
Home
Knowledge Centers

caGrid
Clinical Trials Management Systems
Data Sharing and Intellectual Capital
Molecular Analysis Tools
Tissue/Biospecimen Banking and Technology Tool
Vocabulary

Discussion Forums
caGrid
Clinical Trials Management Systems
Data Sharing and Intellectual Capital
Molecular Analysis Tools
Tissue/Biospecimen Banking and Technology Tool
Vocabulary

Bugs/Feature Requests
Development Code Repository

LexEVS 5.0 Design and Architecture Guide

From Vocab_Wiki

LexEVS New Documentation > LexBig and LexEVS > LexEVS Version 5.0 > LexEVS 5.0 Documentation > LexEVS 5.0 Design and Architecture Guide

Contents

1 Overview
1.1 What is LexGrid?
1.2 What is LexBIG?

2 LexGrid Model
2.1 Code Systems
2.2 Concepts
2.3 Relations

3 LexBIG Extensions
3.1 Concept Resolution

4 Information Models
4.1 Overview
4.2 LexGrid Model
4.3 CodingSchemes

4.3.1 codingScheme
4.4 Concepts

4.4.1 conceptsAndInstances
4.4.2 entities
4.4.3 entity

4.5 Relations
4.5.1 association
4.5.2 associationInstance

4.6 Naming
4.6.1 naming

4.7 LexBIG Model
4.7.1 Core
4.7.2 InterfaceElements
4.7.3 NCIHistory

5 Architecture
5.1 LexBIG

5.1.1 LexBIG Services
5.1.2 caGRID Hosting

5.1.2.1 Specification
5.1.3 Service Management Subsystem
5.1.4 Metadata and Discovery Subsystem
5.1.5 Query Subsystem

5.2 LexEVS API/Grid Service Interaction
5.2.1 Revision History
5.2.2 Document Purpose
5.2.3 Implementation Overview
5.2.4 Team Members
5.2.5 Description
5.2.6 Scope
5.2.7 Architecture

5.2.7.1 LexEVS Grid Service Class Diagram
5.2.7.2 LexEVS Grid Service Sequence Diagram

5.2.8 Assumptions
5.2.9 Dependencies
5.2.10 Third Party Tools
5.2.11 Server

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

1 of 57 5/18/2009 2:16 PM

5.2.12 APIs
5.2.13 API Examples
5.2.14 Service Contexts and State
5.2.15 Error Handling
5.2.16 Client
5.2.17 Security Issues
5.2.18 Performance
5.2.19 Installation / Packaging
5.2.20 Migration
5.2.21 System Testing

6 LexEVS Loader Source Mapping
6.1 Unified Medical Language System
6.2 OBO Mapping
6.3 Protege OWL

6.3.1 DatatypeProperty Representation
6.3.2 Equivalent Class Representation
6.3.3 Restriction Representation
6.3.4 Property Restriction Representation

6.4 NCI OWL
6.4.1 Embedded XML

6.5 HL7 RIM
6.6 LexGrid Text

7 LexEVS Loader Mappings
7.1 OWL Mapping - 4.2.1
7.2 OWL Mapping - 5.0
7.3 OWL Mapping - NCI OWL
7.4 Legacy Complex Prop Mapping
7.5 UMLS SemNet Mapping
7.6 UMLS Mapping
7.7 SNOMED UMLS Mapping
7.8 OBO Mapping
7.9 HL7 RIM Mapping
7.10 LexGrid Text Mapping

Overview

LexBIG software architecture and implementation is designed to facilitate flexibility and future expansion. The following diagrams are intended to aid the understanding of LexBIG
service integration in context of the larger caBIG® universe and specific deployment scenarios:

This diagram depicts the LexBIG vision. Individual Cancer Centers will be able to use the existing set of caCORE EVS
services. If desired, local instances of vocabularies can be installed.

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

2 of 57 5/18/2009 2:16 PM

This diagram depicts direct Java-to-Java access to LexBIG
functions. This is the primary deployment scenario for
phase 1.

Note: It is not required that the database be located on the
same system as the program runtime.

This diagram depicts access through caCORE Enterprise
Vocabulary Services (EVS) to a LexBIG vocabulary
engine.

The primary goal is to provide a compatible experience for
existing EVS browsers and client applications.

Note: this diagram shows the possible inclusion of a
mediation layer between EVS and the LexBIG runtime.

This would be done to facilitate alternate communications
with the LexBIG server (e.g. through web services as
described below).

The LexBIG API is designed with web and grid-level
enablement in mind. This diagram depicts deployments that
wrap the current API to allow the runtime to be accessed
through web or grid services.

What is LexGrid?

LexGrid is an initiative of the Mayo Clinic Division of Biomedical Informatics that focuses on the representation, storage, and dissemination of vocabularies. This effort centers on, but
is not limited to, the domain of medical vocabularies and nomenclatures. Focal points of the LexGrid project include the development and promotion of standards, tools, and content
that:

Provide flexibility to represent yesterday’s, today’s and tomorrow’s terminological resources using a single information model.
Provide the ability for these resources to be published online, cross-linked, and indexed.
Provide standardized building blocks and tools that allow applications and users to take advantage of the content where and when it is needed.
Provide consistency and standardization required to support large-scale terminology adoption and use.

Additional information for LexGrid is available at http://informatics.mayo.edu .

What is LexBIG?

LexBIG is a more specific project that applies LexGrid vision and technologies to requirements of the caBIG® community. The goal of the project is to build a vocabulary server
accessed through a well-structured application programming interface (API) capable of accessing and distributing vocabularies as commodity resources. The server is to be built using
standards-based and commodity technologies. Primary objectives for the project include:

Provide a robust and scalable open source implementation of EVS-compliant vocabulary services. The API specification will be based on but not limited to fulfillment of the
caCORE EVS API. The specification will be further refined to accommodate changes and requirements based on prioritized needs of the caBIG® community.
Provide a flexible implementation for vocabulary storage and persistence, allowing for alternative mechanisms without impacting client applications or end users. Initial
development will focus on delivery of open source freely available solutions, though this does not preclude the ability to introduce commercial solutions (e.g. Oracle).
Provide standard tooling for load and distribution of vocabulary content. This includes but is not limited to support of standardized representations such as UMLS Rich Release
Format (RRF), the OWL web ontology language, and Open Biomedical Ontologies (OBO) .

The goal for the initial year of development was to achieve the Bronze level of compatibility with regard to the caBIG® requirements. Silver-level compatibility is being pursued.

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

3 of 57 5/18/2009 2:16 PM

LexGrid Model

The LexGrid Model is Mayo’s proposal for standard storage of controlled vocabularies and ontologies. The LexGrid Model defines how vocabularies should be formatted and
represented programmatically, and is intended to be flexible enough to accurately represent a wide variety of vocabularies and other lexically-based resources. The model also defines
several different server storage mechanisms and a XML format. This model provides the core representation for all data managed and retrieved through the LexBIG system, and is now
rich enough to represent vocabularies provided in numerous source formats such as OWL (NCI Thesaurus) and RRF (NCI MetaThesaurus).

Once the vocabulary information is represented in a standardized format, it becomes possible to build common repositories to store vocabulary content and common programming
interfaces and tools to access and manipulate that content. The LexBIG API developed for caBIG® is one such interface, and is described in additional detail in LexBIG APIs.

Following are some of the higher-level objects incorporated into the model definition:

Code Systems

Each service defined to the LexGrid model can encapsulate the definition of one or more vocabularies. Each vocabulary is modeled as an individual code system, known as a
codingScheme. Each scheme tracks information used to uniquely identify the code system, along with relevant metadata. The collection of all code systems defined to a service is
encapsulated by a single codingSchemes container.

Concepts

A code system may define zero or more coded concepts, encapsulated within a single container. A concept represents a coded entity (identified in the model as a concept) within a
particular domain of discourse. Each concept is unique within the code system that defines it. To be valid, a concept must be qualified by at least one designation, represented in the
model as a property. Each property is an attribute, facet, or some other characteristic that may represent or help define the intended meaning of the encapsulating concept. A concept
may be the source for and/or the target of zero or more relationships. Relationships are described in more detail in a following section.

Relations

Each code system may define one or more containers to encapsulate relationships between concepts. Each named relationship (e.g. “hasSubtype” or “hasPart”) is represented as an
association within the LexGrid model. Each relations container must define one or more association. The association definition may also further define the nature of the relationship in
terms of transitivity, symmetry, reflexivity, forward and inverse names, etc. Multiple instances of each association can be defined, each of which provide a directed relationship
between one source and one or more target concepts.

Source and target concepts may be contained in the same code system as the association or another if explicitly identified. By default, all source and target concepts are resolved from
the code system defining the association. The code system can be overridden by each specific association, relation source (associationInstance), or relation target (associationTarget).

LexBIG Extensions

The LexBIG vocabulary model extends the LexGrid model to provide unique constructs or granularity required by caBIG® that are not present in the core model. While many
extensions exist, this document will focus on some of direct relevance to the high-level architecture.

Concept Resolution

LexBIG allows the service runtime to provide managed resolution of code-based objects that are referenced through LexBIG-specific lists and iterators (mechanism that allow
streaming of list content). These lists and iterators are typically returned when requesting sets or graphs of vocabulary terms through the LexBIG API (described in LexBIG APIs).
Some model components involved in the resolution process include:

ConceptReference – A globally unique reference to a concept code.

ResolvedConceptReference - A concept reference for which additional information has been resolved, including description and relationship participation.

AssociatedConcept - A concept reference that contains full detail in participation as a source or target of an association, including indications of navigability and qualification.

Note: Formal representation of the LexGrid and LexBIG models are discussed in Information Models.

Information Models

Overview

The information below is provided for introductory purposes. A full description of all available model components is also available in the javadoc distributed with the LexEVS
installation package (see file breakdown in the LexEVS 5.0 Installation Guide). Since the javadoc is automatically generated and synchronized during the build process, it is
recommended as the primary reference for use by LexEVS developers.

LexGrid Model

The LexGrid model is mastered in XML Schema. The LexBIG project currently builds on the 2008 version of the LexGrid schema. A formal representation, showing portions of this
structure that are of primary interest to the LexBIG project, is presented below. A complete version of the model is available at http://informatics.mayo.edu?page=lgm .

CodingSchemes

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

4 of 57 5/18/2009 2:16 PM

The CodingSchemes branch of the model defines high level containers for concepts and relations. Each CodingScheme represents a unique code system or version in the LexBIG
service. Components of interest include:

codingScheme

codingSchemes

A collection of one or more coding schemes.

codingScheme

A resource that makes assertions about a collection of terminological entities.

entities

A set of entity codes and their lexical descriptions

relations

A collection of relations that represent a particular point of view or community.

versions

A list of past versions of the coding scheme.

mappings

A list of all of the local identifiers and defining URI's that are used in the associated resource

properties

A collection of properties.

codingSchemes

Concepts

Each concept represents a unique entity within the code system, which can be further described by properties and related to other concepts through relations.

conceptsAndInstances

codingScheme

A resource that makes assertions about a collection of terminological entities.

entities

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

5 of 57 5/18/2009 2:16 PM

A set of entity codes and their lexical descriptions

entity

A set of lexical assertions about the intended meaning of a particular entity code.

concept

An entity that represents a class or category. The entityType for the class concept must be "concept".

instance

An entity that represents an instance or an individual. The entityType for the class concept must be "instance".

relations

A collection of relations that represent a particular point of view or community.

association

A binary relation from a set of entities to a set of entities and/or data. The entityType for the class concept must be "association".

conceptsAndInstances

entities

codingScheme

A resource that makes assertions about a collection of terminological entities.

entities

A set of entity codes and their lexical descriptions

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

6 of 57 5/18/2009 2:16 PM

entity

A set of lexical assertions about the intended meaning of a particular entity code.

concept

An entity that represents a class or category. The entityType for the class concept must be "concept".

instance

An entity that represents an instance or an individual. The entityType for the class concept must be "instance".

association

A binary relation from a set of entities to a set of entities and/or data. The entityType for the class concept must be "association".

entities

entity

entity

A set of lexical assertions about the intended meaning of a particular entity code.

comment

A property that is used as an annotation or other note about the state or usage of the entity. The propertyType of comment must be "comment"

definition

A property that defines the entity in a particular langage or context.. The propertyType of definition must be "definition"

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

7 of 57 5/18/2009 2:16 PM

presentation

A property ths represents or designates the meaning of the entityCode. The propertyType of presentation must be "presentation"

property

A description, definition, annotation or other attribute that serves to further define or identify an resource.

propertyLink

A link between two properties for an entity.. Examples include acronymFor, abbreviationOf, spellingVariantOf, etc. Must be in supportedPropertyLink.

entity

Relations

Relations are used to define and qualify associations between concepts.

association

codingScheme

A resource that makes assertions about a collection of terminological entities.

relations

A collection of relations that represent a particular point of view or community.

entity

A set of lexical assertions about the intended meaning of a particular entity code.

association

A binary relation from a set of entities to a set of entities and/or data. The entityType for the class concept must be "association".

associationSource

An entity that occurs in one or more instances of a relation on the "from" (or left hand) side of a particular relation.

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

8 of 57 5/18/2009 2:16 PM

association

associationInstance

association

A binary relation from a set of entities to a set of entities and/or data. The entityType for the class concept must be "association".

associationSource

An entity that occurs in one or more instances of a relation on the "from" (or left hand) side of a particular relation.

associationTarget

An entity on the "to" (or right hand) side of a relation.

associationData

An instance of a target or RHS data value of an association.

associatableElement

Information common to both the entity and data form of the "to" (or right hand) side of an association.

associationQualification

A modifier that further qualifies the particular association instance.

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

9 of 57 5/18/2009 2:16 PM

associationInstance

Naming

These elements are primarily used to define metadata for a coding scheme, mapping locally used names to global references.

naming

URIMap

A local identifier that is used in a specific context (e.g. language, property name, data type, etc) and an optional URI that can be used to find the exact definition and meaning of the
local id. Note: the string portion of this entry can be used to provide additional documentation or information, especially when a URI is not supplied.

supportedAssociation

An associationName and the URI of the defining resource.

supportedAssociationQualifier

An associationQualifier and the URI of the defining resource

supportedCodingScheme

A codingSchemeName and the URI of the defining resource

supportedStatus

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

10 of 57 5/18/2009 2:16 PM

An entryStatus and the URI of the defining resource

supportedEntityType

An entityType and the URI of the defining resource

supportedContext

A context and the URI of the defining resource

supportedContainerName

A containerName and the URI of the defining resource

supportedDegreeOfFidelity

A degreeOfFidelity and the URI of the defining resource

supportedLanguage

A language and the URI of the defining resource

supportedProperty

A propertyName and the URI of the defining resource

supportedSortOrder

The local identifier and the URI of the defining resource

supportedHierarchy

A list of associations that can be browsed hierarchically.

supportedNamespace

A namespaceName and the corresponding URI

supportedPropertyType

A propertyType and the URI of the defining resource

supportedPropertyQualifier

A propertyQualifierName the URI of the defining resource

supportedPropertyQualifierType

A propertyQualifierType the URI of the defining resource

supportedPropertyLink

A propertyLinkName and ththe URI of the defining resource

supportedRepresentationalForm

A representationalForm and the URI of the defining resource

supportedSource

A source and the URI of the defining resource. Source references can also carry an additional compositional rule section that describes how to combine a subpart such as a page
number, section name, etc. with the core URI in order to form a meaningful URL. An optional role can also be specified.

supportedSourceRole

A source role and athe URI of the defining resource

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

11 of 57 5/18/2009 2:16 PM

naming

LexBIG Model

The following extensions to the LexGrid model were introduced in support of caBIG® requirements. As with the LexGrid model, this document provides a summary of the most
significant elements for consideration by LexBIG programmers. The complete and current version of the model is available online at http://informatics.mayo.edu?page=lexex .

Core

LexBIG core elements provide enhanced referencing and controlled resolution of LexGrid model objects.

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

12 of 57 5/18/2009 2:16 PM

Core

Components of interest include:

AbsoluteCodingSchemeVersionReference

An absolute reference to a coding scheme. This form of reference is service independent, as it doesn't depend on local coding schemes names or virtual tags.

AssociatedConcept

A concept reference that is the source or target of an association.

Association

The representation of a particular association as it appears in a CodedNode.

CodingSchemeSummary

Abbreviated list of information about a coding scheme.

CodingSchemeURNorName

Either a local name or the URN of a coding scheme. These two are differentiated syntactically - if the entity includes a colon (:) or a hash "#" it is assumed to be a URN. Otherwise it is
assumed to be a local name.

