
Home  
Knowledge Centers 

caGrid  
Clinical Trials Management Systems  
Data Sharing and Intellectual Capital  
Molecular Analysis Tools  
Tissue/Biospecimen Banking and Technology Tool  
Vocabulary  

Discussion Forums 
caGrid  
Clinical Trials Management Systems  
Data Sharing and Intellectual Capital  
Molecular Analysis Tools  
Tissue/Biospecimen Banking and Technology Tool  
Vocabulary  

Bugs/Feature Requests  
Development Code Repository  

LexEVS 5.0 Administration Guide 
From Vocab_Wiki 

LexEVS 5.0 Administration Guide > LexBig and LexEVS > LexEVS Version 5.0 > LexEVS 5.0 Documentation > LexEVS 5.0 Administration Guide 

LexEVS Model/DB (back-end) Administration 
Environment configuration from the perspective of an existing installation  

LexEVS Configuration Options 

The LexEVS software, documentation, indexes, and system logs are located in the {LEXBIG_DIRECTORY} 
(e.g. /usr/local/packages/LexBIG or c:\lexbig). These files may be part of the local file system and may require backup 
procedures to meet servicability and recovery requirements for your organization.  

LexEVS uses basic database indexes, but also includes a separate indexing facility using Apache Lucene. Lucene Index files 
are stored in a directory as specified in the config.props file index_location variable.  

What is Coding Scheme Manifest? 

A “Coding Scheme Manifest” (or simply “manifest” as used interchangeably in this document) allows the user to set values for 
a coding scheme while loading or converting a LexGrid XML", "NCI MetaThesaurus", "NCI OWL","OWL", "OBO", "UMLS 
RRF File", or"HL7 RIM Database" source to LexGrid format.  

What is Coding Scheme? 

Coding Scheme is the term that is used to represent an ontology/terminology being loaded or converted. In the LexGrid data 
model a terminology is represented as a coding scheme and it can reference other coding schemes. An example of coding 
scheme is “Amino Acid” which is described in the “amino acid.owl” file.  

A Coding Scheme has some meta information about it; values like ‘formal name’, ‘local names’, ‘default language’, ‘version’, 

Contents 

 



‘copyright’, ‘sources’ to name some.  

Why do we need a Coding Scheme Manifest? 

When a terminology is being converted to the LexGrid data model from its native format (in this case OWL), Coding Scheme 
information is read from the source file. Sometimes values may be missing (not provided or invalid) or the author/user of the 
terminology wants to override or set default values despite (or in addition to) what is provided in the source file. This can be 
accomplished using “manifest” files along with the source file.  

How do we create a Coding Scheme Manifest file? 

A coding scheme manifest file is a valid XML file, conforming to the schema defined by 
http://LexGrid.org/schema/LexBIG/2007/01/CodingSchemeManifestList.xsd. This XML file can define values for one or more 
coding schemes you are dealing with. Some coding scheme meta-information may not easily map to information in the source 
file. In this case a manifest file is of great help to bridge the gap and control the information flow while mapping to the 
LexGrid model. A detailed model of the LexGrid Coding Scheme and its fields can be found online [1]. Structure of the 
schema for the manifest file is explained in the following table (manifest components refer to the original LexGrid model 
schema namespaces and types):  

Coding Scheme Manifest entry field: id 
Type: lgCommon:registeredName  
Required: Yes  
Override flag set: Not applicable  
Description:  

The registered name is the key used to find a coding scheme (for example a unique URL or namespace by which other people 
access same coding scheme). This String value will be used to identify the manifest entry in the manifest file for the coding 
scheme too. For example the registered name for coding scheme “Amino-acid” is http://www.co-ode.org/ontologies/amino-
acid/2006/05/18/amino-acid.owl#. This string is also set as the coding scheme’s registered name field in the LexGrid model.  

Coding Scheme Manifest entry field: codingScheme 
Type: lgBuiltin:localId  
Required: No  
Override flag set: Yes  
Description:  

This value will be set for ‘coding scheme name’ in the LexGrid format counterpart. If the override flag is set to ‘true’, the value 
provided in the source file will be replaced with this one. Otherwise, this value is treated as a default value and used only if the 
value is not provided in the source file.  

Coding Scheme Manifest entry field: entityDescription 
Type: lgCommon:entityDescription  
Required: No  
Override flag set: Yes  
Description:  

This value will be set for ‘coding scheme description’ in the LexGrid format counterpart. If the override flag is set to ‘true’, the 
value provided in the source file will be replaced with this one. Otherwise, this value is treated as a default value and used only 
if the value is not provided in the source file.  

Coding Scheme Manifest entry field: formalName 
Type: lgBuiltin:tsCaseIgnoreIA5String  
Required: No  
Override flag set: Yes  
Description:  

This value will be set for ‘coding scheme formal name’ in the LexGrid format counterpart. If the override flag is set to ‘true’, 
the value provided in the source file will be replaced with this one. Otherwise, this value is treated as a default value and used 



only if the value is not provided in the source file.  

Coding Scheme Manifest entry field: registeredName 
Type: lgCommon:registeredName  
Required: No  
Override flag set: Yes  
Description:  

This value will be set for ‘coding scheme registered name’ in the LexGrid format counterpart. If the override flag is set to 
‘true’, the value provided in the source file will be replaced with this one. Otherwise, this value is treated as a default value and 
used only if the value is not provided in the source file.  

Coding Scheme Manifest entry field: defaultLanguage 
Type: lgCommon:defaultLanguage  
Required: No  
Override flag set: Yes  
Description:  

This value will be set for ‘coding scheme default language’ in the LexGrid format counterpart. If the override flag is set to 
‘true’, the value provided in the source file will be replaced with this one. Otherwise, this value is treated as a default value and
used only if the value is not provided in the source file.  

