entry. Note that the versionOf parameter does not have to be validated as there
is no service level requirement that code system catalogs be complete or even present.

	
	6.3.1.2 Maintain Code System Version
	LexEVS CTS 2 API
Code System Authoring Operations
addCodeSystemProperties()
Adds new properties to code system.
createConcept()
Creates new concept in a code system.
addNewConceptProperty()
Adds a new property to a concept.
createAssociationType()
Creates new association type.
updateCodeSystem()
Modify the meta-data that describes the Code System.
updateCodeSystemProperties()
Updates properties of a code system.
updateConcept()
Modified an existing concept in a code system.
updateConceptProperty()
Modifies existing property of a concept.
updateCodeSystemVersionStatus ()
This function modifies the status of a code system.
updateConceptStatus()
Modifies the status of a concept.
removeCodeSystemProperty()
Removes a property of a Code System
deleteConcept()
This function provides capability to remove a concept from code system.

deleteConceptProperty()
Removes a property of a concept.
LexEVS Native
Code System Authoring API
addCodeSystemProperties()
Adds new properties to code system.
updateCodeSystem()
Modify the meta-data that describes the Code System.

updateCodeSystemProperties()
This function provides capability to update properties of a Code System.
removeCodeSystemProperty()
This function provides capability to remove property of a Code System.
	Code System and Code System Version Catalog Services
CodeSystemVersionCatalogMaintenanceService
Operation: updateCodeSystemVersion
Update an existing code system version catalog entry.

	
	6.3.1.3 Update Code System Version Status
	LexEVS CTS 2 API
Code System Authoring Operations
updateCodeSystemVersionStatus ()
This function modifies the status of a code system.
Native LexEVS
Status Change Operations
updateCodeSystemVersionStatus()
This function modifies the status of a code system.

	Code System and Code System Version Catalog Services
CodeSystemVersionCatalogMaintenanceService
Operation: updateCodeSystemVersion
Update an existing code system version catalog entry.

	
	6.3.1.4 Create Code System Supplement
	LexEVS CTS 2 API
Code System Authoring Operations
createCodeSystemSuppliment()
Creates a new Code System Supplement as a container of a set of concepts and concept properties to be appended to a target code system.

Native LexEVS
LexEVS 6.0, Code System Supplement is implemented as a separate Code System containing only the required extensions or “suppliments” to the parent code system.
The Code System Supplement is maintained separately from the Code System that it extends, however queries can search across the both simultaneously.
Code System Authoring API
Create Operations
createCodeSystemSuppliment()

	Code System and Code System Version Catalog Services
CodeSystemVersionCatalogMaintenanceService
Operation: createCodeSystemVersion
Create a new code system version catalog entry. Note that the versionOf parameter does not have to be validated as there
is no service level requirement that code system catalogs be complete or even present.

	
	6.3.1.5 Maintain Code System Supplement
	There is currently no LexEVS support for maintaining a code system supplement. Code system supplements could be managed though the Loader class by importing updates to a codingScheme that extends or supplements an existing coding scheme that was developed external to the service.
Loader functionality is outlined above in 6.1.1.
	Code System and Code System Version Catalog Services
CodeSystemVersionCatalogMaintenanceService
Operation: updateCodeSystemVersion
Update an existing code system version catalog entry.

	
	6.3.1.6 Create Concept
	LexEVS CTS 2 API
Code System Authoring Operations
addCodeSystemProperties()
Adds new properties to code system.
createConcept()
Creates new concept in a code system.
addNewConceptProperty()
Adds a new property to a concept.
createAssociationType()
Creates new association type.
updateCodeSystem()
Modify the meta-data that describes the Code System.
updateCodeSystemProperties()
Updates properties of a code system.
updateConcept()
Modified an existing concept in a code system.
updateConceptProperty()
Modifies existing property of a concept.
updateCodeSystemVersionStatus ()
This function modifies the status of a code system.
updateConceptStatus()
Modifies the status of a concept.
updateAssociationType()
Modify existing association type
removeCodeSystemProperty()
Removes a property of a Code System
deleteConcept()
This function provides capability to remove a concept from code system.

deleteConceptProperty()
Removes a property of a concept.
LexEVS Native
Code Sysytem Autoring API
createConcept()
This function creates a concept to be included in a Code System. The new concept is defined by the set of meta-data properties that describe it.