CodingSchemeVersionOrTag

A named coding scheme version or a virtual tag (e.g. latest, production, etc). Note that the tagged form of identifier is only applicable in the context of a given service, as one service
may identify the scheme as "production" and another as "staging".

ConceptReference

A reference to a coding scheme and a concept code.

LogEntry

A single recorded log entry.

LogLevel

Indicates severity of the log entry.

MetadataProperty

Reference to a property name and value stored in the coding scheme metadata.

NameAndValue

A simple name/value pair.

ReferenceLink

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

13 of 57 5/18/2009 2:16 PM

Any reference to another document element. Used by the REST architecture to embed links.

ResolvedConceptReference

A resolvable concept reference.

ServiceURL

References a service in the Globus environment, this will be a global service handle (GSH).

InterfaceElements

Defines metadata related to model objects required by the runtime.

InterfaceElements

Components of interest include:

CodingSchemeRendering

Information about a coding scheme as it appears in a particular service.

ExportStatus

Reports the state of LexBIG export operations.

ExtensionDescription

Describes an add-on module registered to the LexBIG environment.

LoadStatus

Reports the state of LexBIG load operations.

ModuleDescription

Describes a LexBIG integrated software module.

ProcessState

Enumerates possible status reported for LexBIG runtime operations.

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

14 of 57 5/18/2009 2:16 PM

ProcessStatus

Reports the state of LexBIG runtime operations.

RenderingDetail

The details of how a coding scheme is rendered in a given service.

SortContext

Describes a LexBIG sort module.

SortDescription

A description of a LexBIG extension module.

SortOption

Represents a pairing of sort algorithm and order.

SystemReleaseDetail

The combination of a system release and all of the entityVersions that accompanied that release.

NCIHistory

Maintains a record of modifications made to a code system.

NCIHistory

Components of interest include:

changeType

Atomic modification actions. Currently populated from a combination of Concordia, SNOMED-CT list and NCI's action list.

NCIChangeEvent

A change event as documented in ftp://ftp1.nci.nih.gov/pub/cacore/EVS/ReadMe_history.txt. Note that date and time of the change event is recorded in the containing version. All
change events for the same/date and time a recorded in the same version.

Architecture

LexBIG

LexBIG Services

This section describes architectural detail for services provided by the LexBIG system. These services are geared toward the administration, management, and serving of vocabularies
defined to the LexGrid/LexBIG information model. A system overview is provided, followed by a description of key subsystems and components. Each subsystem is described in terms
of its overall structure, formal model, and specification of key public interfaces.

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

15 of 57 5/18/2009 2:16 PM

The LexBIG Service is designed to run standalone or as part of a larger network of services. It is comprised of four primary subsystems: Service Management, Service Metadata, Query
Operations, and Extensions. The Service Manager provides administration control for loading a vocabulary and activating a service. The Service Metadata provides external clients
with information about the vocabulary content (e.g. NCI Thesaurus) and appropriate licensing information. The Query Operations provide numerous functions for querying and
traversing vocabulary content. Finally, the extensions component provides a mechanism to extend the specific service functions, such as Loaders, or re-wrap specific query operations
into convenience methods. Primary points of interaction for programming include the following classes:

LexBIGService – This interface provides centralized access to all LexBIG services.

LexBIGServiceManager – The service manager provides a centralized access point for administrative functions, including write and update access for a service's content. For example,
the service manager allows new coding schemes to be validated and loaded, existing coding schemes to be retired and removed, and the status of various coding schemes to be updated
and changed.

caGRID Hosting

The LexBIG architecture provides the underpinnings LexBIG services to be made accessible through the caGRID environment in the future, where LexBIG services might optionally
be deployed in a caGRID Globus container. caGrid provides a Globus service for service registration and discovery. LexBIG services deployed to the grid would be registered in the
NCICB registry and be searchable through the NCICB index service.

Specification

Additional specifications related to the registration and discovery of LexBIG services in the caGRID environment will be included later phases of work in concordance with caGRID
1.0. This is will be coordinated with caBIG® Architecture workspace designees.

Service Management Subsystem

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

16 of 57 5/18/2009 2:16 PM

This subsystem provides administrative access to functions related to management and publication of LexBIG vocabularies. These functions are generally considered to be reserved for
LexBIG administrators, with detailed instructions on how to secure and carry out related tasks described by the LexBIG Administrator’s Guide.

This subsystem is further broken down into the following components:

Indexers
Vocabularies may be indexed to provide enhanced performance or query capabilities. Types of indexes incorporated into the LexBIG system include but are not limited to the
following:

Lexical Match – for example, “begins-with” and “contains”
Phonetic – allows for the ability to query based on “sounds-like” entry of search criteria.
Stemming – allows for the ability to find lexical variations of search terms.

Index creation is typically bundled into the load process. Architecturally speaking, however, this capability is decoupled and extensible.

Loaders
Vocabularies may be imported to the system from a variety of accepted formats, including but not limited to:

LexGrid XML (LexBIG canonical format)
NCI Thesaurus, provided in Web Ontology Language format (OWL)
UMLS Rich Release format (RRF)
Open Biomedical Ontologies format (OBO)

As with indexers, the load mechanism is designed to be extensible from an architectural standpoint. Additional loaders can be supported by the introduction of pluggable modules. Each
module is implemented in the Java programming language according to a LexBIG-provided interface, and registered to the loader runtime environment.

Metadata and Discovery Subsystem

This subsystem provides information about accessible vocabularies, related licensing/copyright information, and registration/discovery of LexBIG services.

The ability to locate and resolve vocabulary metadata is fulfilled through the LexBIGService class. Metadata defined by the LexGrid information model is resolved with each
CodingScheme instance. Available metadata on each resolved scheme includes, but is not necessarily limited to, the following:

License or copyright information
Supported values (e.g. supported concept status, language, property names, etc)
Mappings from names used locally to globally unique URNs

In addition, each LexBIGService provides a centralized metadata index that allows registration and query of code system metadata without requiring resolution of individual
CodingSchemes. This metadata index is optionally populated, typically during the vocabulary load process. The metadata index allows for the metadata of multiple code systems to be
cross-indexed and searched as part of the query subsystem.

Finally, the LexBIG architecture provides the underpinnings for LexBIG services to be made accessible through the caGRID environment in the future, where vocabulary services
might be deployed and discovered within a caGRID Globus container. However, this portion of the API is preliminary and awaits coordination with caBIG® Architecture WS
designees to determine exact recommendations and nature of LexBIG services on the grid.

Query Subsystem

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

17 of 57 5/18/2009 2:16 PM

This subsystem provides the functionality required to fulfill caCORE/EVS and other vocabulary requests. The Query Service is comprised of Lexical Operations, Graph Operations,
Metadata, and History Operations.

Lexical Set Operations

Lexical Set Operations provides methods to return a lists or iterators of coded entries. Supported query criteria include the application of match/filter algorithms, sorting algorithms, and
property restrictions. Support is also provided to resolve the union, intersection or difference of two node sets.

Graph Set Operations

Graph Operations support the subsetting of concepts according to relationship and distance, identification of relation source and target concepts, and graph traversal. Additional
operations include enumeration and traversal of concepts by relation, walking of directed acyclic graphs (DAGs), enumeration of source and target concepts for a relation, and
enumeration of relations for a concept.

Metadata Operations

Metadata Operations allows for the query and resolution of registered code system metadata according to specified coding scheme references, property names, or values.

History Operations

History provides vocabulary-specific information about concept insertions, modifications, splits, merges, and retirements when supplied by the content provider.

LexEVS API/Grid Service Interaction

(DESIGN DOC IMPORT START)

Revision History

Content changes to this document from the previous to the current level are indicated by revision bars (|) unless a complete rewrite is indicated.

Date Version Description Author

07/29/2008 1.0 Initial document Kevin Peterson

8/30/2008 1.1 Revised for Security and Exception Handling Kevin Peterson

Note: If this document has been inspected, please indicate the inspection date that each version is based on in the “Change Description and Explanation” area. Entries in this log
must be maintained for at least 3 years.

Document Purpose

This document provides the detailed design and implementation of LexBIG Enterprise Vocabulary Service (LexEVS) caGrid Service. It should be noted that the LexEVS Grid Service
is no longer part of the caGrid 1.1 infrastructure and will be deployed as a separate unit. This is a change from the previous release of the LexEVS Grid Service.

The LexEVS caGrid service will allow programs to utilize the caGrid 1.2 infrastructure to access LexEVS information that is currently being produced by NCICB.

Implementation Overview

Team Members

Table 1 – Team Members

Role Name

Development Lead Kevin Peterson

Documentation Lead Kevin Peterson

Project Manager Tom Johnson

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

18 of 57 5/18/2009 2:16 PM

Description

The LexEVS grid service will be used to obtain data accessible via the LexEVS service, specifically, the Distributed LexEVS services. Please refer to the LexEVS Programmer's Guide
(https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.0_Programmer%27s_Guide) for more information.

For more Documentation, Build/Deployment instructions and examples, visit the project documentation home at: http://gforge.nci.nih.gov/docman/index.php?group_id=491&
selected_doc_group_id=3749&language_id=1

Scope

The LexEVS Grid service will provide programmatic access to the LexBIG domain objects that are available via the LexBIG information model.

The LexEVS grid service will be registered in Cancer Data Standards Repository (caDSR) under the following category:

LexEVS Grid Service

Context caBIG

Classification Scheme LexBIG

Version LexBIG_v2_3_rv1

Architecture

The LexEVS Grid Service is implemented to expose the API and Model of LexBIG 2.3. For more information on LexBIG, see http://informatics.mayo.edu

LexEVS Grid Service is deployed in a JBoss (http://www.jboss.org/) Application Server, inside of a Globus (http://www.globus.org/) Web Application installation. LexEVS Grid
Service depends on LexEVS API(http://lexevsapi.nci.nih.gov/), which is also deployed to a JBoss container. For more information on the deployment of EVSAPI, see
http://gforge.nci.nih.gov/docman/index.php?group_id=366&selected_doc_group_id=1914&language_id=1 LexEVS API itself depends on an installation of LexBIG
(http://informatics.mayo.edu).

The diagram below shows the various components of the LexEVS Grid Service System and how they interact.

LexEVS Grid Service and EVSAPI need not be deployed to physically separate servers, but it is recommended that if they are co-located on the same server, they should be deployed
to separate JBoss containers.

Below is the LexEVS Grid Service Architecture, viewed from inside of the Web Service Container. For more information on how Service Contexts and Resources are used, see the
“Service Contexts and State” section below.

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

19 of 57 5/18/2009 2:16 PM

LexEVS Grid Service Class Diagram

The LexEVS Grid Service is built on the LexGrid/LexBIG model and implementation. For more information about this model, visit (LexBIG) https://gforge.nci.nih.gov/plugins/scmsvn
/viewcvs.php/LexBIG_Core_Services/LexBIG-2.3/lexbig/lbModel/?root=lexevs and (LexGrid) https://gforge.nci.nih.gov/plugins/scmsvn/viewcvs.php/LexBIG_Core_Services
/LexBIG-2.3/lgModel/?root=lexevs

Also, visit http://informatics.mayo.edu for background information as well as Class Diagrams, examples, and other information.

For information specific to the LexEVS Grid Service, visit: https://gforge.nci.nih.gov/plugins/scmsvn/viewcvs.php/LexBIG_Core_Services/LexBIG-2.3/lexbig/lbModel.cagrid
/?root=lexevs This link contains Class Diagrams and descriptions for input/output parameters, as well as other information concerning the Silver Level Compliance submission package.

LexEVS Grid Service Sequence Diagram

The sequence diagram for the operation “getSupportedCodingSchemes” is described below:

General Call Sequence Example:

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

20 of 57 5/18/2009 2:16 PM

Assumptions

The LexEVS service will be based on the latest LexEVS 5.0 release.
The LexEVS Grid Service will not have any method level security. All security requirements will be handled by the actual deployment of the underlying LexEVS 5.0 service.
Please see the “Security” section below for more information on how the LexEVS Grid Service utilizes this security.
The LexEVS Grid Service will not be deployed as a “core” service by caGrid at NCICB as was previously done, but rather will now be deployed as a standalone service.
The LexEVS Grid Service release schedule will no longer be coupled to the caGrid deployment schedule as previously done.
Multiple version of LexEVS Grid Service may be active at the same instance in time depending solely on the availability of the underlining EVSAPI service.

Dependencies

LexEVS 5.0 service needs to be available and running correctly.
The LexEVS service and operations will use the Introduce toolkit to generate the appropriate structure for registering the service into caDSR.

Third Party Tools

Introduce Toolkit
Globus Toolkit (4.0.3) or appropriate version supported by caGrid 1.2
caGrid 1.2 core infrastructure

Server

The LexEVS Grid Service will be deployed as a “stand alone” grid service at NCICB.

APIs

The main Service API exposed by the LexEVS Grid service will be the http://informatics.mayo.edu/LexGrid/downloads/javadocGrid/org/LexGrid/LexBIG/cagrid/interfaces
/LexBIGServiceGrid.html Interface. All other APIs will not be directly exposed, but will be made available through Service Contexts.

In General, API calls will follow this sequence:

API Examples

For an example clients, service calls, and SOAP messages, see http://gforge.nci.nih.gov/docman/index.php?group_id=491&selected_doc_group_id=3880&language_id=1

Example API usage:

Searching for concepts in NCI Thesaurus containing the string “Gene”

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

21 of 57 5/18/2009 2:16 PM

//Create a Connection to the Grid Service
LexBIGServiceGrid lbs = new LexBIGServiceGridAdapter
(gridServiceURL);

//Set up the CodingSchemeIdentification object to define the
Coding Scheme
CodingSchemeIdentification csid = new
CodingSchemeIdentification();
csid.setName("NCI Thesaurus");

//Get the CodedNodeSet for that CodingScheme (This returns a
CodedNodeSet Service Context)
CodedNodeSetGrid cnsg = lbs.getCodingSchemeConcepts(csid,
null);
//getCodingSchemeConcepts is a Grid Service Call

//Set the text to match
MatchCriteria matchText = new MatchCriteria();
matchText.setText("Gene");
//Define a SearchDesignationOption, if any
SearchDesignationOption searchOption = new
SearchDesignationOption();

//Choose an algorithm to do the matching
ExtensionIdentification matchAlgorithm = new
ExtensionIdentification();
matchAlgorithm.setLexBIGExtensionName("contains");

//Chose a language
LanguageIdentification language = new
LanguageIdentification();
language.setIdentifier("en");

//Restrict the CodedNodeSet
cnsg.restrictToMatchingDesignations(matchText,
searchOption, matchAlgorithm, language);
//restrictToMatchingDesignations is a Grid Service Call

//Create a SetResolutionPolicy to handle the details of
Resolving the CodedNodeSet
//Here, we will set the Maximum number of Concepts
returned to 10.
SetResolutionPolicy resolvePolicy = new
SetResolutionPolicy();
resolvePolicy.setMaximumToReturn(10);

//Do the resolve
ResolvedConceptReferenceList rcrlist = cnsg.resolveToList(resolvePolicy);
//resolveToList is a Grid Service Call

//Use the returned ResolvedConceptReferenceList to
print some details about the concepts found
ResolvedConceptReference[] rcref = rcrlist.getResolvedConceptReference();
for (int i = 0; i < rcref.length; i++) {

System.out.println(rcref[i].getConceptCode());
System.out.println(rcref[i].getReferencedEntry().

getPresentation()[0].getText().getContent());
}

Service Contexts and State

Along with the Main Service (described above), the Server will also host the following Service Contexts. These Service Contexts are not meant to be called directly as Grid Services.
The main function of these Service Contexts is to provide additional functionality to the Main Service.

Service Context Operations Example in Introduce

IMPORTANT: Service Contexts are only meant to be called through the Main Service – not directly. Through the Main Service, References to these Service Contexts can be
obtained. Calls are made to the Service Contexts through these References.

Obtaining a Service Context Reference

In the figure below, two LexEVS Grid Service Calls are highlighted, ‘getCodingSchemeConcepts’ and ‘getNodeGraph’. These two Grid Service Calls have been selected because they
return to the user a “Reference” to a Service Context. For ‘getCodingSchemeConcepts’, the return type is CodedNodeSetReference (which references the CodedNodeSet Service
Context). For ‘getNodeGraph’, the return type is CodedNodeGraphReference (which references the CodedNodeGraph Service Context).