Coding Scheme Manifest entry field: representsVersion 
Type: lgCommon:version  
Required: No  
Override flag set: Yes  

Description:  

This value will be set for ‘coding scheme version’ in the LexGrid format counterpart. If the override flag is set to ‘true’, the 
value provided in the source file will be replaced with this one. Otherwise, this value is treated as a default value and used only 
if the value is not provided in the source file.  

Coding Scheme Manifest entry field: localName 
Type: lgBuiltin:tsCaseIgnoreIA5String  
Required: No  
"To Add" flag set: Yes  
Description:  

This value will be added for ‘coding scheme local names’. If the add flag is set to ‘true’, this value will be added to the list of 
local names (if not there already). Otherwise, this value is treated as the default value and used only if the value is not provided 
in the source file.  

Coding Scheme Manifest entry field: source 
Type: lgCommon:source  
Required: No  
"To Add" flag set: Yes  
Description:  

This value will be added for ‘coding scheme sources’. If the add flag is set to ‘true’, this value will be added to the list of 
sources (if not there already). Otherwise, this value is treated as the default value and used only if the value is not provided in 
the source file.  

Coding Scheme Manifest entry field: copyright 
Type: lgCommon:text  
Required: No  
Override flag set: Yes  
Description:  

This value will be set for ‘coding scheme copyright’ in the LexGrid format counterpart. If the override flag is set to ‘true’, the 



value provided in the source file will be replaced with this one. Otherwise, this value is treated as a default value and used only 
if the value is not provided in the source file.  

Coding Scheme Manifest entry field: mappings 
Type: lgCS:mappings  

Required: No  
"To Add" flag set: Yes  
Description:  

This value will be added for ‘coding scheme mappings’. If the add flag is set to ‘true’, this value will be added to the list of 
mappings (if not there already). Otherwise, this value is treated as the default value and used only if the value is not provided in 
the source file.  

Coding Scheme Manifest entry field: associationDefinitions 
Type: lgRel:association  
Required: No  
"To Add" flag set: Yes  
Description:  

This value will be added for ‘coding scheme associations’. If the add flag is set to ‘true’, this value will be added to the list of 
associations (if not there already). Otherwise, this value is treated as the default value and used only if the value is not provided 
in the source file.  

(Note: This option is used internally by the system to provide default recognition of some common associations. It is typically 
not necessary to provide this value, however, since association definitions are automatically derived from the source.)  

What code changes may be required to use a manifest file? 

If you want to use the manifest file, you can supply the manifest file URI to the following methods when Loading NCI OWL or 
generic OWL Loads:  

"org.LexGrid.LexBIG.Extensions.Load.OWL_Loader.load()"  

"org.LexGrid.LexBIG.Extensions.Load.OWL_Loader.validate()"  

An example code snipped:  

For all other manifest loads the following methods are employed.  

LexBIGServiceImpl();  

LexBIGService lbs = new LexBIGServiceImpl(); 
   LexBIGServiceManager lbsm = lbs.getServiceManager(null); 
   OWL_Loader loader = (OWL_Loader) lbsm.getLoader(“OWLLoader”); 
 
if (toValidateOnly) 
  { 
       loader.validate(source, manifest, vl); 
       System.out.println("VALIDATION SUCCESSFUL"); 
} 
   else 
  { 
       loader.load(new File("resources/testData/amino-   
  cid.owl").toURI(), 
  new File("resources/testData/aa-manifest.xml").toURI(),true,   
  true); 
} 

// Find the registered extension handling this type of load 
LexBIGService lbs = new  



(org.LexGrid.LexBIG.Impl.loaders  

preferences  

Database Configuration 

Database systems as described in the section Required Software—Not Included in LexEVS provide the storage for vocabularies 
loaded into LexEVS. For each vocabulary version loaded into LexEVS a new database is created. As defined in the 
config.props files the db_prefix variable is used to create the database name.  

For example with db_prefix=lexbig, each new vocabulary version that is loaded a new database is created using an 
incremental counter.  

lexbig1  
lexbig2  
lexbig3  
lexbigN  

Depending on backup strategy, system administrators will need to be aware that multiple databases are being created and may 
need backup procedures to meet servicability and recovery requirements for your organization.  

MySQL Configuration 

MySQL Configuration Properties  

PostGreSQL Configuration 

PostgreSQL configuration properties  

LexEVS Server Administration 

Configuration Options 

Server configuration properties  

System Monitoring and Logging 

This section describes the configuration and use of LexEVS logs for system monitoring and debugging. The LexEVS service 

LexBIGServiceManager lbsm = lbs.getServiceManager(null); 
HL7_Loader loader = (HL7_Loader)lbsm.getLoader 

.HL7LoaderImpl.name); 
// updated to include manifest 
loader.setCodingSchemeManifestURI(manifest); 
// updated to include loader  

loader.setLoaderPreferences(loaderPrefs); 
loader.load(dbPath, stopOnErrors, true); 

 

BEFORE YOU 
BEGIN  

This section provides an overview of the components as related to system adminstration, backup, and 
recovery. Individual organizations may have there own backup and diaster recovery procedure. 



uses a set of log files. The log files are stored based on the LexEVS lbconfig.props file settings. Refer to Modifying the 
config.props file for LexEVS on page 23 for additional detail configuration parameters.  

 
To view the LexEVS service and load log files perform the following steps.  

In addition to the log information, system properties are included as part of the system verification test as html or xml format. 
A sample of the system properties in html is included in Figure 5.  

