
Home
Knowledge Centers

caGrid
Clinical Trials Management Systems
Data Sharing and Intellectual Capital
Molecular Analysis Tools
Tissue/Biospecimen Banking and Technology Tool
Vocabulary

Discussion Forums
caGrid
Clinical Trials Management Systems
Data Sharing and Intellectual Capital
Molecular Analysis Tools
Tissue/Biospecimen Banking and Technology Tool
Vocabulary

Bugs/Feature Requests
Development Code Repository

LexEVS 5.0 Migration Guide
From Vocab_Wiki

Main Page > LexBig and LexEVS > LexEVS Version 5.0 > LexEVS 5.0 Migration Guide

Contents
1 Overview
2 LexGrid-based QBE services
3 LexEVS Model
4 LexEVS Database Enhancements
5 EVS API to LexEVS API Migration

5.1 EVSApplicationService and LexEVS Counterparts
5.1.1 EVSApplicationService

5.1.1.1 evsSearch and search
5.2 EVSQuery Methods and LexEVS Counterparts

5.2.1 EVSQuery
5.2.1.1 getTree
5.2.1.2 searchDescLogicConcepts
5.2.1.3 getConceptWithPropertyMatching
5.2.1.4 isSubConcept
5.2.1.5 isRetired
5.2.1.6 getDescendants
5.2.1.7 getPropertyValues
5.2.1.8 getAncestors
5.2.1.9 getSubConcepts
5.2.1.10 getSuperConcepts
5.2.1.11 getPropertiesByConceptCode
5.2.1.12 getVocabularyNames
5.2.1.13 getAllVocabularies

5.2.1.14 getVocabularyByName
5.2.1.15 getVocabularyVersion
5.2.1.16 getConceptEditAction
5.2.1.17 getRootConcepts
5.2.1.18 searchSourceByCode
5.2.1.19 searchSourceByAtomCode
5.2.1.20 getMetaConceptNameByCode
5.2.1.21 getMetaSources
5.2.1.22 getChildren
5.2.1.23 getParent
5.2.1.24 getBroaderConcepts
5.2.1.25 getNarrowerConcepts
5.2.1.26 getRelatedConcepts
5.2.1.27 containsInverseRole
5.2.1.28 containsRole
5.2.1.29 getAllAssociationTypes
5.2.1.30 getAllConceptAssociationQualifierTypes
5.2.1.31 getAllConceptAssociationTypes
5.2.1.32 getAllConceptPropertyQualifierTypes
5.2.1.33 getAllConceptPropertyTypes
5.2.1.34 getAllLicenses
5.2.1.35 getAllPropertyTypes
5.2.1.36 getAllQualifierTypes
5.2.1.37 getAllRoleNames
5.2.1.38 getAllSubConceptCodes
5.2.1.39 getAllSynonymTypes
5.2.1.40 getAllTermAssociationQualifierTypes
5.2.1.41 getAllTermPropertyQualifierTypes
5.2.1.42 getAllTermPropertyTypes
5.2.1.43 getParentConcepts
5.2.1.44 getChildConcepts
5.2.1.45 hasParents
5.2.1.46 hasChildren
5.2.1.47 getDescLogicConcept
5.2.1.48 getHistoryRecords
5.2.1.49 getHistoryStartDate
5.2.1.50 getHistoryEndDate
5.2.1.51 getCodeActionChildren
5.2.1.52 getCodeActionParents
5.2.1.53 getAssociationCollectionbyCode
5.2.1.54 getSemanticTypeCollectionbyCui
5.2.1.55 getQualifierCollectionbyName
5.2.1.56 getAtomCollectionbyCui
5.2.1.57 getSynonymCollectionbyCui
5.2.1.58 getSourceCollectionbyCui
5.2.1.59 getSemanticTypeCollectionbyCui
5.2.1.60 getSourcebyDefinition
5.2.1.61 getDefinitionCollectionbyCui
5.2.1.62 getPropertyCollectionbyName
5.2.1.63 getPropertyCollectionbyCode
5.2.1.64 fetchPropertyCollectionByCodes
5.2.1.65 getRoleCollectionbyCode
5.2.1.66 getInverseRoleCollectionbyCode
5.2.1.67 getInverseAssociationCollectionbyCode
5.2.1.68 getHasParentsbyCode
5.2.1.69 getHasChildrenbyCode

Overview
LexEVS 5.0 represents the next generation of NCI Enterprise Vocabulary Services. In this release, the LexBIG Java
API and LexGrid model become the strategic EVS interfaces, replacing the legacy EVS API and the EVS 3.2 model.