	Entity Description Services
Operation: createAnonymousIndividualDescription
Create a new AnonymousIndividualDescription .
Operation: createClassDescription
Create a new ClassDescription
Operation: createNamedEntityDescription
Create a new NamedEntityDescription.
Operation: createNamedIndividualDescription
Create a new NamedIndividualDescription.

	
	6.3.1.7 Maintain Concept
	LexEVS CTS 2 API
Code System Authoring Operations
addNewConceptProperty()
Adds a new property to a concept.
Native LexEVS
Code Sysytem Autoring API
addNewConceptProperty()
This function provides capability to add a new property to a concept
updateConcept()
This function provides capability to modify existing concept in a Code System.
removeCodeSystemProperty()
This function provides capability to remove property of a Code System.

deleteConcept()
This function provides capability to remove a concept from code system.

deleteConeptProperty()
This function provides capability to remove property of a concept.

	Entity Description Services
Operation: updateEntityDescription
Update an existing entity description of any type.

	
	6.3.1.8 Update Concept Status
	LexEVS CTS 2 API
Code System Authoring Operations
updateConceptStatus()
Modifies the status of a concept.
Native LexEVS
Code Sysytem Autoring API
updateConceptStatus
This function modifies the status of a concept.

	Entity Description Services
Operation: updateEntityDescription
Update an existing entity description of any type.

	
	6.3.1.9 Create Association type
	LexEVS CTS 2 API
Code System Authoring Operations
createAssociationType()
Creates new association type.
Native LexEVS
Code System Authoring API
Create Operations
createAssociationType()
This function provides capability to create a new association type, an instance of which may be used to link two concepts.

	Entity Description Services
Operation: createAssociation
Create a new Association
Operation: addAssociation
Add the input association to the service.

	
	6.3.1.10 Maintain Association Type
	LexEVS CTS 2 API
Code System Authoring Operations
updateAssociationType()
Modify existing association type
Native LexEVS
Code System Authoring API
Create Operations
updateAssociationType()
This function provides capability to modify existing association type.
	Entity Description Services
Operation: updateAssociation
Update an existing Association resource
Class UpdateAssociationRequest
The set of elements that can be changed in an existing association.

	
	6.3.2.1 Create Value Set
	LexEVS CTS 2 API
Value Set Authoring Operations
createValueSet()
Creates a new value set definition and loads it into the repository.
Native LexEVS
Value Set Authoring API
Create Operations
createValueSet()
This function creates a new Value Set. The new Value Set is defined by the set of meta-data properties that describe it.
	Value Set Definition Resolution Rule Services
ValueSetCatalogMaintenanceService
Operation: createExternalValueSetDefinition
Create a new value set definition consisting of an ExternalValueSetDefinition with the operator set to UNION

	
	6.3.2.2 Maintain value Set
	LexEVS CTS 2 API
Value Set Authoring Operations
addDefinitionEntry()
Add new definition entry (rule set) to a value set definition
addValueSetProperty()
Add new Property to existing value set definition.
updateValueSetMetaData()
Updates value set definition meta data.
updateDefinitionEntry()
Update existing definition entry (rule set) of a value set definition.
updateValueSetProperty()
Updates existing property of a value set definition.
removeDefinitionEntry()
Removes definition entry (rule set) of a value set definition.
removeValueSetProperty()
Removes a property of a Value Set Definition.
updateValueSetStatus()
Modifies the status of a Value Set.
updateValueSetVersionable()
Update Value Set versionable attributes like effective date, expiration date, owner, status etc.

