The Role of Al in Image De-Identification Al's ability to detect demographics

Judy Gichoya, MD MS

Director, HITI Lab
Assistant Professor, Department of Radiology
Emory University

Disclosures

- ACR
 - Al advisory council
- RSNA
 - Associate Editor Radiology Al Trainee Editorial Board
 - CIRE Committee member
- SIIM
 - Co-chair Research Committee
 - Board member
- NSF grant
 - FW-HTF-RM: Measuring learning gains in manmachine assemblage when augmenting radiology work with artificial intelligence

- HL7 and AHLI Board member
 - Association for Health Learning and Inference
- Softbrew LTD
 - Consulting on Global Health /Clinical informatics
- Funding
 - NBIB MIDRC / COVID -19 Data repository
 - Clairity Consortium
 - NIH AIM AHEAD pilot grant
 - RSNA Health disparities grant
 - DeepLook

RECAP

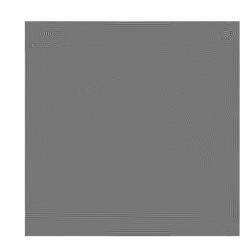
The Lancet Digital Health Available online 11 May 2022

In Press, Corrected Proof (?)

Articles

AI recognition of patient race in medical imaging: a modelling study

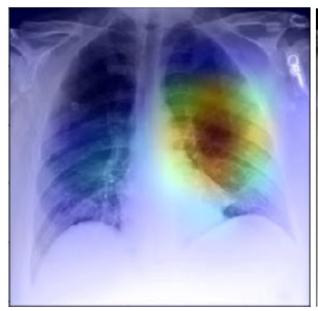
Judy Wawira Gichoya MD ^a , Ram, Imon Banerjee PhD ^c, Ananth Reddy Bhimireddy MS ^a, John L Burns MS ^d, Leo Anthony Celi MD ^{e, g}, Li-Ching Chen BS ^h, Ramon Correa BS ^c, Natalie Dullerud MS ⁱ, Marzyeh Ghassemi PhD ^{e, f}, Shih-Cheng Huang ^j, Po-Chih Kuo PhD ^h, Matthew P Lungren MD ^j, Lyle J Palmer PhD ^{k, j}, Brandon J Price MD ^m, Saptarshi Purkayastha PhD ^d, Ayis T Pyrros MD ⁿ, Lauren Oakden-Rayner MD ^k, Chima Okechukwu MS ^o ... Haoran Zhang MS ⁱ



- 1) <u>Performance</u> of deep learning models to detect race from medical images across modalities and external datasets
- 2) Assessment of possible anatomic and phenotype <u>confounders</u> such as body habitus and disease distribution
- 3) Investigation into underlying mechanisms by which AI models can recognize race.

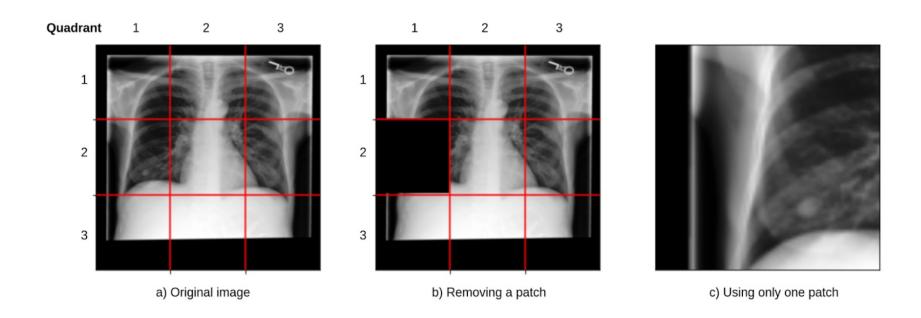
Race detection in radiology imaging	
Chest x-ray (internal validation)*	
MXR (Resnet34, Densenet121)	0.97, 0.94
CXP (Resnet 34)	0.98
EMX (Resnet34, Densenet121, EfficientNet-B0)	0.98, 0.97, 0.99
Chest x-ray (external validation)*	
MXR to CXP, MXR to EMX	0.97, 0.97
CXP to EMX, CXP to MXR	0.97, 0.96
EMX to MXR, EMX to CXP	0.98, 0.98
Chest x-ray (comparison of models)†	
MXR, CXP, EMX	Multiple results (appendix p 26)
CT chest (internal validation)*	
NLST (slice, study)	0.92, 0.96
CT chest (external validation)*	
NLST to EM-CT (slice, study)	0.80, 0.87
NLST to RSPECT (slice, study)	0.83, 0.90
Limb x-ray (internal validation)*	
DHA	0.91
Mammography*	
EM-Mammo (image, study)	0.78, 0.81
Cervical spine x-ray*	
EM-CS	0.92