Step Action 

1 Change directory to LexEVS administration directory based on the settings of the config.props log_file_location 
setting. 

2 

Open LexBIG_full_log.txt using text editor to review details about LexEVS service. 

  
Open LexBIG_load_log.txt using text editor to review details about vocabulary load utilities. 

  



  

Figure 5 – System Properties from System Verification Test  

LexEVS GUI Admin Tool 
If you choose to install the LexEVS GUI when you installed LexEVS – you will have a ‘gui’ folder inside of your LexEVS 
base installation. If you installed the GUI for all operating systems, you should have the following programs in the ‘ 
Linux_64-lbGUI.sh Linux-lbGUI.sh OSX-lbGUI.command Windows-lbGUI.bat Windows-lbGUI -browser.bat  

We provide two Windows shell script versions which allow a choice between the full fledged loading, managing and “end use” 
or “end use” only type interfaces.  

This shell script provides an example by which any shell script can pass an argument option “-d” into the java command 
launching the LexEVS GUI application, restricting the end user to browsing only and allowing no loading or management of 
terminologies.  

Launch the GUI by executing the appropriate script for your platform. You will be presented with an application that looks like 
this:  



  

This application will let you perform most administrative functions that are available in the LexEVS API. To enable the 
administrative functions, first, go to the ‘Commands’ menu, and then click on the ‘Enable Admin Options’ submenu. This will 
enable all of the commands that can make changes to the LexEVS environment.  

This guide will only cover the administrative commands – please refer to the programmers guide for instructions on the rest of 
the LexEVS GUI.  

Each administrative command will be described in turn, starting with the menus.  

'Commands' Menu 
SubmenuProperty 

Name Menu Action 

Configure 

This menu option will bring up a dialog which will show you all of the options from the current 
config.props file. You can make changes to individual variable here – but these changes will only 
affect the GUI – they will not be written back out to the config.props file. You can also choose 
which config.props file that you want to use. 

Enable Admin 
Options This option enables or disables all of the GUI features which are considered administrative options. 

Clean Up This command will run the clean up orphaned resources tool. It will give you a listing of any 



Now that all of the menus have been covered, we will go over the administrative buttons in the LexEVS GUI. These can be 
found in the lower right area of the top half of the application.  

Vocabulary Administration 
A set of administrative utilities are provided to manage the LexEVS Service. These utilities are provided for Windows (*.bat) 
and Linux (*.sh) operating systems. Each of the commands is located in the {LEXBIG_DIRECTORY}/admin and 
{LEXBIG_DIRECTORY}/test directory. A full description of the options with example is provided for each of the 
administration utilities.  

resources that are orphaned in the LexEVS environment, and give you the option to remove them. 

View Log File This will show you the all of the logs messages that have occurred during the LexEVS GUI session. 
The log file viewer also has choices to let you customize the types of messages that are logged. 

Exit Close the application. 

'Export Terminology' Menu 
SubmenuProperty 

Name Menu Action 

Export as OBO This menu option will launch an exporter that exports the selected terminology into an OBO 1.2 
format. 

Export as LexGrid XML This menu option will launch an exporter that exports the selected terminology into the LexGrid 
XML format. 

Button Button Action 
Change Tag Brings up a dialog that allows you to set (or remove) the tag on the selected terminology. 
Activate Activates the selected terminology. Only available if the terminology is currently deactivated. 
Deactivate Deactivates the selected terminology. Only available if the terminology is currently activated. 
Remove Deletes the selected terminology. 
Remove 
History 

Removes the NCI History data for the selected terminology. Only applicable to NCI Thesaurus 
terminologies. 

Rebuild Index Rebuilds the internal indexes for the selected terminology. If no terminology is selected, rebuilds the 
indexes for all terminologies. 

Administrative Program Description 

ActivateScheme 

Activates a coding scheme based on unique URN and version. 

Options: -u,--urn <urn> URN uniquely identifying the code system. -v,--version 
<versionId> Version identifier. -f,--force Force activation (no confirmation).  

Example: ActivateScheme -u "urn:oid:2.16.840.1.113883.3.26.1.1" -v "05.09e"  

ClearOrphanedResources 

Clean up orphaned resources - databases and indexes. 

Options: -li,--listIndexes List all unused indexes. -ldb,--listDatabases List all unused 
databases (with matching prefix). -ri,--removeIndex <name> Remove the (unused) index 
with the given name. -rdb,--removeDatabase <name> Remove the (unused) database with 
the given name. -a,--all Remove all unreferenced indexes and databases (with matching 
prefix). Example: ClearOrphanedResources -li  

DeactivateScheme 

Deactivates a coding scheme based on unique URN and version. 

Options: -u,--urn <urn> URN uniquely identifying the code system. -v,--version 
<versionId> Version identifier. -d,--date <yyyy-MM-dd,HH:mm:ss> Date and time for 
deactivation to take effect; immediate if not specified. -f,--force Force deactivation (no 
confirmation).  



Example: DeactivateScheme -u "urn:oid:2.16.840.1.113883.3.26.1.1" -v "05.09e" -d 
"01/31/2099,12:00:00"  

ExportLgXML 

Exports content from the repository to a file in the LexGrid canonical XML format. 

Options: -out,--output <uri> URI or path of the directory to contain the resulting XML 
file. The file name will be automatically derived from the coding scheme name. -u,--urn 
<name> URN or local name of the coding scheme to export. -v,--version <id> The 
assigned tag/label or absolute version identifier of the coding scheme. -nf,--noFail If 
specified, indicates that processing should not stop for recoverable errors -f,--force If 
specified, allows the destination file to be overwritten if present.  

Note: If the coding scheme and version values are unspecified, a list of available coding 
schemes will be presented for user selection.  