Native LexEVS
Value Set Authoring API
Create Operations
addDefinitionEntry()
This function provides capability to add new Definition Entry (Rule Set) to Value Set Definition.
addValueSetProperty()
This function provides capability to add a new property to a Value Set.
Edit Operations
updateValueSetMetaData()
This function provides capability to modify existing meta-data of a value set definition.
updateDefinitionEntry()
This function provides capability to modify existing Definition Entry of a Value Set Definition.
updateValueSetProperty()
This function provides capability to modify existing property of a Value Set Definition.
removeDefinitionEntry()
This function provides capability to remove Definition Entry (rule set) of a Value Set.
removeValueSerProperty()
This function provides capability to remove property of a Value Set.

	Value Set Definition Resolution Rule Services
ValueSetDefinitionMaintenanceService
Operation: updateValueSet
Update an existing ValueSetCatalogEntry
Operation: createExternalValueSetDefinition
Create a new value set definition consisting of an ExternalValueSetDefinition with the operator set to UNION
Operation: addExternalValueSetDefinition
Add an ExternalValueSetDefinition component to an existing ValueSetDefinition .
Operation: createCompleteCodeSystemReference
Create a new value set definition consisting of a CompleteCodeSystemReference with the operator set to UNION
referencing the supplied code system and optional version.
Operation: addCompleteCodeSystemReference
Add a CompleteCodeSystemReference to an existing ValueSetDefinition
Operation: createCompleteValueSetReference
Create a new value set definition consisting of a CompleteValueSetReference with the operator set to UNION referencing the supplied code system and optional version.
Operation: addCompleteValueSetReference
Add a CompleteValueSetReference component to an existing ValueSetDefinition
Operation: createPropertyQueryReference
Create a new value set definition consisting of a PropertyQueryReference w ith the operator set to UNION
Operation: addPropertyQueryReference
Add a PropertyQueryReference component to an existing ValueSetDefinition.
Operation: createAssociatedEntitiesReference
Create a new value set definition consisting of an AssociatedEntitiesReference with the operator set to UNION
referencing the supplied set of entities
Operation: addAssociatedEntitiesReference
Add an AssociatedEntitiesReference component to an existing ValueSetDefinition.
Operation: createSpecificEntityListDefinition
Create a new value set definition consisting of a SpecificEntityList ith the operator set to UNION referencing
the supplied set of entities
Operation: addSpecificEntityListDefinition
Add a SpecificEntityList component to an existing ValueSetDefinition.
Operation: removeDefinitionEntry
Remove the specified definition entry from the named value set

	
	6.3.2.3 Update Value Set Version Status
	LexEVS CTS 2 API
Value Set Authoring Operations
updateValueSetVersionable()
Update Value Set versionable attributes like effective date, expiration date, owner, status etc.
Native LexEVS
Value Set Authoring API
updateValueSetStatus()
This function modifies the status of a Value Set.
updateValueSetVersionable()
This function provides capability to modify Value Set versionable attributes like effective date, expiration date, owner, status etc.
	Value Set Definition Resolution Rule Services
ValueSetCatalogMaintenanceService
Operation: updateValueSet
Update an existing ValueSetCatalogEntry

	
	6.3.3.1 Create Concept Domain
	LexEVS CTS 2 API
Concept Domain Authoring Operations
createConceptDomain()
Creates a new concept domain.