Image Obscuration

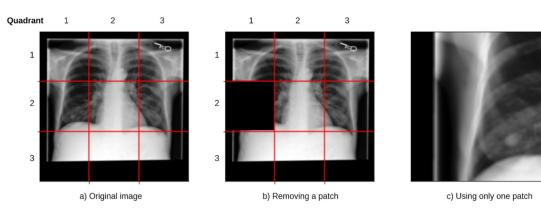


	Asian	Black	White
MXR Densenet121-Original	0.93	0.94	0.94
MXR Densenet121-Masked	0.88	0.79	0.79

Patch predictions and exclusions



Patch predictions and exclusions



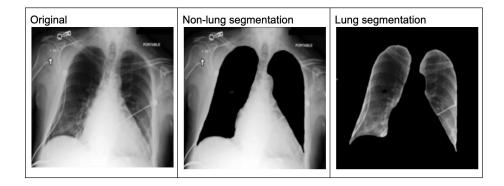
Patch exclusion

Quadrant	1	2	3
1	0.87	0.88	0.87
2	0.81	0.82	0.81
3	0.75	0.60	0.75

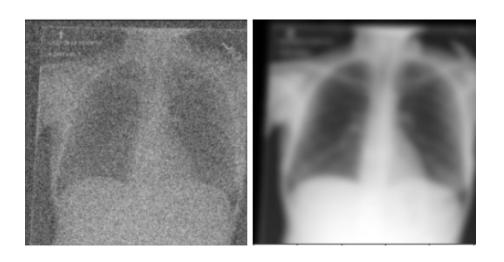
Single Patch Training

Quadrant	1	2	3
1	0.91	0.90	0.91
2	0.91	0.91	0.91
3	0.91	0.91	0.91

Anatomic Segmentation



	Asian	Black	White
MXR Densenet121-Original	0.93	0.94	0.94
MXR Densenet121-Non lung	0.87	0.85	0.87
MXR Densenet121-Lung	0.68	0.74	0.73



	Asian	Black	White
MXR Densenet121-Original	0.93	0.94	0.94

MXR Densenet121-Noisy	0.64	0.72	0.70	
MXR Densenet121-Blurred	0.59	0.64	0.62	

Model trained on CheXphoto performance compared to CheXpert

Original (CheXpert)