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

22 of 57 5/18/2009 2:16 PM

Resources

LexEVS Grid Services use the WS-Resource Framework (WSRF) to allow for stateful calls to the server. When a client requests a Service Context, the client is not only issued a
Reference to the Service Context that was requested, but to a unique stateful Resource on the server as well. This Resource is used in the LexEVS Grid Services as a way of statefully
holding objects for further use by the client. For more information about how caGrid uses the WS-Resource Framework (WSRF), see http://www.cagrid.org/wiki/Metadata:WSRF For
more information on how Resources are implemented in the LexEVS Grid Service, see http://gforge.nci.nih.gov/docman/view.php/491/13736/LexEVSGrid.ppt

Service Context Sequence Service Contexts API calls follow this general process:

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

23 of 57 5/18/2009 2:16 PM

Service Context and Resource Assignment

NOTE: By default, these services are destroyed 5 minutes after creation.

Below is a listing of the supported Service Contexts:

1. CodedNodeSet

http://informatics.mayo.edu/LexGrid/downloads/javadocGrid/org/LexGrid/LexBIG/cagrid/interfaces/CodedNodeSetGrid.html

To construct a CodedNodeSet, the user calls getCodingSchemeConcepts as described above. When the user creates a CodedNodeSet through the API call getCodingSchemeConcepts,
the server creates and stores the CodedNodeSet server-side as a Resource. This Resource is associated with the client and will be accessible only by the client that created it.

CodedNodeSet Call Sequence:

1. The user requests a CodedNodeSet using getCodingSchemeConcepts.

CodedNodeSetGrid cns = lbs.getCodingSchemeConcepts(
org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeIdentification,
org.LexGrid.LexBIG.DataModel.Core.CodingSchemeVersionOrTag);

2. The server calls the Distributed LexBIG getCodingSchemeConcepts method, returning to the server an org.LexGrid.LexBIG.Impl.CodedNodeSetImpl (the
implementation of org.LexGrid.LexBIG.LexBIGService.CodedNodeSet) object.

3. The server then creates an org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.CodedNodeSet.service.globus.resource.CodedNodeSetResource. This Resource will be
used to hold the instance of org.LexGrid.LexBIG.Impl.CodedNodeSetImpl, the implementation of org.LexGrid.LexBIG.LexBIGService.CodedNodeSet that was created
above.

4. The server returns an org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.CodedNodeSet.stubs.types.CodedNodeSetReference object to the client. This is the reference
to the CodedNodeSet Service Context. This object has a direct reference to the Resource created above. The user now uses this client to make transparent Grid calls
through the Service Context.

5. The client may continue to make statefull calls to the CodedNodeSetClient and the assigned Resource.

6. These restrictions are separate calls but statefully maintained on the server via the Resource.

2. CodedNodeGraph

http://informatics.mayo.edu/LexGrid/downloads/javadocGrid/org/LexGrid/LexBIG/cagrid/interfaces/CodedNodeGraphGrid.html

To construct a CodedNodeGraph, the user calls getNodeGraph as described above. When the user creates a CodedNodeGraph through the API call getNodeGraph, the server creates
and stores the CodedNodeGraph server-side as a Resource. This Resource is associated with the client and will be accessible only by the client that created it.

CodedNodeGraph Call Sequence:

1. The user requests a CodedNodeGraph using getCodingSchemeConcepts.

CodedNodeGraphGrid cng = client.getNodeGraph(
org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeIdentification,
org.LexGrid.LexBIG.DataModel.Core.CodingSchemeVersionOrTag,
org.LexGrid.LexBIG.DataModel.cagrid.
RelationContainerIdentification);

2. The server calls the Distributed LexBIG getNodeGraph method, returning to the server an org.LexGrid.LexBIG.Impl.CodedNodeGraphImpl (the implementation of
org.LexGrid.LexBIG.LexBIGService.CodedNodeGraph) object.

3. The server then creates an org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.CodedNodeGraph.service.globus.resource.CodedNodeGraphResource. This Resource
will be used to hold the instance of org.LexGrid.LexBIG.Impl.CodedNodeGraphImpl, the implementation of org.LexGrid.LexBIG.LexBIGService.CodedNodeGraph that
was created above.

4. The server returns an org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.CodedNodeGraph.stubs.types.CodedNodeGraphReference object to the client. This is the
reference to the CodedNodeGraph Service Context. This object has a direct reference to the Resource created above. The user now uses this client to make transparent
Grid calls through the Service Context.

5. The client may continue to make statefull calls to the CodedNodeGraphClient and the assigned Resource. For example, the client may add Restrictions to the
CodedNodeGraph before a Resolve:

cng.restrictToCodeSystem(org.LexGrid.LexBIG.DataModel.cagrid.
CodingSchemeIdentification);

6. These restrictions are separate calls but statefully maintained on the server via the Resource.

3. LexBIGServiceConvenienceMethods

http://informatics.mayo.edu/LexGrid/downloads/javadocGrid/org/LexGrid/LexBIG/cagrid/interfaces/LexBIGServiceConvenienceMethodsGrid.html

To construct a LexBIGServiceConvenienceMethods, the user calls getGenericExtensions as described above. When the user creates a LexBIGServiceConvenienceMethods through
the API call getGenericExtensions, the server creates and stores the LexBIGServiceConvenienceMethods server-side as a Resource. This Resource is associated with the client and
will be accessible only by the client that created it.

LexBIGServiceConvenienceMethods Call Sequence:

1. The user requests a LexBIGServiceConvenienceMethods using getGenericExtensions.

LexBIGServiceConvenienceMethodsGrid lbscm = lbs.getGenericExtensions(
org.LexGrid.LexBIG.DataModel.cagrid.ExtensionIdentification);

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

24 of 57 5/18/2009 2:16 PM

2. The server calls the Distributed LexBIG getGenericExtensions method, returning to the server an
org.LexGrid.LexBIG.Impl.Extensions.GenericExtensions.LexBIGServiceConvenienceMethodsImpl (the implementation of
org.LexGrid.LexBIG.Extensions.Generic.LexBIGServiceConvenienceMethods) object.

3. The server then creates an
org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.LexBIGServiceConvenienceMethods.service.globus.resource.LexBIGServiceConvenienceMethodsResource. This
Resource will be used to hold the instance of org.LexGrid.LexBIG.Impl.Extensions.GenericExtensions.LexBIGServiceConvenienceMethodsImpl, the implementation of
org.LexGrid.LexBIG.Extensions.Generic.LexBIGServiceConvenienceMethods that was created above.

4. The server returns an
org.LexGrid.LexBIG.cagrid.LexBIGCaGridServicesLexBIGServiceConvenienceMethods.stubs.types.LexBIGServiceConvenienceMethodsReference object to the client.
This is the reference to the LexBIGServiceConvenienceMethods Service Context. This object has a direct reference to the Resource created above. This
LexBIGServiceConvenienceMethodsClient implements org.LexGrid.LexBIG.Extensions.Generic.LexBIGServiceConvenienceMethods. The user now uses this client to
make transparent Grid calls through the Service Context. Because this LexBIGServiceConvenienceMethods implements
org.LexGrid.LexBIG.Extensions.Generic.LexBIGServiceConvenienceMethods, API calls will look to the user as being identical to direct LexBIG API calls.

5. The client may continue to make statefull calls to the LexBIGServiceConvenienceMethods Client and the assigned Resource.

6. These API calls are separate calls but statefully maintained on the server via the Resource.

4. LexBIGServiceMetadata

http://informatics.mayo.edu/LexGrid/downloads/javadocGrid/org/LexGrid/LexBIG/cagrid/interfaces/LexBIGServiceMetadataGrid.html

To construct a LexBIGServiceMetadata, the user calls getServiceMetadata as described above. When the user creates a LexBIGServiceMetadata through the API call
getServiceMetadata , the server creates and stores the LexBIGServiceMetadata server-side as a Resource. This Resource is associated with the client and will be accessible only by the
client that created it.

LexBIGServiceMetadata Call Sequence:

1. The user requests a LexBIGServiceMetadata using getServiceMetadata.

LexBIGServiceMetadataGrid metadata = lbs.getServiceMetadata();

2. The server calls the Distributed LexBIG getServiceMetadata method, returning to the server an implementation of
org.LexGrid.LexBIG.LexBIGService.LexBIGServiceMetadata object.

3. The server then creates an org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.LexBIGServiceMetadata.service.globus.resource.LexBIGServiceMetadataResource.
This Resource will be used to hold the instance of an implementation of org.LexGrid.LexBIG.LexBIGService.LexBIGServiceMetadata.

4. org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.LexBIGServiceMetadata.stubs.types.LexBIGServiceMetadata object to the client. This is the reference to the
LexBIGServiceMetadata Service Context. This object has a direct reference to the Resource created above. The user now uses this client to make transparent Grid calls
through the Service Context.

5. The client may continue to make statefull calls to the LexBIGServiceMetadata and the assigned Resource.

6. These API calls are separate calls but statefully maintained on the server via the Resource.

5. HistoryService

http://informatics.mayo.edu/LexGrid/downloads/javadocGrid/org/LexGrid/LexBIG/cagrid/interfaces/HistoryServiceGrid.html

To construct a HistoryService, the user calls getHistoryService as described above. When the user creates a HistoryService through the API call getHistoryService, the server creates
and stores the HistoryService server-side as a Resource. This Resource is associated with the client and will be accessible only by the client that created it.

HistoryService Call Sequence:

1. The user requests a HistoryService using getHistoryService .

HistoryServiceGrid history = lbs.getHistoryService(
org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeIdentification);

2. The server calls the Distributed LexBIG getHistoryService method, returning to the server an implementation of org.LexGrid.LexBIG.History.HistoryService object.

3. The server then creates an org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.HistoryService.service.globus.resource.HistoryServiceResource. This Resource will be
used to hold the instance of an implementation of org.LexGrid.LexBIG.History.HistoryService.

4. The server returns an org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.LexBIGServiceMetadata.stubs.types.LexBIGServiceMetadata object to the client. This is the
reference to the HistoryService Service Context. This object has a direct reference to the Resource created above. The user now uses this client to make transparent Grid
calls through the Service Context.

5. The client may continue to make statefull calls to the HistoryServiceClient and the assigned Resource. For example, the client may call any method in
org.LexGrid.LexBIG.History.HistoryService

Example: history.getLatestBaseline();

6. These API calls are separate calls but statefully maintained on the server via the Resource.

6. Sort

http://informatics.mayo.edu/LexGrid/downloads/javadoc/org/LexGrid/LexBIG/Extensions/Query/Sort.html

To construct a Sort, the user calls getSortAlgorithm as described above. When the user creates a Sort through the API call getSortAlgorithm, the server creates and stores the Sort
server-side as a Resource. This Resource is associated with the client and will be accessible only by the client that created it.

Sort Call Sequence:

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

25 of 57 5/18/2009 2:16 PM

1. The user requests a Sort using getSortAlgorithm .

Sort sort = lbs.getSortAlgorithm(
org.LexGrid.LexBIG.DataModel.cagrid.
ExtensionIdentification);

2. The server calls the Distributed LexBIG getSortAlgorithm method, returning to the server an implementation of org.LexGrid.LexBIG.Extensions.Query.Sort) object.

3. The server then creates an org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.Sort .service.globus.resource.Sort Resource. This Resource will be used to hold the
instance of an implementation of org.LexGrid.LexBIG.Extensions.Query.Sort.

4. The server returns an org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.service.SortClient object to the client. This is the client to the Sort Service Context. This
object has a direct reference to the Resource created above. This SortClient implements org.LexGrid.LexBIG.Extensions.Query.Sort. The user now uses this client to make
transparent Grid calls through the Service Context. Because this Sort implements org.LexGrid.LexBIG.Extensions.Query.Sort, API calls will look to the user as being
identical to direct LexBIG API calls.

5. The client may continue to make statefull calls to the SortClient and the assigned Resource. For example, the client may call any method in
org.LexGrid.LexBIG.Extensions.Query.Sort

sort.compare(codedNodeReference1, codedNodeReference2);

6. These API calls are separate calls but statefully maintained on the server via the Resource.

7. Filter

http://informatics.mayo.edu/LexGrid/downloads/javadoc/org/LexGrid/LexBIG/Extensions/Query/Filter.htm

To construct a Filter, the user calls getFilter as described above. When the user creates a Filter through the API call getFilter, the server creates and stores the Sort server-side as a
Resource. This Resource is associated with the client and will be accessible only by the client that created it.

Filter Call Sequence:

1. The user requests a Filter using getFilter

Filter filter = lbs.getFilter(org.LexGrid.LexBIG.DataModel.cagrid.
ExtensionIdentification);

2. The server calls the Distributed LexBIG getFilter method, returning to the server an implementation of org.LexGrid.LexBIG.Extensions.Query.Filter) object.

3. The server then creates an org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.Filter.service.globus.resource.FilterResource. This Resource will be used to hold the
instance of an implementation of org.LexGrid.LexBIG.Extensions.Query.Filter.

4. The server returns an org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.service.FilterClient object to the client. This is the client to the Filter Service Context. This
object has a direct reference to the Resource created above. This FilterClient implements org.LexGrid.LexBIG.Extensions.Query.Filter. The user now uses this client to
make transparent Grid calls through the Service Context. Because this Filter implements org.LexGrid.LexBIG.Extensions.Query.Filter, API calls will look to the user as
being identical to direct LexBIG API calls.

5. The client may continue to make statefull calls to the FilterClient and the assigned Resource. For example, the client may call any method in
org.LexGrid.LexBIG.Extensions.Query.Filter

filter.match(resolvedConceptReference);

6. These API calls are separate calls but statefully maintained on the server via the Resource.

8. ResolvedConceptReferencesIterator

http://informatics.mayo.edu/LexGrid/downloads/javadoc/org/LexGrid/LexBIG/Utility/Iterators/ResolvedConceptReferencesIterator.html

A ResolvedConceptReferencesIterator is created when a CodedNodeSet or CodedNodeGraph is resolved. It allows results to be returned from the server incrementally instead of all at
once. When the user creates a ResolvedConceptReferencesIterator, the server creates and stores the ResolvedConceptReferencesIterator server-side as a Resource. This Resource is
associated with the client and will be accessible only by the client that created it.

ResolvedConceptReferencesIterator Call Sequence:

1. The user gets a ResolvedConceptReferencesIterator from a Resolve.

2. The server calls the Distributed LexBIG resolve method on the CodedNodeSet, returning to the server an implementation of
org.LexGrid.LexBIG.Utility.Iterators.ResolvedConceptReferencesIterator object.

3. The server then creates an
org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.ResolvedConceptReferencesIterator.service.globus.resource.ResolvedConceptReferencesIteratorResource. This
Resource will be used to hold the instance of an implementation of org.LexGrid.LexBIG.Utility.Iterators.ResolvedConceptReferencesIterator.

4. The server returns an org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.service.ResolvedConceptReferencesIteratorClient object to the client. This is the client to the
ResolvedConceptReferencesIterator Service Context. This object has a direct reference to the Resource created above. This ResolvedConceptReferencesIteratorClient
implements org.LexGrid.LexBIG.Utility.Iterators.ResolvedConceptReferencesIterator. The user now uses this client to make transparent Grid calls through the Service
Context. Because this ResolvedConceptReferencesIterator implements org.LexGrid.LexBIG.Utility.Iterators.ResolvedConceptReferencesIterator, API calls will look to
the user as being identical to direct LexEVS API calls.

5. The client may continue to make statefull calls to the ResolvedConceptReferencesIteratorClient and the assigned Resource. For example, the client may call any
method in org.LexGrid.LexBIG.Utility.Iterators.ResolvedConceptReferencesIterator

while(itr.hasNext){
ResolvedConceptReference ref = itr.next();
}

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

26 of 57 5/18/2009 2:16 PM

6. These API calls are separate calls but statefully maintained on the server via the Resource.

Error Handling

Error Connecting to LexEVS Grid Service

When connecting through the Java Client, java.net.ConnectException and org.apache.axis.types.URI.MalformedURIException may be thrown upon an unsuccessful attempt to
connect.

A MalformedURIException is thrown in the case if a poorly-formed URL string. In this case, the exception is thrown before an attempt to connect is even made.

If the URL is well-formed, proper connection is tested. If the connection attempt fails, a ConnectException is thrown containing the reason for the failure.

try{
LexBIGServiceGridAdapter lbsg = new LexBIGServiceGridAdapter
("http://localhost:8080/wsrf/services/cagrid/LexEVSGridService");
} catch(java.net.ConnectException e){

//Error Connecting
e.printStackTrace();

} catch(org.apache.axis.types.URI.MalformedURIException e){
//URL Syntax Error
e.printStackTrace();

}

This example shows a typical connection to the LexEVS Grid Service, with the two potential Exceptions being caught and handled as necessary.