Example: ExportLgXML -out "file:///path/to/dir" -nf -f Example: ExportLgXML -out 
"file:///path/to/dir" u "NCI_Thesaurus" -v "PRODUCTION" -nf -f  

ExportOBO 

Exports content from the repository to a file in the Open Biomedical Ontologies (OBO) 
format. 

Options: -out,--output <uri> URI or path of the directory to contain the resulting OBO 
file. The file name will be automatically derived from the coding scheme name. -u,--urn 
<name> URN or local name of the coding scheme to export. -v,--version <id> The 
assigned tag/label or absolute version identifier of the coding scheme. -nf,--noFail If 
specified, indicates that processing should not stop for recoverable errors -f,--force If 
specified, allows the destination file to be overwritten if present.  

Note: If the coding scheme and version values are unspecified, a list of available coding 
schemes will be presented for user selection.  

Example: ExportOBO -out "file:///path/to/dir" -nf -f Example: ExportOBO -out 
"file:///path/to/dir" -u "FBbt" -v "PRODUCTION" -nf -f  

ExportOWL 

Exports content from the repository to a file in OWL format. 

Options: -out,--output <uri> URI or path of the directory to contain the resulting OWL 
file. The file name will be automatically derived from the coding scheme name. -u,--urn 
<name> URN or local name of the coding scheme to export. -v,--version <id> The 
assigned tag/label or absolute version identifier of the coding scheme. -nf,--noFail If 
specified, indicates that processing should not stop for recoverable errors -f,--force If 
specified, allows the destination file to be overwritten if present.  

Note: If the URN and version values are unspecified, a list of available coding schemes 
will be presented for user selection.  

Example: ExportOWL -out "file:///path/to/dir" -nf -f Example: ExportOWL -out 
"file:///path/to/dir" -u "sample" -v "1.0" -nf -f  

ListExtensions 

List registered extensions to the LexEVS runtime environment. 

Options: -a,--all List all extensions (default, override by specifying other options). -i,--
index List index extensions. -m,--match List match algorithm extensions. -s,--sort List 
sort algorithm extensions. -g,--generic List generic extensions.  

Example: ListExtensions –a  

ListSchemes 
List all currently registered vocabularies. 

Options: -b,--brief List only coding scheme name, version, urn, and tags (default). -f,--
full List full detail for each scheme.  



Example: ListSchemes  

LoadLgXML 

Loads a vocabulary file, provided in LexGrid canonical xml format. 

Options: -in,--input <uri> URI specifying location of the source file. -v, --validate 
<level> Perform validation of the candidate resource without loading data. If specified, 
the '-nf', -a' and '-t' options are ignored. Supported levels of validation include: 0 = Verify 
document is well-formed 1 = Verify document is valid -nf,--noFail If specified, indicates 
that processing should not stop for recoverable errors. -a, --activate ActivateScheme on 
successful load; if unspecified the vocabulary is loaded but not activated. -t, --tag 
<tagID> An optional tag ID (e.g. 'PRODUCTION' or 'TEST') to assign.  

Load Example: LoadLgXML -in "file:///path/to/file.xml" -nf –a  

Validation Example: LoadLgXML -in "file:///path/to/file.xml" -v 0  

LoadNCIHistory 

Imports NCI History data to the LexEVS repository. 

Options: -in,--input <uri> URI specifying location of the history file -vf,--versionFile 
<uri> URI specifying location of the file containing version identifiers for the history to 
be loaded. -v, --validate <level> Perform validation of the candidate resource without 
loading data. If specified, the '-nf' and '-r' options are ignored. Supported levels of 
validation include: 0 = Verify top 10 lines are correct format 1 = Verify correct format for 
the entire file -nf,--noFail If specified, indicates that processing should not stop for 
recoverable errors -r, --replace If not specified, the provided history file will be added 
into the current history database; otherwise the current database will be replaced by the 
new content.  

Load Example: LoadNCIHistory –nf -in "file:///path/to/history.file" –vf 
“file:///path/to/version.file”  

Validation Example: LoadNCIHistory -in "file:///path/to/history.file" -v 0  

Versions File format information: 
releaseDate|isLatest|releaseAgency|releaseId|releaseOrder|entityDescription  

Sample record: 28-NOV-05|false|http://nci.nih.gov/|05.10e|26|Editing of NCI Thesaurus 
05.10e was completed on October 31, 2005. Version 05.10e was October's fifth build in 
our development cycle.  

LoadNCIMeta 

Loads the NCI MetaThesaurus, provided as a collection of RRF files. 

Options: -in,--input <uri> The directory containing the RRF files; in URI format. -v, --
validate <level> Perform validation of the candidate resource without loading data. If 
specified, the '-nf', -a' and '-t' options are ignored. Supported levels of validation include: 
0 = Verify first 1000 lines per required file -nf,--noFail If specified, indicates that 
processing should not stop for recoverable errors -a, --activate ActivateScheme on 
successful load; if unspecified the vocabulary is loaded but not activated -t, --tag <tagID> 
An optional tag ID (e.g. 'PRODUCTION' or 'TEST') to assign.  

Load Example: LoadNCIMeta -in "file:///path/to/directory" -nf –a  

Validation Example: LoadNCIMeta -in "file:///path/to/directory" -v 0  

LoadNCIThesOWL 

Loads an OWL file containing a version of the NCI Thesaurus ... 