CheXphoto

	AUC
sian	0.81

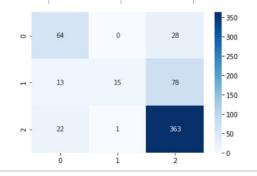
CheXphoto

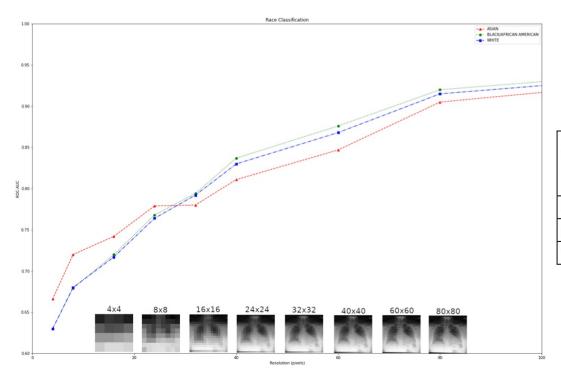
Black	0.77

White 0.80

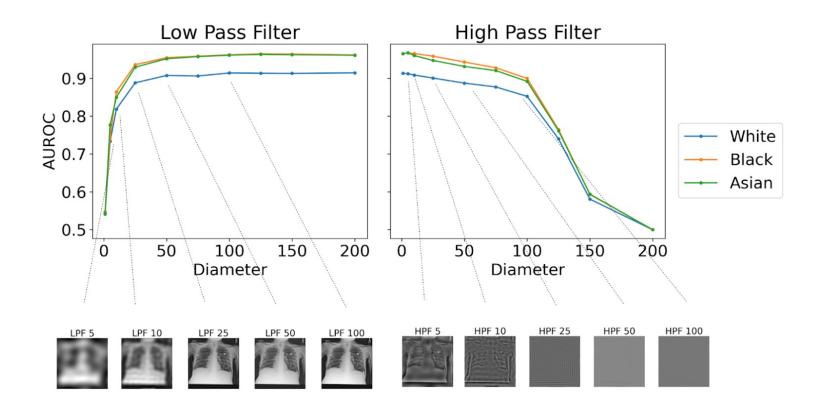
CheXpert

	AUC
Asian	0.90
Black	0.94
White	0.89

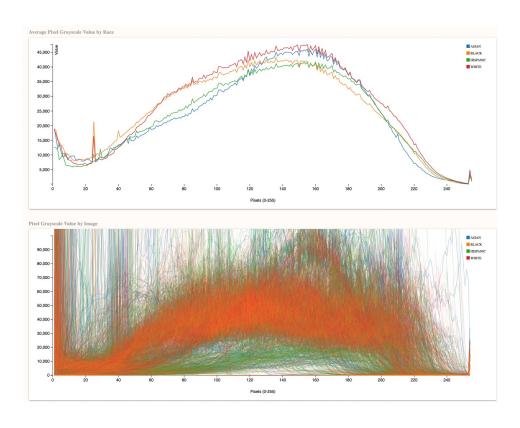




Race	70					Res	olution					
	4	8	16	24	32	40	60	80	160	240	320	512
Asian	0.66	0.72	0.74	0.78	0.78	0.81	0.85	0.90	0.95	0.96	0.97	0.98
Black	0.63	0.68	0.72	0.77	0.79	0.84	0.88	0.92	0.96	0.97	0.97	0.98
White	0.63	0.68	0.72	0.76	0.79	0.83	0.87	0.92	0.96	0.96	0.97	0.97



Data Visualization: Pixel Color Averages by Race in Chest X-Ray



https://ai-vengers.web.app

Pixel Intensity Averages by Race in Chest X-Ray

John Burns¹, Zachary Zaiman², Gaoxiang Luo³, Le Peng³, Brandon Price⁴, Garric Mathias¹, Vijay Mittal¹, Akshay Sanage¹, Jack Vanschaik¹, Christopher Tignanelli³, Sunandan Chakraborty¹, Judy Wawira Gichoya², Saptarshi Purkayastha¹

¹ Indiana University Purdue University at Indianapolis, Indianapolis IN 46202, USA; ² Emory University, Atlanta GA 30322, USA; 3 University of Minnesota Twin Cities, Minneapolis MN 55455, USA; 4 University of Florida College of Medicine, Gainesville FL 32610, USA

ABSTRACT

Recent work using neural networks has shown that self-reported race is embedded in medical imaging. We seek an understanding of the mechanism that reveals race within medical imaging, investigating the possibility that race is embedded within the individual pixel intensities of grayscale medical images.

Using datasets from 3 institutions and MIMIC-CXR with a combined total of 298,827 images, we remove all image structure, count how many times each intensity value appears, and standardize to percent per image (PPI). Visual analysis, statistical tests, and machine learning processes show that intensity PPI contains selfreported race information. The best performing model using gradient boosted trees can predict with an AUROC of 77.24. We investigate confounders of body habitus using Body Mass Index (BMI) and scanner specific settings by limiting to one scanner. Neither factor significantly influences the model.

BACKGROUND

Medical imaging artificial intelligence (AI) models produce racial disparities [2, 3]. There is potential for discriminatory harm if we assume that AI models are agnostic to race. Understanding the relationship between race and medical imaging Al models is importar [4]. Al recognition of patient race in medical imaging: a modelling study authors found that self-reported race is trivially predictable by Al models. They show that AI models can predict self-reported race across multiple imaging modalities, various datasets, and diverse

These results are surprising, particularly as this task has not been shown possible for human experts. This capability is trivially learned and therefore likely to be present in many medical image analysis models, providing a direct vector for the reproduction or exacerbation of the racial disparities that already exist in medical practice [1].