LexBIG Errors

LexBIG errors will be forwarded through the Distributed LexEVS layer and then on to the Grid layer. Input parameters, along with any other LexBIG (or Distributed LexBIG) errors
will be detected on the server, not the client, and forwarded. All Generic LexEVS (or Distributed LexEVS) errors will be forwarded via a RemoteException, with the cause of the error
and underlying LexEVS error message included.

Invalid Service Context Access

Service Context Services are not meant to be called directly. If the client attempts to do so, an
org.LexGrid.LexBIG.cagrid.LexEVSGridService.CodedNodeSet.stubs.types.InvalidServiceContextAccess Exception will be thrown. This indicates a call was made to a Service
Context without obtaining a Service Context Reference via the Main Service (see the above section Service Contexts and State for more information).

Client

The Introduce toolkit generates a “client” class that will be provided to the users.

Security Issues

Security in the LexEVS Grid Service is implemented in the Distributed LexBIG layer. The information in this section explains how the LexEVS Grid Services utilize this security
implementation. For more information about the Distributed LexBIG Security Implementation, see this documentation: http://gforge.nci.nih.gov/tracker/download.php/366/1462/10884
/4060/Distributed_LexBIG_%20AccessTo_Licensed_Vocabulary_implemenation.doc

LexEVS Grid Service Security

Certain vocabulary content accessible through the LexEVS Grid Service may require extra authorization to access. Each client is required to supply its own access credentials via
Security Tokens. These Security Tokens are implemented by a SecurityToken object: Name: SecurityToken Namespace: gme://caCORE.caCORE/3.2/gov.nih.nci.evs.security Package:
gov.nih.nci.evs.security

Accessing Secure Content

A client establishes access to a secured vocabulary via the following Grid Service Calls:

Step 1: Connect to the LexBIG caGrid Service LexBIGServiceGrid lbs = new LexBIGServiceGridAdapter(url);

Step 3: Build an org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeIdentification to hold the Coding Scheme name.

CodingSchemeIdentification codingScheme = new CodingSchemeIdentification(); codingScheme.setName(“codingScheme”);

Step 4: Build an gov.nih.nci.evs.security.SecurityToken containing the security information for the desired Coding Scheme.

SecurityToken token = new SecurityToken(); token.setAccessToken(“securityToken”);

Step 5: Invoke the LexBIG caGrid service as follows: This will return a reference to a new “LexBIGServiceGrid” instance that is associated with the security properties that were
passed in.

LexBIGServiceGrid lbsg = lbs.setSecurityToken(codingScheme, token);

It is important to note that the Grid Service “setSecurityToken” returns an org.LexGrid.LexBIG.cagrid.LexEVSGridService.stubs.types
.LexEVSGridServiceReference.LexEVSGridServiceReference object. This reference must be used to access the secured vocabularies.

Implementation

Each call to “setSecurityToken” sets up a secured connection to Distributed LexBIG with the access privileges included in the SecurityToken parameter. The
LexEVSGridServiceReference that is returned to the client contains a unique key identifier to the secure connection that has been created on the server. All subsequent calls the client
makes through this LexEVSGridServiceReference will be made securely. If additional SecurityTokens are passed in through the “setSecurityToken” Grid Service, the additional
security will be added and maintained.

The “setSecurityToken” Grid Service is a stateful service. This means that after the client sets a SecurityToken, any subsequent call will be applied to that SecurityToken.

Secure connections are not maintained on the server indefinitely, but are based on load conditions. The server will allow 30 unique secure connections to be set up for clients without

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

27 of 57 5/18/2009 2:16 PM

any time limitations. As additional requests for secure connections are received by the server, connections will be released by the server on an ‘oldest first’ basis. No connection,
however, may be released prior to 5 minutes after its creation.

If no SecurityTokens are passed in by the client, a non-secure Distributed LexBIG connection will be used. The server maintains one (and only one) un-secured Distributed LexBIG
connection that is shared by any client not requesting security.

NOTE:

All non-secured information accessed by the LexEVS Grid Service is publicly available from NCICB and users are expected to follow the licensing requirements currently in place for
accessing and using NCI EVS information.

Performance

The LexEVS service will take advantage of all improvements made to the LexEVS API services with the exception of lazy loading. LexEVS grid service, being in nature a web service
is currently not taking advantage of lazy loading since objects are transferred as fully populated objects. However, future releases of LexEVS Grid Service may refractor the interface
in such as way as to take advantage of some of the benefits brought about by the inclusion of lazy loading in to LexEVS API service.

LexEVS Grid Services utilize the performance enhancements of the LexBIG API. For more information about LexBIG performance (which LexEVS Grid Services are dependent on),
see http://informatics.mayo.edu

Installation / Packaging

The service will be installed and deployed as a “stand alone” service at NCICB.

Migration

Both the current version of LexEVS grid service may be “in service” simultaneously if the corresponding underlying EVSAPI service is also “in service” to manage migration of
clients.

System Testing

See LexEVS Grid Service Testing Documentation at: http://gforge.nci.nih.gov/docman/index.php?group_id=491&selected_doc_group_id=3879&language_id=1

DOCUMENT APPROVAL

Approvers List

The individuals listed in this section constitute the approvers list for the Integration Test Plan document. Formal approval must be received from all approvers prior to the initiation of
the next steps in the process.

TITLE NAME

Project Manager

Development Manager

Reviewers List

The individuals listed in this section constitute the reviewers list for the Master Test Plan document. Formal approval is not required from the reviewers, however, it is desirable to have
all reviewers review and comment on the document. Reviewers may choose to concentrate on reviewing only those sections that are in their area of responsibility, rather than the
entire document.

TITLE NAME

Technical Writer

(DESIGN DOC IMPORT END)

LexEVS Loader Source Mapping

The following documentation is to provide additional detail to how different formats are loaded into the LexEVS model.

Unified Medical Language System

The Unified Medical Language System (UMLS) and Rich Release Format (RRF) files

The UMLS’ large medical thesaurus is available as a set of text based, “|’ separated files which can be made subset into individual terminologies depending on the user’s needs. NCI’s
MetaThesaurus is also RRF formatted. We map individual terminologies, the entire NCI MetaThesaurus and the UMLS terminology SEMNET into LexGrid Using specific loaders and
mappings for each.

Supported Coding Scheme Attributes:

These aren’t mapped as categories to a model element. That is, a supported association has an attributeTag column with a corresponding name, but it’s context is implied in the

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

28 of 57 5/18/2009 2:16 PM

name of the supported attribute. For instance, supported associations will have an attributeTag of “association” but that tag corresponds to no element in the model element
SupportedAssociation. Instead the context is implied in the name of the element SupportedAssociation.

Preferred Presentation Selection:

Preferred Presentation is determined first by sorting the presentations to include first those in the default language of the Terminology. Following that and given there is more
than one presentation in the default language the “most preferred” is determined in the following manner:

Using the "isPref" column, the "TS" and "STT" columns in the MRCONSO RRF file, or a combination of these columns. The MRRANK file overrides these columns.

Preferred Definition Selection:

Definitions in UMLs are not ranked, the first definition found for a concept in the source file MRDEF.RRF is set to preferred.

Special SNOMED adjustments for concept presentation language:

Snomed handles it’s language default settings differently than other UMLS terminologies, we hard code it’s default language as “en” as a result.

Presentation language is determined by combining the values of SUI, LUI and CUI from MRCONSO and selecting the ATV value from MRSAT where SAB always equals
SNOMEDCT and the ATN value is either LANGUAGECODE or SUBSETLANGUAGECODE.

Association Qualifiers for medDRA and others:

MedDRA employs SMQ’s or Standardized Medical Queries as a method of classifying portions of this terminology. These are expressed in MRSAT.RRF when the AUI in the
METAUI column is replaced by a RUI code. In LexBIG is RUI is identified in the MRREL.RRF source as relationships are loaded and the associated ATN and ATV values from
the MRSAT.RRF row are populated as association qualifier name and value.

Hierarchies expressed in source contexts:

Hierarchies in the UMLS are expressed in the MRREL.RRF file as source, target pairs. However source hierarchies may also be expressed in the MRHEIR.RRF file. These
context based hierarchies are realized in LexBIG by accessing the MRHEIR source where the HCD column value is populate. When this is the case, as in MESH, the path of
AUI’s to root from the code in the HCD column is processed as a hierarchy. LexBIG’s behavior is as follows:

Entries in MRHIER that define multiple contexts (HCD field) per CUI will trigger additional tracking within the LexBIG environment.
Each link is tracked via the corresponding contextual chain(Path To Root field). To do this, we add association qualifiers that tag the association between each
participating concept. The qualifier name is 'HCD' and the value will be the HCD field value from the MRHIER file.
An individual association between two concepts can participate in multiple context chains by assigning additional association qualifiers. A complete flow across the
entire chain of links (essentially reconstructing PTR field) can be derived by recursive evaluation of surrounding links that have the same context qualifications.
Since each concept can carry multiple text presentations, property qualifiers will be used to track the individual terms used in each context.
As with associations, multiple qualifiers can be assigned to each text property. Once again, the qualifier name will be 'HCD' and the value will be the HCD field
value from the MRHIER file.
In order to query context-specific relationships, we can first use the API to filter the relationships a concept participates in, then query neighboring nodes to
determine the complete context path, and finally map back to specific terms through the registered HCD qualifiers .

OBO Mapping

The OBO each remark in the document header will be combined and put into the coding scheme entityDescription.

For example:

remark: autogenerated-by: DAG-Edit version 1.320
remark: saved-by: mariacos
remark: date: Fri Jun 27 09:41:28 EDT 2003
remark: version: $Revision: 1.1 $

Protege OWL

DatatypeProperty Representation

Owl:

<owl:DatatypeProperty rdf:ID="currency">
 <rdfs:domain rdf:resource="#Money"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </owl:DatatypeProperty>

In LexGrid, a DatatypeProperty is combination of a conceptProperty and Assocation.

Concept Property

<lgCon:concept id="Money">
 <lgCommon:entityDescription>Money</lgCommon:entityDescription>
 ….
 <lgCon:conceptProperty propertyId="P0003" propertyName="currency">
 <lgCommon:text>xsd:string</lgCommon:text>
 </lgCon:conceptProperty>
 </lgCon:concept>

Association

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

29 of 57 5/18/2009 2:16 PM

<lgRel:association id="hasDomain" forwardName="hasDomain"
isReflexive="false" isSymmetric="false"
isTransitive="true" reverseName="kindIsDomainOf">
 <lgRel:sourceConcept sourceEntityType="association"
sourceId="currency">
 <lgRel:targetConcept targetEntityType="concept"
targetId="Money"/>
 </lgRel:sourceConcept>

 <lgRel:association id="currency">
 <associationProperty propertyId="P0007"
propertyName="isDatatypeProperty">
 <lgCommon:text>true</lgCommon:text>
 </associationProperty>
 <associationProperty propertyId="P0008"
propertyName="isObjectProperty">
 <lgCommon:text>false</lgCommon:text>
 </associationProperty>
 </lgRel:association>

 <lgRel:association id="datatype" forwardName="datatype">
 <lgRel:sourceConcept sourceEntityType="association"
sourceId="currency">
 <lgRel:targetDataValue dataId="D0001">
 <lgRel:dataValue>string</lgRel:dataValue>
 </lgRel:targetDataValue>

Equivalent Class Representation

Owl:

<owl:Class rdf:ID="Father">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 <owl:hasValue rdf:resource="#MaleSex"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Person"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasChild"/>
 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

In LexGrid, the equivalentClass is represented as an Association.

Association

<lgRel:association id="equivalentClass"
forwardName="equivalentClass" isReflexive="true" isSymmetric="true"
isTransitive="true" reverseName="equivalentClass">
 <lgRel:sourceConcept sourceEntityType="concept" sourceId="Father">
 <lgRel:targetConcept targetEntityType="concept" targetId="A38"/>
 </lgRel:sourceConcept>

Restriction Representation

Owl:

<owl:Class rdf:ID="Large-Format">
 <rdfs:subClassOf rdf:resource="#Camera"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#body"/>
 <owl:allValuesFrom rdf:resource="#BodyWithNonAdjustableShutterSpeed"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

In LexGrid, a restriction is a combination of association and qualifier.

Association:

<lgRel:association codingSchemeId="p1" id="body"
forwardName="body" isFunctional="false"
isReverseFunctional="false"
isSymmetric="false" isTransitive="false">
 <lgRel:sourceConcept sourceCodingScheme="p1"
sourceEntityType="concept" sourceId="Large-Format">
 <lgRel:targetConcept targetEntityType="concept"
targetId="BodyWithNonAdjustableShutterSpeed">
 <lgRel:associationQualification
associationQualifier="owl:allValuesFrom"/>
 </lgRel:targetConcept>
 </lgRel:sourceConcept>
 <associationProperty propertyId="P0021"
propertyName="isDatatypeProperty">
 <lgCommon:text>false</lgCommon:text>
 </associationProperty>
 <associationProperty propertyId="P0022"
propertyName="isObjectProperty">
 <lgCommon:text>true</lgCommon:text>
 </associationProperty>
 </lgRel:association>

Additional Examples

Owl:

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

30 of 57 5/18/2009 2:16 PM

<owl:Class rdf:ID="Father">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:onProperty>
 <owl:FunctionalProperty rdf:about="#hasSex"/>
 </owl:onProperty>
 <owl:hasValue rdf:resource="#MaleSex"/>
 </owl:Restriction>
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#Person"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasChild"/>
 </owl:onProperty>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
 </owl:Class>

LexGrid:

<lgRel:association id="equivalentClass"
forwardName="equivalentClass" isReflexive="true"
isSymmetric="true"
isTransitive="true" reverseName="equivalentClass">
 <lgRel:sourceConcept sourceEntityType="concept"
sourceId="Father">
 <lgRel:targetConcept targetEntityType="concept"
targetId="A38"/>
 </lgRel:sourceConcept>

 <lgRel:association codingSchemeId="" id="hasSex"
forwardName="hasSex" isFunctional="true"
isReverseFunctional="false"
isSymmetric="false" isTransitive="false">
 <lgRel:sourceConcept sourceEntityType="concept"
sourceId="A38">
 <lgRel:targetConcept targetEntityType="concept"
targetId="MaleSex">
 <lgRel:associationQualification
associationQualifier="owl:hasValue"/>
 </lgRel:targetConcept>

<lgRel:association codingSchemeId="rdfs" id="subClassOf"
forwardName="subClassOf" isFunctional="false"
isReflexive="true"
isSymmetric="false" isTransitive="true"
reverseName="hasSubClass">
 <lgRel:sourceConcept sourceEntityType="concept"
sourceId="A38">
 <lgRel:targetConcept targetEntityType="concept"
targetId="Person"/>
 </lgRel:sourceConcept>

 <lgRel:association codingSchemeId="" id="hasChild"
forwardName="hasChild" isFunctional="false"
isReverseFunctional="false" isSymmetric="false"
isTransitive="false">
 <lgRel:sourceConcept sourceEntityType="concept"
sourceId="A38">
 <lgRel:targetConcept targetEntityType="concept"
targetId="Person">
 <lgRel:associationQualification
associationQualifier="owl:someValuesFrom"/>
 </lgRel:targetConcept>

<lgCon:concept id="A38" isAnonymous="true">
 <lgCommon:entityDescription>Person and
(hasSex has MaleSex)
and (hasChild some Person)</lgCommon:entityDescription>
 <lgCon:presentation propertyId="P0002"
propertyName="textualPresentation" isPreferred="true">
 <lgCommon:text>Person and (hasSex has MaleSex) and
(hasChild
some Person)</lgCommon:text>
 </lgCon:presentation>
 <lgCon:conceptProperty propertyId="P0001"
propertyName="type">
 <lgCommon:text>owl:intersectionOf</lgCommon:text>
 </lgCon:conceptProperty>
 </lgCon:concept>

Property Restriction Representation

Anonymous LexGrid concepts are created for property restrictions (UnionOf, hasValue).