Options: -in,--input <uri> URI specifying location of the source file -v, --validate <level>
Perform validation of the candidate resource without loading data. If specified, the '-nf', -
a' and '-t' options are ignored. Supported levels of validation include: 0 = Verify 
document is well-formed 1 = Verify document is valid -nf,--noFail If specified, indicates 



that processing should not stop for recoverable errors. -a, --activate ActivateScheme on 
successful load; if unspecified the vocabulary is loaded but not activated. -t, --tag 
<tagID> An optional tag ID (e.g. 'PRODUCTION' or 'TEST') to assign.  

Load Example: LoadNCIThesOWL -in "file:///path/to/thesaurus.owl" -nf -a  

Validation Example: LoadNCIThesOWL -in "file:///path/to/thesaurus.owl" -v 0  

LoadOBO 

Loads a file specified in the Open Biomedical Ontologies (OBO) format.  

Options: -in,--input <uri> URI or path specifying location of the source file -v, --validate 
<int> Perform validation of the candidate resource without loading data. If specified, the 
'-nf', -a' and '-t' options are ignored. Supported levels of validation include: 0 = Verify 
document is valid -nf,--noFail If specified, indicates that processing should not stop for 
recoverable errors -a, --activate ActivateScheme on successful load; if unspecified the 
vocabulary is loaded but not activated -t, --tag <id> An optional tag ID (e.g. 
'PRODUCTION' or 'TEST') to assign.  

Example: LoadOBO -in "file:///path/to/file.obo" -nf -a LoadOBO -in 
"file:///path/to/file.obo" -v 0  

LoadOWL 

Loads an OWL file. 

Note: Load of the NCI Thesaurus should be performed via the LoadNCIThesOWL 
counterpart, since it will allow more precise handling of NCI semantics.  

Options: -in,--input <uri> URI or path specifying location of the source file -v, --validate 
<int> Perform validation of the candidate resource without loading data. If specified, the 
'-nf', -a' and '-t' options are ignored. Supported levels of validation include: 0 = Verify 
document is well-formed 1 = Verify document is valid -nf,--noFail If specified, indicates 
that processing should not stop for recoverable errors -a, --activate ActivateScheme on 
successful load; if unspecified the vocabulary is loaded but not activated -t, --tag <id> An 
optional tag ID (e.g. 'PRODUCTION' or 'TEST') to assign.  

Example: LoadOWL -in "file:///path/to/somefile.owl" -nf -a LoadOWL -in 
"file:///path/to/somefile.owl" -v 0  

LoadUMLSDatabase 

Loads UMLS content, provided as a collection of RRF files in a single directory. Files 
may comprise the entire UMLS distribution or pruned via the MetamorphoSys tool. A 
complete list of source vocabularies is available online at 
http://www.nlm.nih.gov/research/umls/metaa1.html. 

Options: -in,--input <uri> Location of the source database. Typically this is specified in 
the form of a URL that indicates the database server, port, name, and optional properties. 
-u,--uid User ID for authenticated access, if required and not specified as part of the input 
URL. -p,--pwd Password for authenticated access, if required and not specified as part of 
the input URL. -d,--driver Name of the JDBC driver to use when accessing the database. 
-s,--sources Comma-delimited list of source vocabularies to load. If absent, all available 
vocabularies are loaded. -v, --validate <int> Perform validation of the candidate resource 
without loading data. If specified, the '-nf', -a' and '-t' options are ignored. Supported 
levels of validation include: 0 = Verify the existence of each required file -nf,--noFail If 
specified, indicates that processing should not stop for recoverable errors -a, --activate 
ActivateScheme on successful load; if unspecified the vocabulary is loaded but not 
activated. -t, --tag <id> An optional tag ID (e.g. 'PRODUCTION' or 'TEST') to assign.  

Example: LoadUMLSDatabase -in "jdbc:postgresql://localhost:5432/lexgrid" -d 
"org.postgresql.Driver" -u "myDatabaseUser" -p "myPassword" -s 
"ICD9CM_2005,ICD9CM_2006" -nf -a LoadUMLSDatabase -in 
"jdbc:postgresql://localhost:5432/lexgrid" -d "org.postgresql.Driver" -u 



"myDatabaseUser" -p "myPassword" -v 0  

LoadUMLSFiles 

Loads UMLS content, provided as a collection of RRF files in a single directory. Files 
may comprise the entire UMLS distribution or pruned via the MetamorphoSys tool. A 
complete list of source vocabularies is available online at 
http://www.nlm.nih.gov/research/umls/metaa1.html. 

Options: -in,--input <uri> URI or path of the directory containing the NLM files -s,--
sources Comma-delimited list of source vocabularies to load. If absent, all available 
vocabularies are loaded. -v, --validate <int> Perform validation of the candidate resource 
without loading data. If specified, the '-nf', -a' and '-t' options are ignored. Supported 
levels of validation include: 0 = Verify the existence of each required file -nf,--noFail If 
specified, indicates that processing should not stop for recoverable errors -a, --activate 
ActivateScheme on successful load; if unspecified the vocabulary is loaded but not 
activated. -t, --tag <id> An optional tag ID (e.g. 'PRODUCTION' or 'TEST') to assign.  