MATERIALS and METHODS

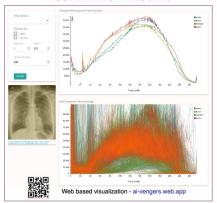
The dataset consists of 3 large academic health centers and one

- publicly available dataset MIMIC-CXR [5] and is 298,827 images total. Institution 1 has 2 datasets: 1 year at hospital W (1.1); and 1 year at hospitals X, Y, Z (1,2) - each limited to the top 10% diverse X-Ray devices.
- Institution 2 has 5 datasets: 1 uncontrolled (2.1); and 4 limited to a single X-Ray device categorized by body habitus using BMI underweight (2.2), normal (2.3), overweight (2.4), and obese (2.5).
- Institution 3 has 1 uncontrolled dataset (3). Data is converted from DICOM to 8-bit PNG format, then each

intensity value is counted, and then the counts are converted to PPI

Visualizations, MANOVA, and machine learning are applied for

VISUALIZATION RESULTS



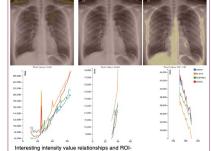
STATISTICAL RESULTS

	ANOVA		MANOVA			MANOVA Balanced	
Dataset	#P<0.05	#F>2	Df	F-Value	P-Value	F-Value	P-Value
1.1	217	234	762	1.49	0.0000	1.14	0.0119
1.2	184	210	762	1.22	0.0000	1.16	0.0031
1 - All	215	223	762	1.64	0.0000	1.30	0.0000
2.1	245	252	508	3.23	0.0000	2.99	0.0000
2.2	138	158	762	1.38	0.0000	0.93	0.7726
2.3	241	244	762	2.65	0.0000	1.13	0.0140
2.4	241	246	762	2.88	0.0000	1.36	0.0000
2.5	226	239	762	2.73	0.0000	1.18	0.0015
2 - All	245	250	762	7.38	0.0000	2.02	0.0000
3	220	237	508	2.58	0.0000	1.67	0.0000
MIMIC	243	246	762	7.04	0.0000	2.90	0.0000
Combined - No MIMIC	248	249	762	8.63	0.0000	3.37	0.0000
Combined - All	255	255	762	35.64	0.0000	11.07	0.0000

ANOVA -

- With 95% confidence we can reject the null hypothesis for most
- grayscale values.
 As a combined dataset 255 of 256 values are p < 0.05 and 255 of 256 values F > 2.
- ANOVA assumes variables are uncorrelated, many pixel counts appear to be highly correlated with other pixel counts.
- MANOVA with Bonferroni multiple-comparison adjustment at an α=0.05 All MANOVA tests have significant p values, indicating that for all source datasets, the pixel percentage distribution i significantly different across different races.
- Datasets 1.1, 2.2, 2.3 cannot reject the null hypothesis when

REGIONS OF INTEREST



- 10-65 have more pixels for Black patients and appe background, skin/muscle, and some lung areas
- 30-40 is minimal soft tissue in the example CXR of the ROI above 170-190 correlating to bone and some organ systems and less pixels for