LexEVS 5.0 Highlights

LexEVS 5.0 is the first release to completely shift from the EVS Model and EVS API to LexBIG API
(LexEVS).
Consistent naming and release numbers for API and services.
Introduction of LexGrid-based QBE services
Unified OWL loader.
The 2008/01 model is updated to the 2009/01 LexGrid Model.

Unified Design
The unified design of LexEVS 5.0 no longer supports the EVS Model and EVS API. Both have been completely
replaced with LexEVS components as represented in the following diagram.

The convergence of LexEVS 5.0 components has introduced new naming of components:

5.2.1.70 getIsRetiredbyCode
5.2.1.71 getLocalNames

6 OWL Loader Enhancements
7 Deployment Artifacts

7.1 LexEVS Components

Design Components Release 4.2 Release 5.0
EVS Model Version 3.2 No Longer Available
EVS API Version 3.2 No Longer Available
LexGrid Model Version 2008/01 2009/01

The supported programming interfaces are now all provided by LexEVS:

As a result, definitions have been unified to represent LexEVS. The following definitions are provided for reference.

LexGrid-based QBE services
LexEVS 5.0 brings the addition of QBE/Data Services. Detailed information about the Data Services can be found in
the LexEVS 5.0 Programmer's Guide.

LexEVS Model
The transition from the 2008/02 model to the 2009/01 model has introduced numerous enhancements. Information
regarding the LexEVS model can be found in the LexEVS 5.0 Design and Architecture Guide.

The 2009/01 EA representation of the model can be found at the model and scheme page.

Model Highlights

Accommodate entities other than concept/instance/association
Converge attributes (e.g. associated properties) to ‘Entity’ superclass
Single resource can be defined as multiple types
Allow more granular version tracking (e.g. per concept or per property)
Extensive updates to value domain and pick list representation
Remove antiquated packages & classes (e.g. LDAP)
Accuracy and alignment of internal lexicon (URNMap -> URIMap)
Influenced by CTS2, OWL, XMDR, GE/IHC
Formalized (EA model available)

Detailed changes are documented below:

LexBIG API Version 2.3.0 LexEVS 5.0

Supported Programming Interfaces Release 4.2 Release 5.0
Direct Java LexBIG LexEVS
Distributed Java (RMI) LexBIG LexEVS
caCORE SDK Services EVS LexEVS
caGRID Service EVS, LexEVS LexEVS

Term Definition

LexGrid LexGridVocabulary model underlying the LexBIG API.
Sometimes used as a generic reference to work based off this model.

LexBIG
A new API with rich functionality developed for NCI caBIG® to access LexGrid-based
vocabularies.
Serves as the internal ‘engine’ for traditional EVS APIs.

EVS
NCI Enterprise Vocabulary Services model, API, and content.
For model and API, references legacy components being replaced by LexGrid (model) and
LexBIG (API).

LexEVS Adopted as project name to describe merging of LexGrid model and LexBIG API as the
mainstream EVS interfaces.

Model Change Type Description How Implemented

Remove LDAP
Implementation

Feature
Request

The LDAP implementation of the
LexGrid model is no longer being used.
The LDAP specific elements in the
LexGrid model should be removed, as
they add a degree of complexity and
confusion that is no longer justified.