Example: LoadUMLSFiles -in "file:///path/to/directory/" -s 
"ICD9CM_2005,ICD9CM_2006" -nf -a LoadUMLSFiles -in "file:///path/to/directory/" -v 
0  

Note: UMLS Metathesaurus RRF files are a very large fileset. Many users prefer to 
subset these files using the Metamorphosys tool included with the UMLS Metathesaurus 
in order to move a single terminology from a central location of these files. When 
generating source RRF files from the Metathesaurus, the Metamorphosys tool should be 
set to output versionless source abbreviations rather than versioned source abbreviations. 
Failing to do so before loading RRF files to LexEVS will cause an incomplete database 
to be created leaving the association and concept tables empty  

LoadUMLSSemnet 

Loads the UMLS Semantic Network, provided as a collection of files in a single 
directory. The following files are expected to be provided from the National Library of 
Medicine (NLM) distribution: 

- LICENSE.txt (text from distribution terms and conditions) - SRFIL.txt (File 
Description) - SRFIL.txt (Field Description) - SRDEF.txt (Basic information about the 
Semantic Types and Relations) - SRSTR.txt (Structure of the Network) - SRSTRE1.txt 
(Fully inherited set of Relations (UIs)) - SRSTRE2.txt (Fully inherited set of Relations 
(Names)) - SU.txt (Unit Record) These files can be downloaded from the NLM web site 
at http://semanticnetwork.nlm.nih.gov/Download/index.html.  

Options: -in,--input <uri> URI or path of the directory containing the NLM files -v, --
validate <int> Perform validation of the candidate resource without loading data. If 
specified, the '-nf', -a' and '-t' options are ignored. Supported levels of validation include: 
0 = Verify the existence of each required file -nf,--noFail If specified, indicates that 
processing should not stop for recoverable errors -a, --activate ActivateScheme on 
successful load; if unspecified the vocabulary is loaded but not activated. -t, --tag <id> 
An optional tag ID (e.g. 'PRODUCTION' or 'TEST') to assign. -il --InheritanceLevel 
<int> If specified, indicates the extent of inherited relationships to import. 0 = none; 1 = 
all; 2 = all except is_a (default). All direct relationships are imported, regardless of 
option.  

Example: LoadUMLSSemnet -in "file:///path/to/directory/" -nf –a –il 1 
LoadUMLSSemnet -in "file:///path/to/directory/" -v 0  

Imports from an FMA database to a LexEVS repository. Requires that the pprj file be 
configured with a database URN, username, password for an FMA MySQL based 
database. The FMA.pprj file and MySQL dump file are available at 
http://sig.biostr.washington.edu/projects/fm/ upon registration. 

Options: -in,--input <uri> URI or path specifying location of the source file -v, --validate 
<int> Perform validation of the candidate resource without loading data. If specified, the 



LoadFMA 

'-nf', -a' and '-t' options are ignored. Supported levels of validation include: 0 = Verify 
document is well-formed 1 = Verify document is valid -nf,--noFail If specified, indicates 
that processing should not stop for recoverable errors -a, --activate ActivateScheme on 
successful load; if unspecified the vocabulary is loaded but not activated -t, --tag <id> An 
optional tag ID (e.g. 'PRODUCTION' or 'TEST') to assign.  

Example: LoadFMA -in "file:///path/to/FMA.pprj" -nf -a -or- LoadFMA -in 
"file:///path/to/FMA.pprj" -v 0  

LoadHL7RIM 

Converts an HL7 RIM MS Access database to a LexGrid database 

-in,--input <uri> URI or path specifying location of the source file -mf,--manifest <uri> 
URI or path specifying location of the manifest file -lp,--load preferences <uri> URI or 
path specifying location of the load preferences file -v, --validate <int> Perform 
validation of the candidate resource without loading data. If specified, the '-nf', -a' and '-t' 
options are ignored. Supported levels of validation include: 0 = Verify document is valid 
-nf,--noFail If specified, indicates that processing should not stop for recoverable errors -
a, --activate ActivateScheme on successful load; if unspecified the vocabulary is loaded 
but not activated -t, --tag <id> An optional tag ID (e.g. 'PRODUCTION' or 'TEST') to 
assign.  

Example: LoadHL7RIM -in "file:///path/to/file.mdb" -nf -a -or- LoadHL7RIM -in 
"file:///path/to/file.mdb" -v 0  

LoadMetaData 

Loads optional XML-based metadata to be associated with an existing coding scheme. 

-u,--urn <name> URN uniquely identifying the code system. -v,--version <id> Version 
identifier. -in,--input <uri> URI or path specifying location of the XML file. -v, --validate 
<int> Perform validation of the input file without loading data. If specified, the '-nf', '-f', 
and '-o' options are ignored. Supported levels of validation include: 0 = Verify document 
is valid -o, --overwrite If specified, existing metadata for the code system will be erased. 
Otherwise, new metadata will be appended to existing metadata (if present). -f,--force 
Force overwrite (no confirmation). -nf,--noFail If specified, indicates that processing 
should not stop for recoverable errors  

Note: If the URN and version values are unspecified, a list of available coding schemes 
will be presented for user selection.  

Example: LoadMetadata -in "file:///path/to/file.xml" -nf -o -or- LoadMetadata -in 
"file:///path/to/file.xml"  

RebuildIndex 

Rebuilds indexes associated with the specified coding scheme. 

Options: -u,--urn <urn> URN uniquely identifying the code system. -v,--version 
<versionId> Version identifier. -i,--index <name> Name of the index extension to rebuild 
(if absent, rebuilds all built-in indices and named extensions). -f,--force Force clear (no 
confirmation).  

Example: RebuildIndex -u "urn:oid:2.16.840.1.113883.3.26.1.1" -v "05.09e" -i 
"myindex"  

RemoveIndex 

Clears an optional named index associated with the specified coding scheme. Note: built-
in indices required by the LexEVS runtime cannot be removed. 

Options -u,--urn <urn> URN uniquely identifying the code system. -v,--version 
<versionId> Version identifier. -i,--index <name> Name of the index extension to clear. -
f,--force Force clear (no confirmation).  

Example: RemoveIndex -u "urn:oid:2.16.840.1.113883.3.26.1.1" -v "05.09e" -i 
"myindex"  

Removes a coding scheme based on unique URN and version. 