MACHINE LEARNING RESULTS

	Binary Black or White					Binary Black or all				
Dataset	Feed-Forward Network		Decision Tree [RF GBT Cart]			Feed-Forward Network		Decision Tree [RF GBT Cart]		
	Accuracy	AUROC	Model	Accuracy	AUROC	Accuracy	AUROC	Model	Accuracy	AUROC
1.1	60.9	63.2	RF	57.3	60.6	62.9	57.9	RF	65.3	58.3
	58.8	59.8	GBT	57.1	61.5	63.6	54.1	RF	65.9	62.4
1 – All	57.1	58.2	RF	60.5	66.8	64.5	58.0	RF	66.3	63.2
2.1	60.6	63.5	RF	63.4	67.7	67.5	64.6	RF	66.3	66.6
2.2	60.6	64.6	RF	64.0	67.3	54.5	52.9	RF	61.4	65.1
	63.2	62.0	RF	63.5	67.3	62.5	64.4	RF	65.1	66.8
2.4	59.7	62.2	RF	65.2	65.5	65.3	64.6	RF	66.0	67.6
	62.2	65.3	RF	61.6	64.7	60.4	62.9	RF	62.9	66.4
2 - All	61.7	64.5	RF	64.7	69.6	62.5	63.4	RF	65.9	68.8
3	67.4	67.9	RF	70.5	74.1	68.5	66.1	RF	71.9	72.6
MIMIC	80.5	61.2	GBT	80.4	61.7	82.4	60.2	GBT	82.3	60.0
Combined - No MIMIC	58.4	62.5	GBT	63.0	66.8	61.2	62.7	GBT	64.3	65.8
Combined - All	75.0	69.2	GBT	75.6	70.4	77.0	68.4	GBT	68.5	77.2

Feed-Forward Networks (FFN)had some success in predicting race, with the highest accuracy of 77.0% and AUROC of 68.4%. In general, model performance follows dataset size. However, Institution 2 single modality/body habitus has better results than the

Gradient Boosted Trees outperformed FFN and other decision trees. The best accuracy of 68.5% and AUROC of 77.2% shows that self-reported race can be identified without image structure.

SUMMARY

- ANOVA/MANOVA results show that there is a significant relationship between intensity PPI and self-reported race
- Visualization of this data proved critical for analysis and idea
- generation

 FFN were unable to accurately predict self-reported race from
- · Gradient Boosted Trees achieved a best AUROC of 77.24%, showing that PPI can be used to predict race
- There is little evidence that modality configurations or BMI are correlated to model performance
- Identifying race using pixel gray-scale values without image structure is novel
- Race-bias information exists in x-ray images, even when image structure is removed

CONCLUSIONS

Prior studies utilized CNN and the full image to achieve high AUROC in race prediction. We have shown predictive value in gray-scale PPI for self-reported race classification. Future work includes-

- Histogram normalization to remove race from images and evaluating for clinically-relevant information loss
- Review of additional modalities and body parts for similar
- information Using 3D CT, segment body parts and evaluate PPI for regions

Diversity of data in medical imaging AI is important. It is unknown how racial bias affects medical imaging AI - though it is shown to affect multiple other medical disciplines. Besearchers and vendors should publish training/testing dataset information inclusive of

REFERENCE

- 1. Gichoya, Judy Wawira et al. "Al recognition of patient race in medical imaging: a modelling study." The Lancet. Digital health vol. 4,6 (2022): e406-e414. doi:10.1016/S2589-7500(22)00063-2.
- 2. E. Pierson, D. M. Cutler, J. Leskovec, S. Mullainathan, and Z. Obermeyer, "An algorithmic approach to reducing unexplained pain disparities in underserved pop-(in eng), Nat Med, vol. 27, no. 1, pp. 136-140, Jan 2021, doi: 10.1038/s41591-
- L. Sevved-Kalantari, G. Liu, M. McDermott, I. Y. Chen, and M. Ghassemi, "CheXclusion Fairness gaps in deep chest X-ray classifiers," (in eng), Pac Symp Biocomput,
- vol. 26, pp. 232-243, 2021. 4. A. Tarig et al., "Current Clinical Applications of Artificial Intelligence in Radiology and Thei Best Supporting Evidence," (in eng), J Am Coll Radiol, vol. 17, no. 11, pp. 1371-1381, Nov 2020, doi: 10.1016/j.jacr.2020.08.018.
- 1381, Nov 2020, Oct : 0.1016/j.jacr.2020.08.018.
 5.T. J. P. Allstati E. W. Johnson, Nathariel R. Greenbaum, Matthew P. Lungren, Chih-ying Deng, Yifan Peng, Zhiyong Lu, Roger G. Mark, Seth J. Berkowitz, Steven Hong, "MiMC-CXR-J-PG, a large publicly available database of labeled chest radiographs," arXiv.org, 2019. [Online]. Available: https://arxiv.org/abb/1910.17042.