Example 1

Owl:

<owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Hot"/>
 <owl:Class rdf:ID="Medium"/>
 <owl:Class rdf:about="#Mild"/>
 </owl:unionOf>
 </owl:Class>

LexGrid:

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

31 of 57 5/18/2009 2:16 PM

<lgCon:concept id="A17" isAnonymous="true">
 <lgCommon:entityDescription>Hot or Medium or
Mild</lgCommon:entityDescription>
 <lgCon:presentation propertyId="P0001"
propertyName="textualPresentation" isPreferred="true">
 <lgCommon:text>Hot or Medium or Mild</lgCommon:text>
 </lgCon:presentation>
 <lgCon:conceptProperty propertyId="P0002"
propertyName="isUnion">
 <lgCommon:text>true</lgCommon:text>
 </lgCon:conceptProperty>
 <lgCon:conceptProperty propertyId="P0003"
propertyName="isIntersection">
 <lgCommon:text>false</lgCommon:text>
 </lgCon:conceptProperty>
 <lgCon:conceptProperty propertyId="P0004"
propertyName="isEnumeration">
 <lgCommon:text>false</lgCommon:text>
 </lgCon:conceptProperty>
 </lgCon:concept>

Example 2

Owl:

 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasTopping"/>
 <owl:allValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#MozzarellaTopping"/>
 <owl:Class rdf:about="#PeperoniSausageTopping"/>
 <owl:Class rdf:about="#JalapenoPepperTopping"/>
 <owl:Class rdf:about="#TomatoTopping"/>
 <owl:Class rdf:about="#HotGreenPepperTopping"/>
 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>

LexGrid:

<lgRel:association id="hasTopping" forwardName="hasTopping"
isFunctional="false" isNavigable="true" isReverseFunctional="true"
isSymmetric="false" isTransitive="false">

 <lgRel:sourceEntity sourceCodingScheme="pizza"
sourceEntityType="concept" sourceId="AmericanHot">
 <lgRel:targetEntity targetCodingScheme="pizza"
targetEntityType="concept" targetId="A16">
 <lgRel:associationQualification
associationQualifier="owl:allValuesFrom"/>
 </lgRel:targetEntity>
 </lgRel:sourceEntity>
 </lgRel:association>

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasTopping"/>
 <owl:allValuesFrom>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class
rdf:about="#MozzarellaTopping"/>
 <owl:Class
rdf:about="#PeperoniSausageTopping"/>
 <owl:Class
rdf:about="#JalapenoPepperTopping"/>
 <owl:Class rdf:about="#TomatoTopping"/>
 <owl:Class
rdf:about="#HotGreenPepperTopping"/>
 </owl:unionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>

<lgCon:concept id="A16" isActive="true" isAnonymous="true">
 <lgCommon:entityDescription>MozzarellaTopping or
PeperoniSausageTopping or JalapenoPepperTopping or TomatoTopping or
HotGreenPepperTopping</lgCommon:entityDescription>
 <lgCon:presentation propertyId="P0002"
propertyName="textualPresentation" isPreferred="true">
 <lgCommon:text>MozzarellaTopping or PeperoniSausageTopping
or JalapenoPepperTopping or TomatoTopping or
HotGreenPepperTopping</lgCommon:text>
 </lgCon:presentation>
 <lgCon:conceptProperty propertyId="P0001" propertyName="type">
 <lgCommon:text>owl:unionOf</lgCommon:text>
 </lgCon:conceptProperty>
 </lgCon:concept>

NCI OWL

Top-level containers for relations are created, which separate the association types based on the notion of ‘associations’ and ‘roles’ as defined by NCI:

Associations are “non-inheritable, non-defining relations between concepts”
Roles are “inheritable relationships”

A LexGrid concept is created for every anonymous class present in the OWL ontology.

If no equivalent class for a concept, it is considered primitive and is indicated by creating a concept property set to ‘true.’

Embedded XML

Property text with embedded XML fragments are identified by by the following identifiers:

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

32 of 57 5/18/2009 2:16 PM

qual-name qual-value qual

If the extracted tag is one of XML Text identifiers:

Value term-name def-definition go-term

The text of the property is set to the tag value.

If the extracted tag is one of XML Source Name identifiers:

term-source def-source

A property source is created and the tag value identifies the source.

If the property is a presentation and the extracted tag is XML Representational Form:

term-group

The representational form of the presentation property is set to the tag value.

If the extracted tag is one of DB XRef Prefix:

dbxref.*

A property qualifier is created. The property qualifier id is set to the tag, the value is set to the tag value.

HL7 RIM

To build a single coding scheme from the HL7 MS Access database, implementation is similar to how the NCI MetaThesaurus is stored in LexGrid.

For example, here is how entries MTHU021347 and MTHU033458 in ICPC2ICD10ENG (NCI MethThesaurus C1394796) are structured in LexGrid:

Coding Scheme: NCI MetaThesaurus - urn:oid:2.16.840.1.113883.3.26.1.2

Concept Code: C1394796

Entity Description: decompensation; heart, senile

Status: Active

Is Active: true

Is Anonymous: false

Presentation: decompensation; heart, senile

Property Name: textualPresentation

Property Id: T-1

Language: ENG

Is Preferred: true

Representational Form: PT

Source: ICPC2ICD10ENG , Role: null, SubRef: null

Property Qualifier Id: source-code , Property Qualifier Content: MTHU021347

Presentation: heart; decompensation, senile

Property Name: textualPresentation

Property Id: T-2

Language: ENG

Is Preferred: false

Representational Form: PT

Source: ICPC2ICD10ENG , Role: null, SubRef: null

Property Qualifier Id: source-code , Property Qualifier Content: MTHU033458

ConceptProperty: Mental or Behavioral Dysfunction

Property Name: Semantic_Type

Property Id: SemType-1

In HL7, code systems, concepts, and designations are in the following tables:

Table: VCS_concept_code_xref

Internal concept identifier Code system OID Concept code Case difference Status

10011 2.16.840.1.113883.5.55 M 0 A

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

33 of 57 5/18/2009 2:16 PM

10011 2.16.840.1.113883.5.55 R 0 A

10013 2.16.840.1.113883.5.55 RQ 0 A

10014 2.16.840.1.113883.5.55 NP 0 A

10015 2.16.840.1.113883.5.55 NR 0 A

10016 2.16.840.1.113883.5.55 RE 0 A

10017 2.16.840.1.113883.5.55 X 0 A

10019 2.16.840.1.113883.5.57 R 0 A

10020 2.16.840.1.113883.5.57 D 0 A

10021 2.16.840.1.113883.5.57 I 0 A

10022 2.16.840.1.113883.5.57 K 0 A

10023 2.16.840.1.113883.5.57 V 0 A

10025 2.16.840.1.113883.5.57 ESA 0 A

10026 2.16.840.1.113883.5.57 ESD 0 A

10027 2.16.840.1.113883.5.57 ESC 0 A

10028 2.16.840.1.113883.5.57 ESAC 0 A

Table: VCS_concept_designation

Internal Id Designation seq - for case differences language preferredForLanguage

10011 Mandatory 0 en -1

10011 Required - V2.x 0 en 0

Query of HL7 internal id, concept code and designation:

codeSystemName Code system OID Internal concept identifier Concept code Designation

HL7ConformanceInclusion 2.16.840.1.113883.5.55 10011 R Required - V2.x

HL7ConformanceInclusion 2.16.840.1.113883.5.55 10011 M Mandatory

HL7ConformanceInclusion 2.16.840.1.113883.5.55 10011 M Required - V2.x

HL7ConformanceInclusion 2.16.840.1.113883.5.55 10011 R Mandatory

To represent HL7 in LexGrid:

A single coding scheme will be created in LexGrid.

Each VCS_concept_code_xref.internalId will be represented as a LexGrid Concept Code.

The LexGrid Concept Code will be generated by the concatination of VCS_concept_code_xref.internalId and VCS_concept_code_xref.conceptCode2 (separated by a colon ':').

Not only the duplicates that exist within coding schemes will be dealt with using the id/mnemonic concatenation but also those duplicates that exist between coding schemes.

A LexGrid Concept Code Presentation Property will be created for each HL7 designation (VCS_concept_designation).

The Presentation Property will include Presentation (HL7 Designation), Source (HL7 codeSystemName) and a Property Qualifier of source-code (HL7 Concept Code).

For example, the following structure represents both HL7 10011 entries in code system 2.16.840.1.113883.5.55:

Coding Scheme: HL7 - urn:oid:2.16.840.1.113883.3.26.1.2

Concept Code: 10011:M

Entity Description: >The message element must appear every time the message is communicated and its value must not be null. This condition is subject to the rules of multiplicity
and conditionality. If a non-null default value is defined for the element, a null value may be communicated.

Status: Active

Is Active: true

Is Anonymous: false

Presentation: Mandatory

Property Name: textualPresentation

Property Id: T-1

Language: ENG

Is Preferred: true

Representational Form: PT

Source: HL7ConformanceInclusion , Role: null, SubRef: null

Property Qualifier Id: source-code , Property Qualifier Content: M

Presentation: Required - V2.x

Property Name: textualPresentation

Property Id: T-2

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

34 of 57 5/18/2009 2:16 PM

Language: ENG

Is Preferred: false

Representational Form: PT

Source: HL7ConformanceInclusion, Role: null, SubRef: null

Property Qualifier Id: source-code , Property Qualifier Content: M

Coding Scheme: HL7 - urn:oid:2.16.840.1.113883.3.26.1.2

Concept Code: 10011:R

Entity Description: >The message element must appear every time the message is communicated and its value must not be null. This condition is subject to the rules of multiplicity
and conditionality. If a non-null default value is defined for the element, a null value may be communicated.

Status: Active

Is Active: true

Is Anonymous: false

Presentation: Mandatory

Property Name: textualPresentation

Property Id: T-1

Language: ENG

Is Preferred: true

Representational Form: PT

Source: HL7ConformanceInclusion , Role: null, SubRef: null

Property Qualifier Id: source-code , Property Qualifier Content: R

Presentation: Required - V2.x

Property Name: textualPresentation

Property Id: T-2

Language: ENG

Is Preferred: false

Representational Form: PT

Source: HL7ConformanceInclusion, Role: null, SubRef: null

Property Qualifier Id: source-code , Property Qualifier Content: R

Loading the HL7 Rim as a monolithic coding scheme

1. Load coding scheme data as HL7 Rim Metadata from the Model table (rather than the coding scheme data for each HL7 coding scheme).
a. Mapping of these values will be incomplete:

i. Mapping proposal:

LexGrid HL7 RIM

<codingSchemeName> <modelID>

<formalName> <name>

<registeredName> http://www.hl7.org/Library/data-model/RIM *

<defaultLanguage> en*

<representsVersion> <versionNumber>

<isNative> 0*

<approximateNumberofConcepts> Result of count on concept bearing table?

<firstRelease> MISSING

<modifiedInRelease> MISSING

<deprecated> MISSING

<entityDescription> <description>

<copyright> MISSING

b. No URN exists and we may need to consider creating one (see entry for registeredName).

2. Locate and load all mappings (such as supportedAssociations and supportedProperties).
a. Create a supportedHiearchy with a root node of @ on hasSubtype?

3. Iterate through the code system table rows and get each coding scheme.
a. Create and persist an “@” node in the database
b. Prepare an artificial “top node“ for each coding scheme. (Metadata persisted here as concept properties?) This will result in 250 top nodes.

i. The artificial top nodes will need to have a concept code created for them.

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

35 of 57 5/18/2009 2:16 PM

ii. Attach to “@” the artificial top nodes as a hasSubtype.
iii. Locate the actual top nodes of each coding scheme by querying the relations table to see if they exist as a target code, if not, they are top nodes so attach them to
the artificial top node via hasSubtype.

c. Translate the RRF source property loads to the EMF world.
i. Load the concepts ensuring that the coding scheme name is loaded as a “source” property
ii. Load the relations ensuring that the source and target coding scheme data is loaded with the coding scheme name.

4. Concurrent to this process create an updated “HL7 RIM to LexGrid for NCI” mapping from the current Excel mapping document.

LexGrid Text

The text files that can be imported must use the following formats. Items surrounded by <> are required. Items further surrounded by [] are optional. \t represents a tab - the default
delimiter - however other delimiters may be used.

Lines beginning with # are comments.

Format A:

<codingSchemeName>\t<codingSchemeId>\t<defaultLanguage>\t<formal
Name>[\t<version>][\t<source>][\t<description>][\t<copyright>]
<name1>[\t <description>]
\t <name2>[\t <description>]
\t\t <name3>[\t <description>]
\t\t <name4>[\t <description>]

The leading tabs represent hierarchical “hasSubtype” relationship nesting :

(name1 hasSubtype name2 and name2 hasSubtype name3)

Concept Codes will be automatically generated.

If a name is used more than once - it will be assigned the same code.

If a description is used more than once (for a given name) only the first description will be stored.

Format B:

In this format, concept codes can be provided. This is the same as “Format A” with the inclusion of concept codes as part of the input.

<code>\t<name>[\t<description>]

If the same code occurs twice, the names must match. Description rules same as “Format A.”

Example of Format A

#lines starting with "#" are comments

#blank lines are ok

#the first "real" line of the file must be of the following format: #<codingSchemeName>\t<codingSchemeId>\t<defaultLanguage>\t<formalName>[\t<version>][\t<source>]
[\t<description>][\t<copyright>]

colors 1.2.3 en colors coding scheme 1.0 Someone’s Head a simple example coding scheme using colors This isn't worth copyrighting

#The rest of the file (for format A) should look like this:

Color Holder of colors
Red
Green The color Green

Light Green foobar
Dark Green The color dark green

Blue
Red

Green The color Green

Example of Format B

#lines starting with "#" are comments

#blank lines are ok

#the first "real" line of the file must be of the following format: #<codingSchemeName>\t<codingSchemeId>\t<defaultLanguage>\t<formalName>[\t<version>][\t<source>]
[\t<description>][\t<copyright>]

colors2 1.2.4 en colors coding scheme 1.1 Someone’s Head a simple example coding scheme using colors This isn't worth copyrighting

#The rest of the file (for format B) should look like this:

1 Color Holder of colors
4 Red
6 Green The color Green

7 Light Green
8 Dark Green

5 Blue
8 Dark Green The color dark green

6 Green A different color of green

LexEVS Loader Mappings

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

36 of 57 5/18/2009 2:16 PM

The following sections give detailed mappings from source formats to LexEVS.

OWL Mapping - 4.2.1

OWL Mapping - Protégé (4.2.1)

OWL Element LexGrid Comments

OWL: RDF Schema Features

owl:ontology codingScheme

xml:lang codingScheme.defaultLanguage Default is 'en'

dc:title codingScheme.formalName

rdfs:label codingScheme.localName

URI codingScheme.registeredName

owl:versionInfo codingScheme.representsVersion Default is 'UNASSIGNED'

dc:rights codingScheme.copyright

owl:Class (Thing, Nothing) concept

rdf:ID concept.conceptCode

concept.isActive Hard coded as "Active"

concept.isAnonymous

rsfs:label concept.entityDescription

rdf:comment concept.comment

rdfs:subClassOf association

association.id = "subClassOf"

association.forwardName = "subClassOf"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="false"

association.isTransitive="true"

rdf:Property (ObjectProperty) association An association between two classes (hasDomain, hasRange)

association

concept.conceptProperty
An association between one class (domain) and one asscoication (hasDomain and
hasDataProperty). The conceptProperty defines the range.

rdfs:subPropertyOf association

association.id = "subPropertyOf"

association.forwardName = "subPropertyOf"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="false"

association.isTransitive="true"

rdfs:domain association

association.id = "hasDomain"

association.forwardName = "hasDomain"

association.isNavigable = "true"

association.isReflexive="false"

association.isSymmetric="false"

association.isTransitive="true"

rdfs:range association

association.id = "hasRange"

association.forwardName = "hasRange"

association.isNavigable = "true"

association.isReflexive="false"

association.isSymmetric="false"

association.isTransitive="false"

Individual association A 'hasInstance' association is created. (ie. sourceId = Country, targetId = America)

association.id = "hasInstance"

OWL (In)Equality

owl:equivalentClass association

association.id = "equivalentClass"

association.forwardName = "equivalentClass"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="true"

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

37 of 57 5/18/2009 2:16 PM

association.isTransitive="true"

association.reverseName="equivalentClass"

owl:equivalentProperty association

association.id = "equivalentProperty"

association.forwardName = "equivalentProperty"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="true"

association.isTransitive="true"

association.reverseName="equivalentProperty"

owl:sameAs association

association.id = "sameAs"

association.forwardName = "sameAs"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="true"

association.isTransitive="true"

association.reverseName="sameAs"

differentFrom association

association.id = "differentFrom"

association.forwardName = "differentFrom"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="true"

association.isTransitive="true"

association.reverseName= "differentFrom"

owl:AllDifferent association

association.id = "AllDifferent"

association.forwardName = "AllDifferent"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="true"

association.isTransitive="true"

association.reverseName= "AllDifferent"