Loading Vocabularies 

Samples 

This LexEVS installation provides the UMLS Semantic Net and a sampling of the NCI Thesaurus content (sample.owl) that 
can be loaded into the database.  

RemoveScheme 

Options: -u,--urn <urn> URN uniquely identifying the code system. -v,--version 
<versionId> Version identifier. -f,--force Force deactivation and removal without 
confirmation.  

Example: RemoveScheme -u "urn:oid:2.16.840.1.113883.3.26.1.1" -v "05.09e"  

TagScheme 

Associates a tag ID (e.g. 'PRODUCTION' or 'TEST') with a coding scheme URN and 
version. 

Options: -u,--urn <urn> URN uniquely identifying the code system. -v,--version 
<versionId> Version identifier. -t,--tag The tag ID (e.g. 'PRODUCTION' or 'TEST') to 
assign.  

Example: TagScheme -u "urn:oid:2.16.840.1.113883.3.26.1.1" -v 05.09e" -t "TEST"  

TestRunner* 

*Located in 
{LEXBIG_DIRECTORY}/test  

Note: the LexEVS runtime and 
database environments must 
still be configured prior to 
invoking the test suite.  

Executes a suite of tests for the LexEVS installation. 

Options: -b,--brief Runs the LexEVS test suite and produce a text report with overall 
statistics and details for failed tests only. -f,--full Runs the LexEVS test suite and produce 
an itemized list of all tests with indication of success/failure. -h,--html Runs the LexEVS 
test suite and produce a report suitable for view in a standard web browser. -x,--xml Runs 
the LexEVS test suite and produce a report with extensive information for each test case 
in xml format.  

Example: TestRunner –f -h  

TransferScheme 

Tool to help gather information necessary to transfer data from one SQL server to 
another. 

Options: -u,--urn The Coding Scheme URN or local name to transfer. -v,--version The 
version of the coding scheme to transfer.  

Example: TransferScheme -u "urn:oid:2.16.840.1.113883.3.26.1.1" -v 05.09e"  

Step Action 
1 In a Command Prompt window, enter cd {LEXBIG_DIRECTORY}/examples to go to the example programs. 

2 To load the example vocabularies, run the appropriate LoadSampleData script (LoadSampleData.bat for Windows; 
LoadSampleData.sh for Linux). 

NOTE: 

 

Vocabularies should not be loaded until configuration of the LexEVS runtime and database server are complete.



  

Figure 3 - Displays the successful load of the sample vocabulary file.  

 
Running the Sample Query Programs 

A set of sample programs are provided in the {LEXBIG_DIRECTORY}/examples directory. To run the sample query 
programs successfully a vocabulary must have been loaded.  

Figure 4 - Sample program output for finding properties and associations for a given code.  

Step Action 
1 Enter cd {LEXBIG_DIRECTORY}/examples 

2 

Execute one of sample programs. .bat for windows or .sh for Linux.

1. FindConceptNameForCode.bat  
2. FindPropsandAssocForCode.bat <Code>  
3. FindRelatedCodes <Code>  
4. FindTreeforCodeAndAssoc <Code>  



  

Figure 4 - Output of example programs using sample vocabulary  

NCI Vocabularies 

Installing NCI Thesaurus Vocabulary 

This section describes the steps to download and install a full version of the NCI Thesaurus for the LexEVS Service.  

Step Action 

1 

Using a web or ftp client go to URL: ftp://ftp1.nci.nih.gov/pub/cacore/EVS/ 



Table 7 – Example output from load of NCI Thesaurus 05.12f  

  
2 Select the version of NCI Thesaurus OWL you wish to download. Save the file to a directory on your machine. 

3 Extract the OWL file from the zip download and save in a directory on your machine. This directory will be referred to 
as NCI_THESAURUS_DIRECTORY 

4 

Using the LexEVS utilities load the NCI Thesaurus 

cd {LexBIG_DIRECTORY}/admin  

For Windows installation use the following command  

LoadNCIThesOWL.bat –nf –in "file:///{NCI_THESAURUS_DIRECTORY}/Thesaurus_05.12f.owl"  

For Linux installation use the following command  

LoadNCIThesOWL.sh –nf –in "file:///{NCI_THESAURUS_DIRECTORY}/Thesaurus_05.12f.owl"  

NOTE: 

 

This step will require about three hours on a Pentium 3.0 Ghz machine. The total time to 
load NCI Thesaurus will vary depending on machine, memory, and disk speed. 



Installing NCI Metathesaurus Vocabulary 

This section describes the steps to download and install a full version of the NCI Metathesaurus for the LexEVS Service.  