Native LexEVS
There is currently no support in LexEVS for Concept Domains.
Concept Domains in LexEVS may be supported via codingScheme functionality.
Support for this function may be realized by loading a codingScheme representing Concept Domains developed external to the service.
Loader functionality is outlined above in 6.1.1.
	Concept Domain and Concept Domain Binding Services
Concept Domain Catalog Maintenance Service
Operation: createConceptDomain
Create a new concept domain catalog entry

	
	6.3.3.2 Maintain Concept Domain
	LexEVS CTS 2 API
Concept Domain Authoring Operations
addConceptDomainProperty()
Adds a new property for a concept domain.
updateConceptDomainProperty()
Modifies existing property of a concept domain.
removeConceptDomainProperty()
Removes an existing property of a concept domain.
updateConceptDomainStatus()
Modifies that status of a concept domain
activateConceptDomain()
Acticates a concept domain.
deactivateConceptDomain()
Deactivates a concept domain.
updateConceptDomainVersionable()
Update concept domain versionable attributes like effective date, expiration date, owner, status etc.

Native LexEVS
There is currently no support in LexEVS for Concept Domains.
Concept Domains in LexEVS may be supported via codingScheme functionality.
Support for this function may be realized by loading a codingScheme representing Concept Domains updates developed external to the service.
Loader functionality is outlined above in 6.1.1.
	Concept Domain and Concept Domain Binding Services
Concept Domain Catalog Maintenance Service
Operation: updateConceptDomain
Update a concept domain catalog entry

	
	6.3.3.3 Create Usage Context
	LexEVS CTS 2 API
Usage Context Authoring Operations
createUsageContext()
Creates a new usage context.

	Entity Description Services
Operation: createAnonymousIndividualDescription
Create a new AnonymousIndividualDescription .
Operation: createClassDescription
Create a new ClassDescription
Operation: createNamedEntityDescription
Create a new NamedEntityDescription.
Operation: createNamedIndividualDescription
Create a new NamedIndividualDescription.

	
	6.3.3.4 Maintain Usage Context
	LexEVS CTS 2 API
Usage Context Authoring Operations
addUsageContextProperty()
Add new property for a usage context.
updateUsageContextProperty()
Updates an existing property for a usage context.
removeUsageContext()
Removes a usageContext.
removeUsageContextProperty()
Removes an existing usage context property
updateUsageContextStatus()
Modifies the status of a usage context.

	Entity Description Services
Operation: updateEntityDescription
Update an existing entity description of any type.
Usage Context can be maintained as an Entity within a Resource.

	
	6.3.4.1 Update Association Status
	LexEVS CTS 2 API
Association Authoring Operations
updateAssociationStatus()
Updates an association status value.

	Entity Description Services
Operation: updateAssociation
Update an existing Association resource

	
	6.3.4.2 Create Association
	LexEVS CTS 2 API
Association Authoring Operations
createAssociation()
Creates a new association.

	Entity Description Services
Operation: createAssociation
Create a new Association
Operation: addAssociation
Add the input association to the service.

	
	6.3.4.3 Create Lexical Association Between Coded Concepts
	There is currently no LexEVS support for creating lexical associations between concepts. Lexical associations could be managed though the Loader class by importing a associations developed external to the service.
Loader functionality is outlined above in 6.1.1.
	Entity Description Services
Create Lexical Association Between Coded Concepts has been decided as out of scope for a terminology Service.

	
	6.3.4.4 Create Rules Based Association Between Coded Concepts
	There is currently no LexEVS support for creating rules based associations between concepts. Rules based associations could be managed though the Loader class by importing a associations developed external to the service.
Loader functionality is outlined above in 6.1.1.
	Entity Description Services
Create Rules Based Association Between Coded Concepts has been decided as out of scope for a terminology Service.

Table 2 - Functional Mapping

[bookmark: _Toc296960452]Other Technical Considerations

Other technical considerations to be considered for RFP evaluation may not be directly mapped to LexEVS on an architectural or functional level. These other functional considerations are however necessary to ensure that the RFP responses are comprehensive.
The below table is intended to outline technical requirements the RFP response needs to consider. It is anticipated that for any given technical consideration a RFP response may vary from the requirements outlined in the SFM as the PIM is realized on a technical level. However, the RFP response must explain how any variation or deviation in a technical requirement in the SFM or RFP improves upon or is managed by the RFP response.