Confounders mediate AI prediction of demographics in medical imaging

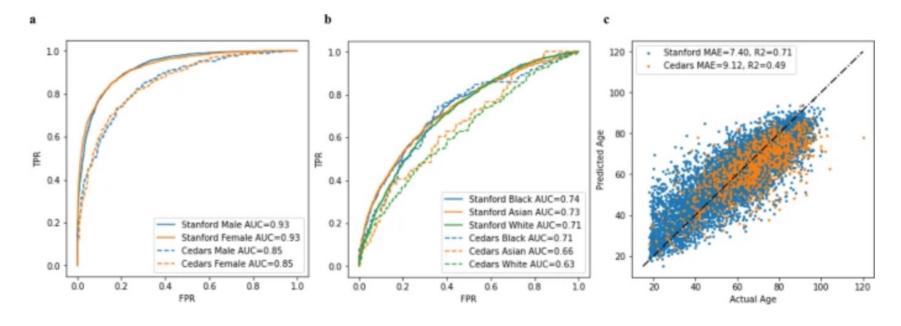
Grant Duffy, Shoa L. Clarke, Matthew Christensen, Bryan He, Neal Yuan, Susan Cheng & David Ouyang

npj Digital Medicine 5, Article number: 188 (2022) Cite this article

2207 Accesses 25 Altmetric Metrics

	CSMC	SHC			
	Apical 4 chamber	Apical 2 chamber	Parasternal long axis	Subcostal	Apical 4 chambe
n, patients	28,450	25,502	28,685	23,596	99,909
n, videos	186,426	71,086	110,399	65,558	99,909
Age (mean (SD))	66.5 (±16.5)	66.7 (±16.5)	66.1 (±16.5)	66.2 (±16.4)	59.9 (±17.7)
Male (%)	15,713 (55.2%)	14,093 (55.3%)	15,739 (54.9%)	12,884 (54.6%)	55,610 (55.7%)
Race/ethnicity, n (%)					
American Indian	65 (0.2%)	57 (0.2%)	66 (0.2%)	56 (0.2%)	267 (0.3%)
Asian	2162 (7.6%)	1945 (7.6%)	2157 (7.5%)	1808 (7.7%)	14,197 (14.2%)
Black	4058 (14.3%)	3681 (14.4%)	4156 (14.5%)	3322 (14.1%)	4826 (4.8%)
Pacific Islander	87 (0.3%)	82 (0.3%)	86 (0.3%)	75 (0.3%)	1428 (1.4%)
White	19,519 (68.6%)	17,444 (68.4%)	19,595 (68.3%)	16,211 (68.7%)	56,498 (56.5%)
Other	1980 (7.0%)	1790 (7.0%)	2021 (7.0%)	1659 (7.0%)	17,452 (17.5%)
Unknown	579 (2.0%)	503 (2.0%)	604 (2.1%)	465 (2.0%)	5241 (5.2%)

Fig. 1: Al model performance in predicting demographics in with unadjusted training and test datasets.



ORIGINAL ARTICLE DATA SCIENCE | VOLUME 19, ISSUE 1, P184-191, JANUARY 01, 2022

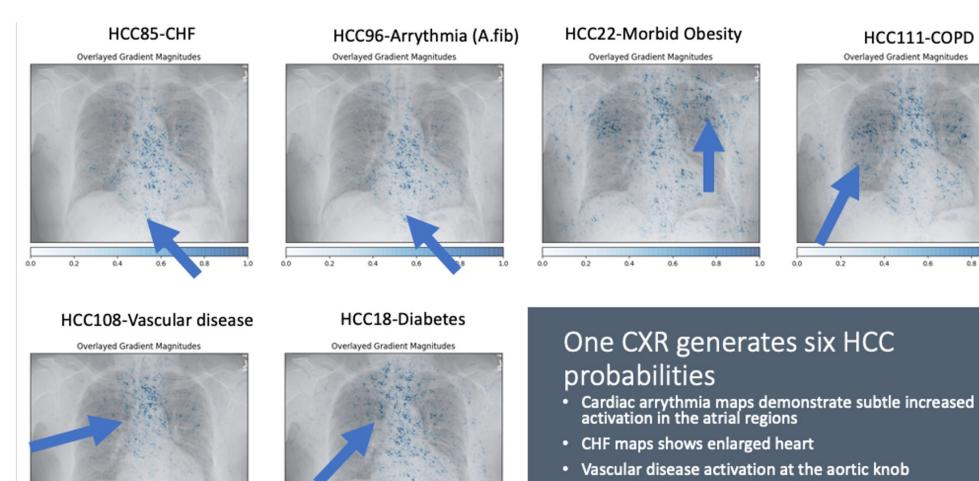
Detecting Racial/Ethnic Health Disparities Using Deep Learning From Frontal Chest Radiography