OWL: Property
Characteristics

owl:inverseOf association

association.id = "inverseOf"

association.forwardName = "inverseOf"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="true"

association.isTransitive="true"

association.reverseName="inverseOf"

owl:TransitiveProperty association.isTransitive association property 'isTransitive'

owl:SymmetricProperty association.isSymmetric association property 'isSymmetric'

owl:InverseFunctionalProperty association.isReverseFunctional association property 'isReverseFunctional'

owl:FunctionalProperty association.isFunctional association property 'isFunctional'

OWL: Property Restrictions

owl:Restriction concept Create an anonymous concept for the restriction

concept.id System generated

concept.isActive = true

concept.isAnonymous = true Hardcoded "True"

owl:onProperty association.id

owl: allValuesFrom concept.entityDescription String of allValuesFrom values

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

38 of 57 5/18/2009 2:16 PM

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text String of allValuesFrom values

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:unionOf"

owl: someValuesFrom concept.entityDescription String of someValuesFrom values

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text String of someValuesFrom values

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:intersectionOf"

owl:intersectionOf concept.entityDescription String of intersectionOf values (ie. Pizza and not VegetarianPizza)

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text String of intersectionOf values (ie. Pizza and not VegetarianPizza)

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:intersectionOf"

UnionOf concept.conceptProperty.text = "owl:unionOf"

owl:complementOf association association.id = "subClassOf"

owl:oneOf concept.entityDescription String of oneOf values

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text String of oneOf values

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:intersectionOf"

owl:hasValue associationQualification.nameAndValueList.content

owl:minCardinality concept.entityDescription String of minCardinality Values (ie. (hasTopping min 3) and Pizza)

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text String of minCardinality Value (ie. (hasTopping min 3) and Pizza)

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:intersectionOf"

owl:maxCardinality concept.entityDescription String of maxCardinality Values (ie. (hasTopping max 2) and Pizza)

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text String of maxCardinality Values (ie. (hasTopping max 2) and Pizza)

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:intersectionOf"

String of cardinality Values

owl:cardinality concept.entityDescription

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text String of cardinality Values

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

39 of 57 5/18/2009 2:16 PM

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:intersectionOf"

owl:disjointWith association association.id = "disjointWith"

OWL: Annotation Property

rdfs:label Presentation

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName =
"textualPresentation"

Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text Value of rdfs:label

rdfs:comment Comment

concept.comment.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.comment.propertyName = "comment" Hardcoded "comment"

concept.presentation.text Value of rdfs:comment

rdfs:seeAlso conceptProperty

rdfs:isDefinedBy conceptProperty

OWL: Versioning

owl:versionInfo codingScheme.representsVersion

priorVersion Not Mapped

backwardCompatibleWith Not Mapped

owl:incompatibleWith association

association.id = "incompatibleWith"

association.forwardName = "incompatibleWith"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="true"

association.isTransitive="true"

association.reverseName="incompatibleWith"

DeprecatedClass Concept attribute setIsActive = false Not Mapped

DeprecatedProperty Not Mapped

OWL Mapping - 5.0

OWL Mapping - Protégé (5.0)

OWL Element LexEVS Comments

OWL: RDF Schema Features

owl:ontology codingScheme

xml:lang codingScheme.defaultLanguage Default is 'en'

dc:title codingScheme.formalName

rdfs:label codingScheme.localName

URI codingScheme.registeredName

owl:versionInfo codingScheme.representsVersion Default is 'UNASSIGNED'

dc:rights codingScheme.copyright

owl:Class (Thing, Nothing) concept

rdf:ID concept.conceptCode

concept.isActive Hard coded as "Active"

concept.isAnonymous

concept.isDefined

rsfs:label concept.entityDescription

rdf:comment concept.comment

rdfs:subClassOf association

association.id = "subClassOf"

association.forwardName = "subClassOf"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="false"

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

40 of 57 5/18/2009 2:16 PM

association.isTransitive="true"

rdf:Property (ObjectProperty) association An association between two classes (domain, range)

association

concept.conceptProperty
An association between one class (domain) and one asscoication (domain and
hasDataProperty). The conceptProperty defines the range.

rdfs:subPropertyOf association

association.id = "subPropertyOf"

association.forwardName = "subPropertyOf"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="false"

association.isTransitive="true"

rdfs:domain association

association.id = "domain"

association.forwardName = "domain"

association.isNavigable = "true"

association.isReflexive="false"

association.isSymmetric="false"

association.isTransitive="true"

rdfs:range association

association.id = "range"

association.forwardName = "range"

association.isNavigable = "true"

association.isReflexive="false"

association.isSymmetric="false"

association.isTransitive="false"

Individual association An 'instance' association is created. (ie. sourceId = Country, targetId = America)

association.id = "instance"

OWL (In)Equality

owl:equivalentClass association

association.id = "equivalentClass"

association.forwardName = "equivalentClass"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="true"

association.isTransitive="true"

association.reverseName="equivalentClass"

owl:equivalentProperty association

association.id = "equivalentProperty"

association.forwardName = "equivalentProperty"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="true"

association.isTransitive="true"

association.reverseName="equivalentProperty"

owl:sameAs association

association.id = "sameAs"

association.forwardName = "sameAs"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="true"

association.isTransitive="true"

association.reverseName="sameAs"

differentFrom association

association.id = "differentFrom"

association.forwardName = "differentFrom"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

41 of 57 5/18/2009 2:16 PM

association.isSymmetric="true"

association.isTransitive="true"

association.reverseName= "differentFrom"

owl:AllDifferent association

association.id = "AllDifferent"

association.forwardName = "AllDifferent"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="true"

association.isTransitive="true"

association.reverseName= "AllDifferent"

OWL: Property
Characteristics

owl:inverseOf association

association.id = "inverseOf"

association.forwardName = "inverseOf"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="true"

association.isTransitive="true"

association.reverseName="inverseOf"

owl:TransitiveProperty association.isTransitive association property 'isTransitive'

owl:SymmetricProperty association.isSymmetric association property 'isSymmetric'

owl:InverseFunctionalProperty association.isReverseFunctional association property 'isReverseFunctional'

owl:FunctionalProperty association.isFunctional association property 'isFunctional'

OWL: Property Restrictions

owl:Restriction concept Create an anonymous concept for the restriction

concept.id System generated

concept.isActive = true

concept.isAnonymous = true Hardcoded "True"

owl:onProperty association.id

owl: allValuesFrom concept.entityDescription String of allValuesFrom values

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text String of allValuesFrom values

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:unionOf"

owl: someValuesFrom concept.entityDescription String of someValuesFrom values

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text String of someValuesFrom values

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:intersectionOf"

owl:intersectionOf concept.entityDescription String of intersectionOf values (ie. Pizza and not VegetarianPizza)

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text String of intersectionOf values (ie. Pizza and not VegetarianPizza)

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:intersectionOf"

UnionOf concept.conceptProperty.text = "owl:unionOf"

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

42 of 57 5/18/2009 2:16 PM

owl:complementOf association association.id = "subClassOf"

owl:oneOf concept.entityDescription String of oneOf values

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text String of oneOf values

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:intersectionOf"

owl:hasValue associationQualification.nameAndValueList.content

owl:minCardinality concept.entityDescription String of minCardinality Values (ie. (hasTopping min 3) and Pizza)

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text String of minCardinality Value (ie. (hasTopping min 3) and Pizza)

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:intersectionOf"

owl:maxCardinality concept.entityDescription String of maxCardinality Values (ie. (hasTopping max 2) and Pizza)

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text String of maxCardinality Values (ie. (hasTopping max 2) and Pizza)

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:intersectionOf"

String of cardinality Values

owl:cardinality concept.entityDescription

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text String of cardinality Values

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:intersectionOf"

owl:disjointWith association association.id = "disjointWith"

OWL: Annotation Property

rdfs:label Presentation

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.presentation.propertyName =
"textualPresentation"

Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text Value of rdfs:label

rdfs:comment Comment

concept.comment.propertyId
Generated value for property textual presentation using "P" concatenated with a steadily
incremented numerical value.

concept.comment.propertyName = "comment" Hardcoded "comment"

concept.presentation.text Value of rdfs:comment

rdfs:seeAlso conceptProperty

rdfs:isDefinedBy conceptProperty

OWL: Versioning

owl:versionInfo codingScheme.representsVersion

priorVersion Not Mapped

backwardCompatibleWith Not Mapped

owl:incompatibleWith association

association.id = "incompatibleWith"

association.forwardName = "incompatibleWith"

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

43 of 57 5/18/2009 2:16 PM

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="true"

association.isTransitive="true"

association.reverseName="incompatibleWith"

DeprecatedClass Concept attribute setIsActive = false Not Mapped

DeprecatedProperty Not Mapped

OWL Mapping - NCI OWL

OWL Mapping - NCI OWL

OWL Element LexGrid Comments

OWL: RDF Schema Features

owl:ontology codingScheme Hardcoded "NCI_Thesaurus"

xml:lang codingScheme.defaultLanguage Hardcoded "en"

dc:title codingScheme.formalName Hardcoded "NCI Thesaurus"

rdfs:label codingScheme.localName Hardcoded "NCI_Thesaurus"

Hardcoded "40010"

Hardcoded "urn:oid:2.16.840.1.113883.3.26.1.1"

URI codingScheme.registeredName Hardcoded "http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#"

owl:versionInfo codingScheme.representsVersion

dc:rights codingScheme.copyright Read from hardcoded "Terms.txt" file .

rdfs:comment codingScheme.entityDescription

codingScheme.isNative Hardcoded "true"

owl:Class (Thing, Nothing) concept

code concept.id

concept.isActive Hard coded as "true" unless class "owl:DeprecatedClass", then 'false'

concept.isAnonymous

rsfs:label concept.entityDescription

rdf:comment concept.comment

conceptProperty Indicate whether the concept is primative (has no equavalent classes)

concept.conceptProperty.propertyName Hard coded as "primitive"

concept.conceptProperty.text "true"

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

presentation
Provide default presentation to match concept entity description if not provided as
property

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a
steadily incremented numerical value.

concept.presentation.propertyName Hardcoded "NCI_Preferred_Term"

rdfs:label concept.presentation.text concept.entityDescription

conceptProperty
Property with designated concept name label (per NCI requirements and used in
codeToName/nameToCode lookup).

concept.conceptProperty.propertyName Hard coded as "CONCEPT_NAME"

rdfs:label concept.conceptProperty.text concept.entityDescription

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

relation
Top-level container for associations (non-inheritable, non-defining relationships
between concepts.

relations.dc Hard coded as "associations"

relations.isNative Hard coded as "true"

relations.entityDescription Hard coded as "Non-inheritable non-defining relations."

relation Top-level container for roles (inheritable relationships)

relations.dc Hard coded as "roles"

relations.isNative Hard coded as "true"

relations.entityDescription Hard coded as "Inheritable/defining relations."

rdfs:subClassOf association Association for subtype hierarchy.

association.id = "hasSubtype"

association.forwardName = "hasSubtype"

association.reverseName = "isA"

association.isNavigable = "true" Hard coded as "true"

association.isReflexive="true" Hard coded as "true"

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

44 of 57 5/18/2009 2:16 PM

association.isSymmetric="false" Hard coded as "false"

association.isTransitive="true" Hard coded as "true"

hasElement association
Association used to register component classes as elements of anonymous node
representations.

association.id = "hasElement"

association.forwardName = "hasElement"

association.isNavigable = "true" Hard coded as "true"

association.isSymmetric="false" Hard coded as "false"

association.isTransitive="true" Hard coded as "true"

rdfs:domain association Association for role_has_domain relations

association.id = "Role_Has_Domain"

association.forwardName = "roleHasDomain"

association.reverseName = "kindIsDomainOf"

association.isNavigable = "true" Hard coded as "true"

association.isReflexive="false" Hard coded as "false"

association.isSymmetric="false" Hard coded as "false"

association.isTransitive="true" Hard coded as "true"

rdfs:range association Association for range relations

association.id = "Role_Has_Range"

association.forwardName = "roleHasRange"

association.reverseName = "kindIsRangeOf"

association.isNavigable = "true" Hard coded as "true"

association.isReflexive="false" Hard coded as "false"

association.isSymmetric="false" Hard coded as "false"

association.isTransitive="false" Hard coded as "false"

rdf:Property (ObjectProperty) association An association between two classes (hasDomain, hasRange)

rdfs:subPropertyOf Not Mapped

OWL (In)Equality

owl:equivalentClass association Association for equivalent class.

association.id = "equivalentClass"

association.forwardName = "equivalentClass"

association.reverseName = "equivalentClass"

association.isNavigable = "true" Hard coded as "true"

association.isReflexive="true" Hard coded as "true"

association.isSymmetric="true" Hard coded as "true"

association.isTransitive="true" Hard coded as "true"

OWL: Property
Characteristics

owl:inverseOf association

association.id = "inverseOf"

association.forwardName = "inverseOf"

association.isFunctional = "false"

association.isNavigable = "true"

association.isReflexive="true"

association.isSymmetric="true"

association.isTransitive="true"

association.reverseName="inverseOf"

owl:TransitiveProperty association.isTransitive association property 'isTransitive'

owl:SymmetricProperty association.isSymmetric association property 'isSymmetric'

owl:InverseFunctionalProperty association.isReverseFunctional association property 'isReverseFunctional'

owl:FunctionalProperty association.isFunctional association property 'isFunctional'

OWL: Property Restrictions

owl:Restriction concept Anonymous concept created.

concept.entityDescription = "RestrictionOn: " +
association name

Concatination of "Restriction On: " and assocation name

concept.isAnonymous = true

owl: allValuesFrom
associationQualification.association.Qualifier =
"AllValuesFrom"

owl: someValuesFrom
associationQualification.association.Qualifier =
"someValuesFrom"

owl:intersectionOf concept.entityDescription Concatination of "Restriction On: " and assocation name

concept.isAnonymous = true

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

45 of 57 5/18/2009 2:16 PM

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a
steadily incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text Set to concept.entityDescription

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:intersectionOf"

owl:unionOf concept.entityDescription Concatination of "Restriction On: " and assocation name

concept.isAnonymous = true

concept.presentation.propertyId
Generated value for property textual presentation using "P" concatenated with a
steadily incremented numerical value.

concept.presentation.propertyName Hardcoded "textualPresentation"

concept.presentation.isPreferred = true Hardcoded "true"

concept.presentation.text Set to concept.entityDescription

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = type Hardcoded "type"

concept.conceptProperty.text = "owl:unionOf"

owl:oneOf concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily incremented
numerical value.

concept.conceptProperty.propertyName = "owl:oneOf" Hardcoded "owl:oneOf"

concept.conceptProperty.text String of oneOf values

OWL: Annotation Property

rdfs:comment Comment

concept.comment.propertyId
Generated value for property textual presentation using "P" concatenated with a
steadily incremented numerical value.

concept.comment.propertyName = "comment" Hardcoded "comment"

concept.presentation.text Value of rdfs:comment

rdfs:seeAlso conceptProperty

rdfs:isDefinedBy conceptProperty

OWL: Versioning

owl:versionInfo codingScheme.representsVersion

priorVersion Not Mapped

backwardCompatibleWith Not Mapped

DeprecatedClass Not Mapped

DeprecatedProperty Not Mapped

Legacy Complex Prop Mapping

Legacy Complex Properties Mapping

tag presentation source represenational form qualifier model element value column name model element

go-term x propertyValue

go-id x propertyQualifierId val1 PropertyQualifier attribute content?

go-source x propertyQualifierId val1 PropertyQualifier attribute content?

source-date x propertyQualifierId val1 PropertyQualifier attribute content?

term-name x propertyValue

term-group x representationalForm property attribute

term-source x attributeValue source

def-source x attributeValue source

def-definition x propertyValue definition

Definition_Review_Date x propertyQualifierId val1 PropertyQualifier attribute content?

Definition_Reviewer_Name x propertyQualifierId val1 PropertyQualifier attribute content?