	Technical Consideration
	RFP Response

	Does the RFP response clearly separate functional capabilities in a way that adheres to the profiles specified in Section 7 of the SFM?
· Administrative Profile
· Query Profile
· Authoring / Maintenance Profile
	The RFP separates the functional capabilities into the following categories:
· Read Services
· Query Services
· History Services
· Maintenance Services.

These functional categories provide the same functional coverage as are outlined in section 7 of the SFM.

	What functional requirements outlined in Section 6 of the SFM does the RFP response NOT address.
	SFM Sections out of scope:
• Register for Notification (6.1.8)
• Update Notification Registration (6.1.9)
• Update Notification

Registration Status (6.1.10)
Notification services are considered out of scope.

	Does the RFP response specify an API interface to provide access to the necessary functionality?
	Yes. API interfaces are included throughout the normative parts of the PIM.

	Does the RFP response specify a services interface (such as SOAP) to provide access to necessary functionality?
	The RFP response includes a RESTful services based interface for the PSM.

	How does the RFP response provide consistent and standardized access to multiple terminologies?
	Terminologies are constructed to meet scope specific domain requirements and as such there is variation in design patterns across the terminologies in use.

At its most abstract level, the CTS 2 specification is about a collection of resources - specifically code systems, value set definitions, concept domains, concept domain bindings, and value sets. This approach allows support for disparate terminology models, and does not constrain CTS 2 to any specific vertical market segment.

	Does the RFP response address or provide a mapping to HL7 Model Interchange Format (MIF) requirements?
	The RFP response does not explicitly include a mapping to HL7’s MIF requirements; however MIF requirements were taken into account during PIM development.

	How does the RFP response address query interoperability in its return structures (such as the use of the HL7 data types R2 or R3)?
	The RFP does not explicitly specify a return structure such as the HL7 dataypes, however nothing in the CTS 2 PIM response precludes the representation of content in specific return structure where appropriate I the PSM.

	How does the RFP response integrate with the existing LexEVS terminology services platform?
	The RFP response includes two

	What existing tooling or technical platforms is the RFP response intending to integrate with?
	The RESTful PSM developed with the PIM is intended to integrate with a wide variety if platforms, include platforms capable of interacting with http/https.

	Does the RFP response permit the concurrent representation of different version of the same code system?
	Code System and Code System Version Catalog Services

CodeSystemVersionCatalogEntry permits the concurrent representation of different version of the same code system

	What service versioning strategy is specified by the RFP responder for updating the functional capabilities of the service?
	The CTS 2 PIM will be following the OMG Finalization process whereby the PIM and PSM will be open to public comment. All comments will be considered for integration into the PIM throughout the Finalization process.

	What limitations in the selected PSM platform may be of concern for deployment of the service?
	The RESTful PSM developed with the PIM does not impose any significant limitations.

	Does the RFP responder intend on deploying the PSM internally within their organization?
	The RFP responder is currently planning integration of the PIM/PSM internally.

	Outline the RFP response support for formats such as
· RDF
· OWL / OWL 2
	The RESTful model underpinning the PIM supports both RDF and OWLL /OWL 2.

Table 3 – Technical Considerations

[bookmark: _Toc296960453]Management Criteria

The managerial evaluation of the RFP is focused on evaluating the responder’s experience with developing and deploying specifications and services, specifically terminology services. The management evaluation is intended to provide a determination as to:
· The RFP responders ability to effectively deliver an implementable PIM and a deployable and functional PSM
· The ability of the PIM to be evaluated by HL7 membership and other SDO bodies
	Managerial Consideration
	RFP Responder

	Outline the RFP responder’s experience and past performance in developing terminology service solutions.
	The responder has years of experience in developing terminology service architectures and implementations, including terminology service standards in the HL7 (CTS) and OMG communities (LQS), and LexEVS (NCI caBIG EVS).