Ayis Pyrros, MD 😕 🖂 • Jorge Mario Rodríguez-Fernández, MD • Stephen M. Borstelmann, MD •

Judy Wawira Gichoya, MD • Jeanne M. Horowitz, MD • Brian Fornelli, MS • Nasir Siddiqui, MD •

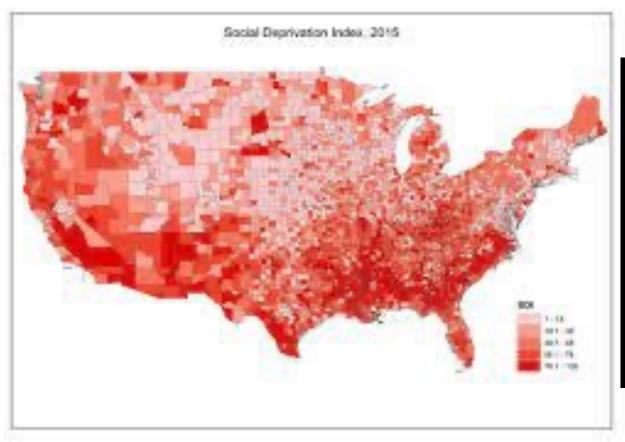
Yury Velichko, PhD • Oluwasanmi Koyejo, PhD • William Galanter, MD, PhD • Show less

DOI: https://doi.org/10.1016/j.jacr.2021.09.010 •



- · COPD shows increased activation of the lungs
- Diabetes activation in the axillary soft-tissues and aorta

Social Deprivation Index



SDI average 45, median 40, std 28 Deprivation Index 252 (30%) 114 MALE 138 FEMALE WHITE AVERAGE AGE 52	AVEARGE AGE 48					
138 FEMALE						
WAITE						
WHITE AVERAGE AGE 52						
SDI average 27, Social median 21, std 23 Deprivation Index						
562 (70%) 275 MALE						
287 FEMALE						

RECAP

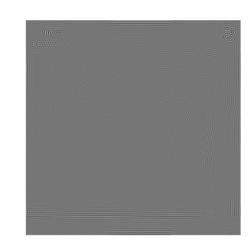
The Lancet Digital Health Available online 11 May 2022

In Press, Corrected Proof ②

Articles

AI recognition of patient race in medical imaging: a modelling study

Judy Wawira Gichoya MD ^a , Ram, Imon Banerjee PhD ^c, Ananth Reddy Bhimireddy MS ^a, John L Burns MS ^d, Leo Anthony Celi MD ^{e, g}, Li-Ching Chen BS ^h, Ramon Correa BS ^c, Natalie Dullerud MS ⁱ, Marzyeh Ghassemi PhD ^{e, f}, Shih-Cheng Huang ^j, Po-Chih Kuo PhD ^h, Matthew P Lungren MD ^j, Lyle J Palmer PhD ^{k, j}, Brandon J Price MD ^m, Saptarshi Purkayastha PhD ^d, Ayis T Pyrros MD ⁿ, Lauren Oakden-Rayner MD ^k, Chima Okechukwu MS ^o ... Haoran Zhang MS ⁱ



- 1) <u>Performance</u> of deep learning models to detect race from medical images across modalities and external datasets
- 2) Assessment of possible anatomic and phenotype <u>confounders</u> such as body habitus and disease distribution
- 3) Investigation into underlying mechanisms by which AI models can recognize race.

• <u>judywawira@emory.edu</u>