UMLS SemNet Mapping

UMLS SemNet Mapping

RRF File
Name

RRF Column
Name

RRF
Definition

NCI
Meta
only

LexGrid Model Element comments

Coding Scheme

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

46 of 57 5/18/2009 2:16 PM

codingScheme.representsVersion

codingScheme.codingScheme hard coded in java file as "UMLS_SemNet"

codingScheme.formalName hard coded in java file as "UMLS Semantic Network"

codingScheme.defaultLanguage hard coded in java file as "en"

codingScheme.approxNumConcepts hard coded in java file as

codingScheme.entityDescription

hard coded in java file as "The UMLS Semantic Network is one of three
UMLS Knowledge Sources developed as part of the Unified Medical
Language System project. The network provides a consistent
categorization of all concepts represented in the UMLS Metathesaurus."

license.txt codingScheme.copyright Read from license.txt file or hard coded reference in java file

codingScheme.registeredName hard coded in java file as "urn:lsid:nlm.nih.gov:semnet"

codingScheme.concepts.dc hard coded in java file as "concepts"

codingScheme.relations.dc hard coded in java file as "relations"

codingScheme.mappings.dc hard coded in java file as "mappings"

codingScheme.localNameList

codingScheme.localNameList. hard coded in java file as "UMLS_SemNet"

codingScheme.localNameList

codingScheme.localNameList.

codingScheme.source

codingScheme.source.content

codingScheme.localNameList

codingScheme.localNameList.

codingScheme.localNameList

codingScheme.localNameList.

codingScheme.localNameList

codingScheme.localNameList.

codingScheme.localNameList

codingScheme.localNameList.

mappings.supportedFormat

mappings.supportedFormat.localId hard coded in java file as "text/plain"

mappings.supportedFormat.urn hard coded in java file as "urn:oid:2.16.840.1.113883.6.10:text_plain"

mappings.supportedAssociation

SRDEF RL mappings.supportedAssociation.localId

mappings.supportedContext

mappings.supportedSource

mappings.supportedSource.localId hard coded in java file as "NLM"

mappings.supportedSource.urn hard coded in java file as "urn:lsid:nlm.nih.gov"

mappings.supportedHierarchy

mappings.supportedHierarchy.localId hard coded in java file as "is_a"

mappings.supportedHierarchy.isForwardNavigable hard coded as "true"

mappings.supportedHierarchy.rootCode hard coded as "@"

mappings.supportedHierarchy.associationList hard coded in java file as "hasSubtype"

mappings.supportedAssociationQualifier

SRFLD COL mappings.supportedProperty

mappings.supportedProperty.localId
If SRDEF appears in the FIL column then this is treated a potential
supported property and is entered in supported properties as such.

mappings.supportedProperty.urn hard coded in java file as ""

mappings.supportedLanguage

mappings.supportedLanguage.localId hard coded in java file as "en"

mappings.supportedLanguage.urn hard coded in java file as "urn:oid:2.16.840.1.113883.6.84:en"

mappings.supportedCodingScheme

mappings.supportedCodingScheme.localId hard coded in java file as "UMLS_SemNet"

mappings.supportedCodingScheme.urn hard coded in java file as "urn:lsid:nlm.nih.gov:semnet"

mappings.supportedRepresentationalForm

mappings.supportedConceptStatus

mappings.supportedPropertyLink

mappings.supportedPropertyQualifier

mappings.supportedDataType

Concepts
SRDEF UI concept.id(inherited from Entity)

SRDEF STY/RL
concept.enitityDescription(inheritance path
Entity->versionableAndDescribable)

concept.conceptProperty

SRDEF NH concept.conceptProperty.text.content

concept.conceptProperty.format hard coded in java file as "text/plain"

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

47 of 57 5/18/2009 2:16 PM

concept.conceptProperty.propertyName hard coded in java file as "NH"

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated with a steadily
incremented numerical value.

concept.presentation

concept.presentation.propertyName (inherited from
Property)

Hard coded in java file as "STY/RL" or "ABR"

concept.presentation.propertyId
Generated value for property using "P" concatenated with a steadily
incremented numerical value.

SRDEF
STY/RL,
ABR

concept.presentation.text.content

concept.presentation.format hard coded in java file as "text/plain"

concept.presentation.isPreferred hard coded in java file as true.

concept.definition.propertyName (inherited from Property) Hard coded in java file as "DEF"

concept.definition.propertyId
Generated value for property using "P" concatenated with a steadily
incremented numerical value.

SRDEF DEF concept.definition.text.content

concept.definition.format hard coded in java file as "text/plain"

concept.definition.isPreferred hard coded in java file as true.

concept.comment

SRDEF EX concept.comment.propertyName (inherited from Property) Hard coded in java file as "EX"

concept.comment.text.content

concept.comment.format hard coded in java file as "text/plain"

concept.comment.propertyId
Generated value for property using "P" concatenated with a steadily
incremented numerical value.

concept.instruction

concept.instruction.propertyName (inherited from
Property)

Hard coded in java file as "UN"

SRDEF UN concept.instruction.text.content

concept.instruction.format hard coded in java file as "text/plain"

concept.instruction.propertyId
Generated value for property using "P" concatenated with a steadily
incremented numerical value.

Relations

SRSTR RL association.id (inherited from Entity)
In the case of RL value is "isa" the id is hard coded to hasSubtype. The
direction of the association is also reversed

association.isTransitive hard coded to true if the value of RL is "isa"

SRSTR RL association.forwardName Reversed when value of RL is "isa"

SRSTR STY/RL associationInstance.sourceId Reversed when value of RL is "isa"

SRSTR STY/RL associationTarget.targetId

SRDEF RIN association.reverseName

SRDEF DEF
association.entityDescription.content (inheritance path for
entityDescription is Entity->versionableAndDescribable)

When SRDEF value RT is "RL"

SRSTRE1
UI/STY(first
argument)

associationInstance.sourceId Reversed when value of RL is "isa"

SRSTRE1
UI/STY(2nd
argument)

associationTarget.targetId Reversed when value of RL is "isa"

UMLS Mapping

UMLS Mapping

RRF File Name
RRF

Column
Name

RRF Definition
NCI
Meta
only

LexGrid Model Element comments

Coding Scheme

MRSAB.RRF SVER
Release date or
version number
of a source

codingScheme.representsVersion

MRSAB.RRF SSN
Source short
name

codingScheme.codingScheme

MRSAB.RRF SON
Source Official
Name

codingScheme.formalName

MRSAB.RRF LAT
Language of
Term(s)

codingScheme.defaultLanguage

MRSAB.RRF TRF
Term frequency
for a source

codingScheme.approxNumConcepts

MRSAB.RRF SCIT Source citation codingScheme.entityDescription
inherits entityDescription from
versionableAndDescribable

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

48 of 57 5/18/2009 2:16 PM

MRSAB.RRF SCC
Content contact
info for a source

codingScheme.copyright

codingScheme.registeredName
Pulled from iso mapping configuration file using
method getISOString(RSAB from MRSAB.RRF)

MRDOC.RRF EXPL
Detailed
explanation

x codingScheme.representsVersion
Where Dockey = "RELEASE" and value =
"umls.release.name"

x codingScheme.codingScheme Hard coded in java file as "NCI MetaThesaurus"

x codingScheme.formalName Hard coded in java file as "NCI MetaThesaurus"

x codingScheme.defaultLanguage Hard coded in java file as "ENG"

MRCONSO.RRF x codingScheme.approxNumConcepts Count of CODE value in MRCONSO.RRF

x codingScheme.entityDescription
Hard coded in java file as "NCI MetaThesaurus loaded
from RRF files."

x codingScheme.copyright

Hard coded in java file as "Some material in the NCI
Metathesaurus is from copyrighted sources of the
respective copyright claimants. All sources appearing
in the NCI Metathesaurus are licensed or authorized
for NCI use. Users of the NCI Metathesaurus are
responsible for compliance with the terms of these
licenses and with any copyright restrictions and are
referred to NCI Center of Bioinformatics for license
terms and to the copyright notices appearing in the
original sources, all of which are obtainable online by
reference at http://ncimeta.nci.nih.gov/."

codingScheme.localNameList Hard coded as constant in java file as "localName"

MRSAB.RRF SON
Source Official
Name

codingScheme.localNameList.

codingScheme.localNameList Hard coded as constant in java file as "localName"

codingScheme.localNameList.
Pulled from iso mapping configuration file using
method getISOString(RSAB from MRSAB.RRF)

codingScheme.source Hard coded as constant in java file as "source"

MRDOC.RRF EXPL
Detailed
explanation

codingScheme.source.content String concatenation of "UMLS-" and value of EXPL

x codingScheme.localNameList Hard coded as constant in java file as "localName"

x codingScheme.localNameList. Hard coded in java file as "NCI Thesaurus"

x codingScheme.localNameList Hard coded as constant in java file as "localName"

x codingScheme.localNameList. Hard coded in java file as "NCI_Thesaurus"

x codingScheme.localNameList Hard coded as constant in java file as "localName"

x codingScheme.localNameList. Hard coded in java file as "10001"

x codingScheme.localNameList Hard coded as constant in java file as "source"

x codingScheme.localNameList. Hard coded in java file as "RRF Files"

mappings.supportedFormat Hard coded as constant in java file as "Format"

mappings.supportedFormat.localId Hard coded as one of several constants in a java file

mappings.supportedAssociation Hard coded as constant in java file as "Association"

MRREL.RRF
REL,
RELA

Relationship,
Relationship
attribute

mappings.supportedAssociation.localId

mappings.supportedContext
Hard coded as constant in java file as "Context" May
not be used in individual RRF load

mappings.supportedSource
Hard coded as constant in java file as "Source" May
not be used in individual RRF load

mappings.supportedHierarchy Hard coded as constant in java file as "Hierarchy"

mappings.supportedAssociationQualifier
Hard coded as constant in java file as
"AssociationQualifier"

mappings.supportedProperty Hard coded as constant in java file as "Property"

mappings.supportedLanguage Hard coded as constant in java file as "Language"

mappings.supportedCodingScheme
Hard coded as constant in java file as
"CodingScheme"

mappings.supportedRepresentationalForm
Hard coded as constant in java file as
"RepresentationalForm"

mappings.supportedConceptStatus Hard coded as constant in java file as "ConceptStatus"

mappings.supportedPropertyLink Hard coded as constant in java file as "PropertyLink"

mappings.supportedPropertyQualifier
Hard coded as constant in java file as
"PropertyQualifier"

mappings.supportedDataType Hard coded as constant in java file as "DataType"

Concepts

MRCONSO.RRF CODE
Unique Identifier
or code for string
in source

concept.conceptCode

MRCONSO.RRF CUI
Unique identifier
for concept

x concept.conceptCode

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

49 of 57 5/18/2009 2:16 PM

concept.isActive Hardcoded in parameter as true.

concept.conceptStatus Hard coded as constant in java file as "Active"

concept.isAnonymous Hardcoded in parameter as false.

MRCONSO.RRF STR String concept.entityDescription

concept.conceptProperty.Format
Hard coded as constant in java file as "text/plain" or
null

concept.conceptProperty.propertyName
May be hard coded as constant in java file as one of
several properties.

concept.conceptProperty.usageContext

concept.conceptProperty.propertyId
Generated value for property using "P" concatenated
with a steadily incremented numerical value.

concept.presentation.propertyId
Generated value for property textual presentation
using "T" concatenated with a steadily incremented
numerical value.

concept.comment.propertyId
Generated value for property comment using "C"
concatenated with a steadily incremented numerical
value.

concept.definition.propertyId
Generated value for property definition using "D"
concatenated with a steadily incremented numerical
value.

concept.instruction.propertyId
Generated value for property instruction using "I"
concatenated with a steadily incremented numerical
value.

MRCONSO.RRF CUI
Unique identifier
for concept

concept.conceptProperty.text.content.

concept.conceptProperty.propertyId
Generated value for property using "CUI"
concatenated with a steadily incremented numerical
value.

concept.conceptProperty.propertyName hard coded as constant in java file as "UMLS_CUI"

concept.conceptProperty.propertyType hard coded as constant in java file as "property"

concept.conceptProperty.format left as null

MRSTY.RRF STY Semantic type concept.conceptProperty.text.content

concept.conceptProperty.propertyId
Generated value for property using "SemType"
concatenated with a steadily incremented numerical
value.

concept.conceptProperty.propertyName
hard coded as constant in java file as
"Semantic_Type"

concept.conceptProperty.propertyType hard coded as constant in java file as "property"

concept.conceptProperty.format Hard coded as constant in java file as "text/plain"

MRCONSO.RRF LAT
Language of
Term(s)

concept.conceptProperty.language
Logic of code simply selects the first definition in the
source as the preferred source

MRCONSO.RRF TS Term status concept.presentation.isPreferred
One or a combination of these RRF values determines
whether a presentation is preferred: LAT, TS, STT,
ISPREF, RANK.

MRCONSO.RRF STT String type concept.presentation.isPreferred
One or a combination of these RRF values determines
whether a presentation is preferred: LAT, TS, STT,
ISPREF, RANK.

MRCONSO.RRF ISPREF
Indicates
whether AUI is
preferred

concept.presentation.isPreferred
One or a combination of these RRF values determines
whether a presentation is preferred: LAT, TS, STT,
ISPREF, RANK.

MRRANK.RRF RANK
Termgroup
ranking

concept.presentation.isPreferred
One or a combination of these RRF values determines
whether a presentation is preferred: LAT, TS, STT,
ISPREF, RANK.

concept.presentation.isPreferred

The first presentation for each language is
automatically marked as isPreferred="true" after using
comparator to sort list of presentations using
comparator to evaluate each presentation based on a
combination of values from LAT, TS, STT, ISPREF,
RANK.

MRDEF.RRF DEF Definition concept.definition.text.content

concept.definition.isPreferred
Logic of code simply selects the first definition in the
source as the preferred source

MRSAT.RRF ATN Attribute name concept.conceptProperty.propertyType

Translated to a LexGrid property type. For values AN,
CX, HN this property is typed as a "COMMENT" in
LexGrid. For value EV this property is typed
"PRESENTATION" This only occurs when the
STYPE points to the CODE, SCUI or SDUI columns in
MRREL.RRF or MRCONSO.RRF. If the STYPE
points to SAUI then the values are loaded as property
qualifiers.

MRSAT.RRF ATV Attribute value concept.conceptProperty.propertyValue

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

50 of 57 5/18/2009 2:16 PM

MRSAT.RRF ATN Attribute name concept.conceptProperty.propertyQualifier.propertyQualifierId
If the STYPE points to SAUI then the value is loaded
as a property qualifier attribute

MRSAT.RRF ATV Attribute value concept.conceptProperty.propertyQualifier.content
If the STYPE points to SAUI then the value is loaded
as a property qualifier attribute

MRCONSO.RRF SAB x concept.conceptProperty.source.content

x concept.conceptProperty.propertyQualifier.propertyQualifierId hard coded as constant in java file as "source-code"

MRCONSO.RRF CODE x concept.conceptProperty.propertyQualifier.content

x concept.conceptProperty.propertyQualifier.propertyQualifierId hard coded as constant in java file as "AUI"

MRCONSO.RRF AUI x concept.conceptProperty.propertyQualifier.content

concept.presentation.representationalForm
When ATN value is EV this presentation will be given
a representationalForm of "Abbrev."

MRCONSO.RRF TTY
Term type in
source

concept.presentation.representationForm

When TTY value is FN then representationalForm is
represented as "Full Form" Otherwise the
representationalForm is the same as the TTY source
(i.e. if TTY is PT then representationalForm is PT.) PT
is one of the preferred presentations.

concept.conceptProperty.propertyQualifier.propertyQualifierId hard coded as "HCD"

MRHIER.RRF HCD

Source asserted
hierarchical
number or code
for this atom in
this context

concept.conceptProperty.propertyQualifier.content

This propertyQualifier is present when the HCD is
populated in the the MRHIER file. The corresponding
code and property for concept or code is qualified as a
code or concept with a context derived heirarchy.

Relations

MRREL.RRF CUI1
Unique identifier
for first concept

MRREL.RRF AUI1
Unique identifier
for first atom

MRCONSO.RRF CODE
Unique Identifier
or code for string
in source

ConceptReference.conceptCode (Model element is a
ResolvedConceptReference with the value sourceOf attached to the
appropriate AssociationList containing this particular REL or RELA
association name.)

Mapping to the CODE depends upon the CUI or a
combination of CUI and AUI values. If the CODE
value is "NOCODE" then LexBIG concatenates
"NOCODE" with a "-" and the CUI value. Target or
source code value requires use of the DIR flag which
indicates the directionality of the relationship in REL
or RELA. CUI1 can be used as a pointer to the source
CODE value if DIR equals Y, else CUI1 is the
targetCode. Similarly, if an AUI exists AUI1 can be an
indicator for CODE value to be either or source or
target depending on the DIR flag.

MRREL.RRF CUI2
Unique identifier
for second
concept

MRREL.RRF AUI2
Unique identifier
for second atom

MRCONSO.RRF CODE
Unique Identifier
or code for string
in source

ConceptReference.conceptCode (Model element is a
ResolvedConceptReference with the value targetOf attached to the
appropriate AssociationList containing this particular REL or RELA
association name.)