Removed LDAP
Package
Removed NumericOID
type
Removed all LDAP
annotation on the
individual entities
Removed the "dc" type
on aggregation
columns
Removed the constraint
that all nodes had to
have a single identifier
that was unique in the
context of the parent

Model Clarification Enhancement
Request

There are several issues that have made
the model difficult to explain,
implement, and use. These issues
include:

1. The inconsistent use of names -
some core data types begin with
“ts” and others don't.

2. Naming confusion - “URN” is
used in several places where the
data type should be a URI, labels
say “id” when they mean “code”,
etc.

3. Inconsistent typing - localId is
used as a type throughout much of
the model instead of specifying the
particular domain (e.g. source,
language, namespace name, etc)

4. Inconsistent use of the “any” type -
it has a misleading label in the
builtins section
(tsCaseSensitiveDirectoryString),
and then isn't used consistently
through the model.

5. While we aren't yet resorting to
relaxNG, we would like the XML
validation to catch more obvious
errors. Weak typing prevents some
of this validation, but setting
minLength to “1” on fields that are
expected to have content will
reduce the number of XML
documents that validate but don't
load correctly

Changed builtins name to
"tsAnType". Added an
optional dataType attribute to

All text type fields need
data types

Enhancement
Request

We need the ability to add a data type
(format) to the target of associations as
well as the target of any property. Right
now, it only applies to property

the field. Changed the types
of "text" and
"entityDescription to
"tsAnyType". Changed
property and associationData
to have a reference to an
entity of type "text" rather
than being a kind of "text"

Flexible Entity types Enhancement
Request

The 2008/01 model supports a fixed set
of entity types - concept, relation and
instance. While this aligns with
OWL/DL, it doesn't account for (a)
terminologies that haven't differentiated
classes from individuals, (b) OWL Full,
where an entity can be both a class and
an individual and (c) other type systems,
such as that supported by KTMI

Made "entity" a first class
class, that included all
properties and characteristics.
Added an optional, repeating
entityType field which
allowed the entity to be
classified, added
supportedEntityType in the
mappings to allow types to be
customized, removed the
fixed enumeration of types
and added constraints that
define "concept", "instance"
and "relation" by the
entityType field

Incremental Revisions Enhancement
Request

LexGrid updates need to be
communicated as sets of changes rather
than complete sets of contents. The
history mechanism needs to be extended
so that a collection of changes can be
communicated that will allow an existing
system to be updated incrementally

Changed the definition of
versionable, added
entityState and revision
model elements and changed
the definition of
systemRelease to carry a
collection of revisions. Note:
This change is closely
coupled with the Refined
History Model change
request.

Refined History Model Enhancement
Request

LexGrid needs the ability to version and
activate changes on the property, entity,
association instance, pick list, pick list
entry level in addition to the concept
level. Each of these entities need to
support a status, state (active or inactive)
the date/time when the change is to
become active, the data/time when it is to
become inactive, and additional metadata
about who, how and why the change
should be applied.

Revised versionable to
support the activation
state, status, effective
and expiration dates
Provided an optional
link from versionable
to an entryState record
that carried the type of
change and the revision
that this change was
included in. Created a
model of state changes
(changeType), and
created machanisms for
traversing revisions to
determine what
changed, when, where,
etc.

Added a new localId type,
"NamespaceName" and a

Namespaces Aren't
CodingSchemes Bug Fix

The namespace used to qualify the URI
of a coded entity isn't necessarily the
namespace of the coding scheme making
an assertion about the entity. These two
elements are convoluted in the current
LexGrid model.

new mapping,
"supportedNamespace".
Changed the codingSchemeId
attribute of "entity" to
entityCodeNamespace, which
references a
supportedNamespace. If
entityCodeNamespace is
present, it references a
supportedNamespace, which,
in turn, has an attribute,
"equivalentCodingScheme",
which has the local name of
the codingScheme that
corresponds to the
entityCodeNamespace

Revise Value Domains /
Pick Lists

Enhancement
Request

The value domain model needs to be
extended to support the definitions
represented in the IHC model. In
addition, the model needs to support (a)
HL7's value domain definition model and
the sort of definitions that can be created
through the DTS editor. The model of
pick lists need to be extended
accordingly to meet multiple GE/IHC
requirements

Completely replaced the
ValueDomains package to
carry the new model.