	Has the RFP responder deployed terminology services on a large scale in the past two years?
	The RFP responder has been active in developing and deploying large scale terminology services for the past decade this includes LexEVS (NCI caBIG EVS).

	Does the RFP responder plan on releasing the PSM (technical implementation) for the RFP to the open source community?
	Yes. The PSMs implementing the PIM from the RFP responder are under the Eclipse Public License (EPL) and is available through the OMG beta specification.

	If the PSM (technical implementation) for the RFP is being released to the open source community, what timeframe is specified for the release?
	The OMG beta release of the PSM will be available initially in July 2011, with updates being completed through the OMG finalization process throughout 2011.

	Does the RFP responder have the technical capacity (staff and experience) to complete the PIM and PSM?
	The RFP responder has significant technical capacity to complete both the PIM and multiple PSMs.

	Is the RFP responder engaged with and actively contributing to the NCI caBIG initiative?
	The responder is an active and contributing member of the NCI caBIG initiative.

	What standards afflictions is the RFP responder a member of?
	The RFP responder is a member of HL7, OMG and W3C communities.

	What domains (if any) is the RFP targeted to?
	CTS 2 is not constrained to any specific vertical market segment or domain.

	How has the RFP responder engaged the HL7 community in an effort to confirm the accuracy of their proposed solution?
	The RFP responder has presented the PIM on several occasions to the HL7 community, and actively coordinated with HL7 in terms of how best to represent HL7 artifacts in the PIM.

	Does the RFP responder intend on including the PIM as a balloted artifact within the HL7 community?
	The HL7 community is still in the process of evaluating the PIM, and will make a decision on how best to ballot the CTS 2 specification at the September 2011 Working Group Meeting.

	Does the RFP responder intend on providing software maintenance and support services as part of their deployment?
	The RFP responder is keen to assist in developing and participating in an open source community that collectively responds to software support and maintenance issues for the open source PSM.

	Outline the project plan the RFP responder considers sufficient to ensure a timely delivery of the PSM.
	The PSM has been implemented iteratively with the PIM. This provided the responder with an opportunity to test PIM concepts in parallel with platform specific implementation.
The responder maintains an internal project plan that can be made available on request.

	Describe how effective the language specifying the PIM conveys the intent of the architecture and functional capabilities.
	The CTS2 specification was developed using a combination of UML and Z notation. The classes, attributes, method signatures and relationships were modeled using UML class diagrams, while the invariants, preconditions and post-conditions are written in Z. The specification can be published using UML notation with the invariants expressed informally or in Z notation, where the model can be formally validated using the FUZZ type checker.
This approach provides an effective combination for representing the architectural and functional components of the PIM.

	Outline any concerns there may be with the representation language describing the PIM. Is the PIM represented in such a way as to be clear, unambiguous and interpretable by a wide community?
	Z notation language lacks widely available tooling; however the integration of the UML with the Z notation is sufficient to provide an unambiguous and interpretable artifact.

Table 4 – Management Evaluation

[bookmark: _Toc296960454]Summary

This document provides an evaluation of the response to the OMG RFP for HL7’s CTS 2 specification in terms of a mapping of PIM architectural and functional components specified in the PIM against the previously developed evaluation criteria. This evaluation was completed in part to ensure alignment of NCI requirements against not only the HL7 CTS 2 SFM requirements, but against the existing LexEVS capabilities to help ensure alignment exists between the PIM and the existing LexEVS investment and infrastructure.
The RESTful approach taken in the PIM at its core permits CTS 2 implementations a wide degree of flexibility in how information is ultimately accessed and represented to integrated systems, including the semantic web.

The results of this evaluation show that the PIM response contains sufficient architectural and operational coverage to meet NCI caBIG requirements. Additional work will necessary to fully integrate the full functionality offered in the PIM into the caBIG terminology services infrastructure.

image1.jpeg

image2.jpeg

image3.jpeg