Mapping to the CODE depends upon the CUI or a
combination of CUI and AUI values. If the CODE
value is "NOCODE" then LexBIG concatenates
"NOCODE" with a "-" and the CUI value. Target or
source code value requires use of the DIR flag which
indicates the directionality of the relationship in REL
or RELA. CUI2 can be used as a pointer to the source
CODE value if DIR equals Y, else CUI1 is the
targetCode. Similarly, if an AUI exists AUI2 can be an
indicator for CODE value to be either or source or
target depending on the DIR flag.

MRREL.RRF DIR
Source asserted
directionality flag

The UMLS directional flag. Y indicates that this is the
direction of the RELA relationship in its source; N
indicates that it is not; otherwise indicates that it is not
important or has not yet been determined. (If blank
RELA, we interpret as 'N', based on empirical review
of meta files).

MRREL.RRF RELA
Relationship
attribute

association.id (id inherited from Entity)
Source defined associations. If RELA value is
"inverse_isa" then it is changed to "hasSubtype." All
others mapped as defined in source.

MRREL.RRF REL Relationship association.id (id inherited from Entity) UMLS defined associations

MRSAT.RRF METAUI
Metathesaurus
asserted unique
identifier

Presence of RUI in MRSAT.RRF METAUI column
indicates the association defined in MRREL has an
association qualifier. Currently only MedDRA uses
these.

MRSAT.RRF ATN AssociatedConcept.nameAndValueList.name

MRSAT.RRF ATV AssociationQualification.nameAndValueList.content

AssociatedConcept.nameAndValueList.name

qualifier name is hard coded to "HCD" This
association qualifier is attached to an association when
the HCD field in MRHIER.RRF is populated.
Associations are identified by evaluating a structured

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

51 of 57 5/18/2009 2:16 PM

series of AUI's that describe the path to root (PTR
field in MRHIER) Once these associations are
identified they have and association qualifier attached
to them with the value of the HCD loaded as the
qualifier.

MRHIER.RRF HCD AssociationQualification.nameAndValueList.content

MRSAB.RRF SSN
Source short
name

association.codingSchemeId (Inherited from Entity)

MRREL.RR
REL or
RELA

Relationship or
Relationship
attribute

association.forwardName
unqualified REL or RELA value (inverse_isa remains
the same)

MRDOC.RRF EXPL
Detailed
explanation

association.reverseName
Where DOCKEY in MRDOC equals REL or RELA
and value is the association name and TYPE is REL or
RELA name prepended to "_inverse".

association.inverse Hard coded as a blank string.

association.isAntiReflexive hard coded to null.

association.isAntiSymmetric hard coded to null.

association.isAntiTransitive hard coded to null.

association.isAntiTransitive hard coded to null.

association.isNavigable hard coded as Boolean with value true.

association.isReflexive hard coded to null.

association.isReverseFunctional hard coded to null.

association.isSymmetric hard coded to null.

MRREL.RRF
SAB,
REL,
RELA

Source
abbreviation

association.isTransitive

True when the name of the association can be mapped
to a source defined in the SAB attribute of
MRREL.RRF. Not the SAB value itself, but
extrapolated from it using SAB to REL, RELA
relationship.

association.isTranslationAssociation hard coded to null.

association.targetCodingScheme hard coded to null.

association.entityDescription.content (inheritance path for
entityDescription is Entity->versionableAndDescribable)

Hard coded to: "UMLS-defined relationships"

relations.dc
If REL, this is hard coded as "UMLS-Relations" if
RELA then it is hard coded to "Relations"

MRREL.RRF
REL,
RELA

x propertyLink.link

This is a link established when the MRREL.RRF file
contains a relationship where the CUI is related to
itself. Under these conditions the relationship is
mapped as a property link with the MRREL defined
relationship mapped as the link value.

x propertyLink.sourceProperty

Generated as a propertyId for concept, ex: "T-10" This
is retrieved based on the AUI value in
MRCONSO.RRF from the entityPropertyMultiAttrib
table where the AUI equals the attributeValue column.

x propertyLink.targetProperty

Generated as a propertyId for concept, ex: "T-10" This
is retrieved based on the AUI value in
MRCONSO.RRF from the entityPropertyMultiAttrib
table where the AUI equals the attributeValue column.

SNOMED UMLS Mapping

SNOMED UMLS Mapping

RRF File Name RRF Column Name RRF Definition LexGrid Model Element comments

RSAB.RRF SVER Release date or version number of a source codingScheme.representsVersion

RSAB.RRF SSN Source short name codingScheme.codingScheme?

RSAB.RRF SON Source Official Name codingScheme.formalName

Hard coded to "en" codingScheme.defaultLanguage

MRSAT.RRF ATV concept.presentation.language Unique to snomed.

OBO Mapping

OBO Mapping

OBO Class OBO Entity LexGrid Model Element Notes

Document
Header

format-version Not mapped.

Document
Header

data-version CodingScheme.representsVersion
Creates a codingSchemeVersion and SystemRelease record. If not
specified, then hard coded "UNASSIGNED"

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

52 of 57 5/18/2009 2:16 PM

Document
Header

version CodingScheme.representsVersion Deprecated - use data-version if present.

Document
Header

date Not mapped.

Document
Header

saved-by Ignored but included if contained in the remark entity.

Document
Header

auto-generated-by Ignored but included if contained in the remark entity.

Document
Header

subsetdef Not mapped.

Document
Header

import
Deprecated - Imports are used to assemble a larger document from
smaller.

Document
Header

typeref Deprecated.

Document
Header

synonymtypedef Not mapped.

Document
Header

idspace Not mapped.The idspace is a triple - localName, URN and description.

Document
Header

default-relationship-id-prefix Not mapped.

Document
Header

id-mapping CodingScheme.supportedAssociation
This is more generalized than the LexGrid model, as it supports mapping
between *any* id's. Note that its primary purpose, however, is to handle
supportedAssociation.

Document
Header

remark CodingScheme.entityDescription Will combine multiple remark entities into the entityDescription.

Document
Header

default-namespace codingScheme.codingScheme
Will use default-namespace if provided; otherwise will use filename
without the extension.

Document
Header

default-namespace codingScheme.formalName
Will use default-namespace if provided; otherwise will use filename
without the extension.

Document
Header

default-namespace codingScheme.registeredName
Combination of "urn:lsid:bioontology.org:" and if provided, the value in
"default-namespace"; but if not will use filename without the extension.

codingScheme.defaultLanguage Hardcoded "en"

codingScheme.isNative Hardcoded "true"

Stanza id CodedEntry.conceptCode

Stanza name CodedEntry.entityDescription

CodedEntry.presentation['textualPresentation'].text

CodedEntry.presentation['textualPresentation'].isPreferred =
true

Stanza alt_id CodedEntry.property.property="alt_id"

CodedEntry.property['alt_id'].propertyId

CodedEntry.property['alt_id'].text

Stanza is_anonymous CodedEntry.isAnonymous = true

Stanza is_obsolete CodedEntry.isActive = false

Stanza def CodedEntry.definition

CodedEntry.definition.isPreferred = true

Stanza def.dbxref See dbxref

Stanza comment CodedEntry.comment.text

Stanza subset property[subset tag] See subsetdef

Stanza syonym presentation['textualPresentation'].text

Stanza synonym.scope presentation['textualPresentation'].degreeOfFidelity

Stanza synonym.type presentation['textualPresentation'].representationalForm

Stanza synonym.dbxref (see dbxref)

Stanza exact_synonym See synonym

Stanza narrow_synonym See synonym

Stanza broad_synonym See synonym

Stanza xref associations.['mapsTo']

Stanza xref_analog See synonym

Stanza xref_unk

Stanza is_a associations.['hasSubtype'] Reverse of the source and target.

Stanza is_a.namespace If present, the supplied namespace becomes the owning "codingScheme".

Stanza is_a.derived associations.hasSubtype.associationQualifier
If present, need to include derived in the supportedAssociationQualifiers
section

Stanza intersection_of
Processed the same way that OWL intersection operator is processed.
This includes creation of anonymous sets.

Stanza union_of Same as OWL

Stanza disjoint_from Same as OWL

Stanza relationship associations.

Stanza relationship.not_necessary associations..associationQualifier

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

53 of 57 5/18/2009 2:16 PM

Stanza relationship.inverse_necessary associations..associationQualifier

Stanza relationship.namespace If present, the supplied namespace becomes the owning "codingScheme".

Stanza relationship.derived associations..associationQualifier

Stanza relationship.cardinality associations..associationQualifier

Stanza relationship.maxCardinality associations..associationQualifier

Stanza relationship.minCardinality associations..associationQualifier

Stanza is_obsolete codedEntry.isActive = false

codedEntry.conceptStatus="is_obsolete"

Stanza replaced_by

Stanza consider Not Mapped

Stanza use_term (deprecated)

dbxref dbxref name CodedEntry..source

supportedSource
dbxref name format is inconsistent. In most cases, it can be the
localName of supportedSource, but special processing may be necessary
in the case of URL's, etc

dbxref dbxref description Not mapped.

dbxref trailing modifiers Not mapped.

typeDef
Stanza

domain associations.['has_domain']

typeDef
Stanza

range associations.['has_range']

typeDef
Stanza

is_cyclic property['is_cyclic']

typeDef
Stanza

is_reflexive property['is_reflexive']

association.isReflexive

typeDef
Stanza

is_symmetric property['is_symmetric']

association.isSymmetric

typeDef
Stanza

is_transitive property['is_transitive']

association.isTransitive

typeDef
Stanza

inverse_of association.inverse

instance
stanza

id same rules as general stanza same rules as general stanza

instance
stanza

name same rules as general stanza same rules as general stanza

instance
stanza

instance_of association['has_instance']

instance
stanza

CodedEntry.property.property="" data type properties go in Coded Entry property section

HL7 RIM Mapping

HL7 RIM Mapping

HL7 Table HL7 Column LexGrid Model Element

Model <modelID> <codingSchemeName>

<name> <formalName>

<registeredName>

<defaultLanguage>

<versionNumber> <representsVersion>

<isNative>

<approximateNumberofConcepts>

<firstRelease>

<modifiedRelease>

<deprecated>

<description> <entityDescription>

<copyright>

VCS_code_system codeSystemId codingScheme.registeredName

codeSystemType commonTypes::Properties

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

54 of 57 5/18/2009 2:16 PM

codeSystemName concept.conceptCode

codeSystemName concept.presentation['textualPresentation'].text

fullName codingScheme.formalName

description codingScheme.entityDescription

releaseId codingScheme.representsVersion

copyrightNotice codingScheme.copyright

literal('en') codingScheme.defaultLanguage

VCS_concept_code_xref

Concept Code concept.conceptCode

Case Difference commonTypes::Properties

Status concept.isActive=(conceptStatus=='A'?)

concept.conceptStatus

VCS_concept_designation

designation concept.presentation['textualPresentation'].text

language concept.presentation['textualPresentation'].language

preferredForLanguage concept.presentation['textualPresentation'].isPreferred

internalId with(codeSystem[deref(internalId)].concept[deref(internalId)]).definition

description concept.presentation['textualPresentation'].text

language concept.presentation['textualPresentation'].language

literal('true') concept.presentation['textualPresentation'].isPreferred

uniqueId() concept.presentation['textualPresentation'].propertyId

literal('definition') concept.presentation['textualPresentation'].property

VCS_concept_property internalId

propertyCode concept.property.property

propertySeq

propartyValue concept.property.text

language concept.property.language

VCS_concept_relationship relationCode association.association

sourceInternalId associationInstance.sourceConcept

targetInternalId associationTarget.targetConcept

Model modelID systemRelease.releaseId

name service.service

versionNumber service.version

lastModifiedDate systemRelease.releaseDate

developingOrganization systemRelease.releaseAgency

committeeID

description systemRelease.entityDescription

concat('urn:oid:2.16.840.1.113883:',systemRelease.releaseId) systemRelease.releaseURN

literal('true') systemRelease.isLatest

preceding-sibling/releaseOrder + 1 systemRelease.releaseOrder

Model modelID commonTypes::Properties

(Special mapping for NCI) name codingScheme.localName

versionNumber codingScheme.representsVersion

lastModifiedDate commonTypes::Properties

developingOrganization commonTypes::Properties

committeeID

description codingScheme.entityDescription

concat('urn:oid:2.16.840.1.113883:',systemRelease.releaseId) codingScheme.registeredName

literal('true') commonTypes::Properties

preceding-sibling/releaseOrder + 1 commonTypes::Properties

RIM_vocabulary_domain vocDomain codingscheme["VocabularyDomain"].concept.conceptCode

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

55 of 57 5/18/2009 2:16 PM

codingscheme["VocabularyDomain"].concept.presentation["textualPresentation"].

description codingscheme["VocabularyDomain"].concept.definition.text

restrictsDomain codingscheme["VocabularyDomain"].association["hasSubtype"].sourceConcept

codingscheme["VocabularyDomain"].association["hasSubtype"].targetconcept = v

VOC_code_reference usedToBuildValueSet with(valueDomain[registeredName=current()/.])

referencesConceptCode

referencesInternalId

relationship …valueDomainEntry/includeChildren = (relationship == 'hasSubtype')

includeReferencedCode …valueDomainEntry/isSelectable

leafOnly

directChildrenOnly

isHeadCode

referencesCodeSystem …/valueDomainEntry.codingScheme

arbitraryUniqueValue() …/valueDomainEntry.id

codeSystemId

sponsor

publisher

versionReportingMethod

licensingInformation

inUMLS

systemSpecificLocatorInfo

uri

isExternal

VOC_value_set valueSetId valueDomain.registeredName

valueSetName valueDomain.valueDomain

basedOnCodeSystem valueDomain.defaultCodingScheme

description valueDomain.entityDescription

definingExpression

allCodes if 'true': valueDomain.conceptCode = "@", valueDomain.includeChildren='true'

isTaxonomicSet

valueSetAuthority

valueSetNumber

VOC_value_set_constructor usedToBuildValueSet new valueDomainEntry(parent = valueDomain[valueSetId=current()/.],id=unique(

includesOrExcludesSet valueDomainEntry.includesValueDomain

includeHeadCode valueDomainEntry.isSelectable

valueDomainEntry.conceptCode = VOC_code_reference[usedToBuildValueSet=c
and isHeadCode=true].referencesConceptCode

VOC_vocabulary_domain_value_set representsVocDomain (selector)

definedByValueSet codingscheme['VocabularyDomain'].concept[representsVocDomain].property['def

appliesInContext codingscheme['VocabularyDomain'].concept[representsVocDomain].property['def

VCS_release_version releaseId codingSchemeVersion.version

valueDomainVersion.version

literal("false") codingSchemeVersion.isComplete

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

56 of 57 5/18/2009 2:16 PM

releaseAgency

releaseDate codingSchemeVersion.versionDate

valueDomainVersion.versionDate

description codingSchemeVersion.entityDescription

valueDomainVersion.entityDescription

editorID

forWhomID

concat('urn:oid:2.16.840.1.113883:',systemRelease.releaseId)

LexGrid Text Mapping

LexGrid Text Mapping

Source Definition Comments

Column 1 2 3 4 5 6 7 8

Line 1 <codingSchemeName> <codingSchemeId> <defaultLanguage> <formalName> [<version>] [<source>] [<description>] [<copyright>]

This must
be the first
line. It
contains the
coding
scheme
metadata.

2 [<code>] <name> [<description>]

Beginning
of concepts
in coding
scheme.

3 [<code>] <name> [<description>]

Represent
hierarchical
'hasSubtype'
relationship
nesting
(name
hasSubtype
name)

Text Element LexGrid Comments

Coding Scheme

codingSchemeName codingScheme.codingSchemeName

codingSchemeId codingScheme.codingSchemeId

defaultLanguage codingScheme.defaultLanguage

formalName codingScheme.formalName

version codingScheme.representsVersion Optional

source codingScheme.source Optional

description codingScheme.entityDescription Optional

copyright codingScheme.copyright Optional

Concepts

code concept.conceptCode Optional

name concept.conceptName

description concept.entityDescription

Retrieved from "https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.0_Design_and_Architecture_Guide"

This page was last modified on 18 May 2009, at 17:43.

CONTACT USPRIVACY NOTICEDISCLAIMERACCESSIBILITYAPPLICATION SUPPORT

LexEVS 5.0 Design and Architecture Guide - Vocab_Wiki https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.0_Des...

57 of 57 5/18/2009 2:16 PM