Dual Type Properties Enhancement
Request

RDF based loaders transform triples into
a combination of (a) first class attributes
(e.g. entityDescription, copyRight,
presentation, definition, ...) (b) generic
lexical properties or (c) relations.
Properties and relations preserve the
original RDF type, but the first class
attributes lose the information about
where the resource was derived from. In
addition, there is no way to assign status
and provenance information to the first
class attributes (see: Refined History
Model)

Model philosophy was
changed to have first class
attributes represented in two
forms: as an attribute and as a
property that is identified as
being an attribute. To do this,
we added new attributes to
property and
propertyQualifier that, if non-
blank, stated the first class
entity that this property (or
propertyQualifier)
represented. As an example,
the copyRight entity would
also be represented as a
property with a propertyType
of "copyRight"

Backwards Compatibility Feature
Request

The LexBIG API history API goes
directly against the NCI Cumulative
History content and renders its output in
terms of codingSchemeVersion, version
and entity version. These elements need
to be preserved in the new LexGrid
model as deprecated elements that exist
for backwards compatibility with the
LexBIG API.

Preserved Version, Version
Reference,
representsVersion,
entityVersion and
codingSchemeVersion, but
marked them as "deprecated"

The 2008/01 model has two different
“mappings” entities, one for

Common Mappings Type Feature
Request

codingScheme and one for valueDomain.
Each has a different collection of
supported, and the order of the entries
are confusing and arbitrary. With the
addition of another “mappings” entry for
pick list, we suggest that the three
mappings be consolidated into one type,
and the contents be alphabetized. This
will make code management and
authoring easier.

(second entry) It should be possible to
enter a codingScheme, valueDomain or
pickList without having *any* mappings
entries and have the loader fill out the
information of all of the localId's and,
where possible, the URI's that they map
to. This should not be the function of an
editor or type transformation package

Created a new "mappings"
entry in Naming package,
removed the existing entries
from codingScheme and
valueDomain and pointed
them at the new entry.
Alphabetized the entries and
made them all optional.

Agent Role on
supportedSource Bug Fix

supportedSource has an agentRole field,
but role is a property of the association
of the source with the entity (e.g. the
source may be author on one field, editor
on another).

Removed agentRole from
supportedSource

Assertions can be inferred,
entities cannot Bug Fix

isInferred is listed as a property of a
concept. DL can infer additional axioms
about a concept, but they cannot infer the
existence of a concept that isn't already
specified.

Moved isInferred from
concept to
associatiableElement

PropertyLink.propertyLink
is confusing Bug Fix

the link attribute in the propertyLink
element was renamed to "propertyLink".
This is confusing

(not fixed yet)

isTranslationAssociation is
not a property of the
association, but how it is
used.

Bug Fix

Association was made a first class entity
in the 2008/01 model, meaning that all of
the characteristics had to be properties of
the association itself, not how it used in a
particular relations collection.
isTranslationAssociation is a property of
use, yet is listed as a property of the
association itself

Removed
isTranslationAssociation
from the model. No
alternative available at the
moment

targetCodingScheme is not
a property of an
association, but how it is
used.

Bug Fix

Association was made a first class entity
in the 2008/01 model, meaning that all of
the characteristics had to be properties of
the association itself, not how it used in a
particular relations collection.
targetCodingScheme is a function of how
it is used, not the association itself

Removed
targetCodingScheme from
the model, meaning that
mappings across coding
schemes will always have to
provide the namespace id for
the target element.

associationName is a
localId, not an entityCode Bug Fix

Association was made a first class entity
in the 2008/01 model, and
associationName was removed
anticipating that the entityCode and
associationName would always be the
same thing. This may not be the case,

Reintroduced
associationName as a localId
with the

LexEVS Database Enhancements
To support the LexEVS 2009/01 Model, numerous changes to the database were necessary. Although the database is
not exposed to the user, it is important to take note of the changes. A 2009/01 sample database (Microsoft Access
format) can be found at the model and scheme page.