… 
[LexBIG] Processing TOP Node... Retired_Kind 
[LexBIG] Clearing target of NCI_Thesaurus... 
[LexBIG] Writing NCI_Thesaurus to target... 
[LexBIG] Finished loading DB - loading transitive expansion table 
[LexBIG] ComputeTransitive - Processing Anatomic_Structure_Has_Location 
[LexBIG] ComputeTransitive - Processing Anatomic_Structure_is_Physical_Part_of 
[LexBIG] ComputeTransitive - Processing Biological_Process_Has_Initiator_Process 
[LexBIG] ComputeTransitive - Processing Biological_Process_Has_Result_Biological_Process 
[LexBIG] ComputeTransitive - Processing Biological_Process_Is_Part_of_Process 
[LexBIG] ComputeTransitive - Processing Conceptual_Part_Of 
[LexBIG] ComputeTransitive - Processing Disease_Excludes_Finding 
[LexBIG] ComputeTransitive - Processing Disease_Has_Associated_Disease 
[LexBIG] ComputeTransitive - Processing Disease_Has_Finding 
[LexBIG] ComputeTransitive - Processing Disease_May_Have_Associated_Disease 
[LexBIG] ComputeTransitive - Processing Disease_May_Have_Finding 
[LexBIG] ComputeTransitive - Processing Gene_Product_Has_Biochemical_Function 
[LexBIG] ComputeTransitive - Processing Gene_Product_Has_Chemical_Classification 
[LexBIG] ComputeTransitive - Processing Gene_Product_is_Physical_Part_of 
[LexBIG] ComputeTransitive - Processing hasSubtype 
[LexBIG] Finished building transitive expansion - building index 
[LexBIG] Getting a results from sql (a page if using mysql) 
[LexBIG] Indexed 0 concepts. 
[LexBIG] Indexed 5000 concepts. 
[LexBIG] Indexed 10000 concepts. 
[LexBIG] Indexed 15000 concepts. 
[LexBIG] Indexed 20000 concepts. 
[LexBIG] Indexed 25000 concepts. 
[LexBIG] Indexed 30000 concepts. 
[LexBIG] Indexed 35000 concepts. 
[LexBIG] Indexed 40000 concepts. 
[LexBIG] Indexed 45000 concepts. 
[LexBIG] Indexed 46000 concepts. 
[LexBIG] Getting a results from sql (a page if using mysql) 
[LexBIG] Closing Indexes Mon, 27 Feb 2006 01:44:22 
[LexBIG] Finished indexing 

Step Action 

1 

Using a web or ftp client go to URL: ftp://ftp1.nci.nih.gov/pub/cacore/EVS/ 



Installing NCI History Information 

This section describes the steps to download and install a history file for NCI Thesaurus.  

Deactivating and Removing Vocabulary 

This section describes the steps to deactivate a coding scheme and remove coding scheme from LexEVS Service.  

2 Select the version of NCI Metathesaurus RRF you wish to download. Save the file to a directory on your machine. 

3 
Extract the RRF files from the zip download and save in a directory on your machine. This directory will be referred to 
as NCI_METATHESAURUS_DIRECTORY. Note: RELASE_INFO.RRF is required to be present for the load utility 
to work. 

4 

Using the LexEVS utilities load the NCI Thesaurus 

cd {LexBIG_DIRECTORY}/admin  

For Windows installation use the following command  

LoadNCIMeta.bat –nf –in "file:///{NCI_METATHESAURUS_DIRECTORY}/" 

For Linux installation use the following command  

LoadNCIMeta.sh –nf –in "file:///{NCI_THESAURUS_DIRECTORY}/"  

NOTE: 

 

NCI Metathesaurus contains many individual vocabularies and requires several hours to load 
and index. This step requires about 15 hours on a Pentium 3.0 Ghz machine with 7200rpm 
disk. The total time to load NCI MetaThesaurus will vary depending on machine, memory, and 
disk speed. 

Step Action 
1 Using a web or ftp client go to URL: ftp://ftp1.nci.nih.gov/pub/cacore/EVS/ 

2 Select the version of NCI History you wish to download. Save the file to a directory on your machine. Select the 
VersionFile download to the same directory as the history file. 

3 Extract the History files from the zip download and save in a directory on your machine. This directory will be 
referred to as NCI_HISTORY_DIRECTORY 

4 

Using the LexEVS utilities load the NCI Thesaurus 

cd {LexBIG_DIRECTORY}/admin  

For Windows installation use the following command  

LoadNCIHistory.bat –nf –in "file:///{NCI_HISTORY_DIRECTORY}" –vf

“file:///NCI_HISTORY_DIRECTORY}/VersionFile”  

For Linux installation use the following command  

LoadNCIHistory.sh –nf –in "file:///{NCI_HISTORY_DIRECTORY}" –vf 
“file:///NCI_HISTORY_DIRECTORY}/VersionFile”  

NOTE: 

 

If a 'releaseId' occurs twice in the file, the last occurrence will be stored. If LexEVS 
already knows about a releaseId (from a previous history load), the information is updated 
to match what is provided in the file. 

This file has to be provided to the load API on every load because you will need to 
maintain it in the future as each new release is made. We have created this file that 
should be valid as of today from the information that we found in the archive folder on 
your ftp server. You can find this file in the 'resources' directory of the LexEVS 
install.  



This page was last modified on 11 May 2009, at 20:40.  

Tagging a vocabulary 

This section describes the steps to tag a coding scheme to be used via LexEVS API.  

Retrieved from "https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.0_Administration_Guide" 

Step Action 

1 
Change directory to LexEVS administration directory 

Enter cd {LEXBIG_DIRECTORY}/admin  

2 

Use the DeactiveScheme utility to prevent access to coding scheme. Once a coding scheme is deactivated, client 
programs will not be able to access the content for the specific coding scheme and version. 

Example:  

DeactivateScheme -u "urn:oid:2.16.840.1.113883.3.26.1.1" -v "05.12f”  

3 

Use RemoveScheme utility to remove coding scheme from LexEVS service and database. 

Example:  

RemoveScheme -u "urn:oid:2.16.840.1.113883.3.26.1.1" -v "05.12f"  

Step Action 

1 
Change directory to LexEVS administration directory 

Enter cd {LEXBIG_DIRECTORY}/admin  

2 

Use the TagScheme to tag a coding system and version with a local tag name (e.g. PRODUCTION). This tag name 
can be used via LexEVS API for query restriction. 

Example:  

TagScheme -u "urn:oid:2.16.840.1.113883.3.26.1.1" -v "05.12f” -t “PRODUCTION“  

CONTACT USPRIVACY NOTICEDISCLAIMERACCESSIBILITYAPPLICATION SUPPORT