however, as an ontology may use, say
"isA" as the name of an association, but
define it as being the same as an entirely
different concept in a different
namespace.

supportedAssociation
mapping entries

Type is an attribute of
entity, not usage. An entity
can have multiple types

Bug Fix

sourceEntityType and targetEntityType
are incorrect in the associations package,
as they assume that the type is part of an
entity's identity (i.e. you can have two
entities with the same URI, one of which
is a class and one an individual).

sourceEntityType and
targetEntityType were
removed from the model

Need to select associations
by context Enhancement IHC needs to be able to select

associations based on a passed context
added usageContext attribute
to associatableElement

Need instance identifiers
on associations Bug Fix

You can assign an identifier to a
DataProperty type association, but not to
ObjectProperty type association. Both
IHC and SNOMED-CT maintain unique
identifiers on associations

Removed dataId from the
associationData and created
associationInstanceId in the
associatableElement class.
This field is optional, as
dataId originally existed for
LDAP compatibility.

Need to know whether an
association participates in
the definition of a concept

Enhancement

While OWL doesn't currently support
this, it is useful to understand whether a
assertion is considered to be part of the
definition of an entity or simply an
additional fact that is known about that
entity.

Added isDefining attribute to
the associatableElement class

Table Name Column Name Changes
codingScheme formalName Can be null
 defaultLangauge Can be null
 codingSchemeURI renamed from registeredName
 isActive added
 releaseURI added
 firstRelease removed
 modifiedInRelease removed
 deprecated removed

codingSchemeSupportedAttrib uri renamed from urn

codingSchemeProp isActive added

entity codingSchemeName renamed from codingSchemeId
table renamed from concept entityCodeNamespace added, primaryKey

 entityCode renamed from id
 firstRelease removed
 modifiedInRelease removed
 deprecated removed
 isInferred removed

entityType codingSchemeName added
New table entityCodeNamespace added
 entityCode added
 entityType added

entityProperty codingSchemeName renamed from codingSchemeId
 entityType removed
 entityCode renamed from entityId
 format removed
 entityCodeNamespace added, primaryKey
 isActive added

entityPropertyLink codingSchemeName renamed from codingSchemeId
 entityType removed
 entityCodeNamespace added, primaryKey

entityPropertyMultiAttrib codingSchemeName renamed from codingSchemeId
 entityType removed
 entityCodeNamespace added, primaryKey
 qualType added

relation codingSchemeName renamed from codingSchemeId
 containerName renamed from containerDC

association codingSchemeName renamed from codingSchemeId
 containerName renamed from containerDC
 entityCode renamed from id
 associationName added

entityAssnsToEntity codingSchemeName renamed from codingSchemeId
 containerName renamed from containerDC
 entityCode renamed from associationId
 sourceEntityCodeNamespace renamed from sourceCodingSchemeId
 sourceEntityCode renamed from sourceId
 sourceType removed
 targetEntityCodeNamespace renamed from targetCodingSchemeId
 targetEntityCode renamed from targetId

EVS API to LexEVS API Migration
The transition from EVS API to LexEVS API will require the use of different methods to accomplish the same
function as was previously provided in EVS API. This section will identify each deprecated class and provide the
alternative LexEVS API.

 targetType removed
 firstRelease removed
 modifiedInRelease removed
 deprecated removed
 associationInstanceId renamed from multiAttributesKey
 isDefining added
 isInferred added
 isActive added

entityAssnsToEQuals codingSchemeName renamed from codingSchemeId

entityAssnsToData codingSchemeName renamed from codingSchemeId
 containerName renamed from containerDC
 entityCode renamed from associationId
 sourceEntityCodeNamespace renamed from sourceCodingSchemeId
 sourceEntityCode renamed from sourceId
 associationInstanceId renamed from multiAttributesKey
 isDefining added
 isInferred added
 isActive added
 firstRelease removed
 modifiedInRelease removed
 deprecated removed
 dataId removed

entityAssnsToDQuals codingSchemeName renamed from codingSchemeId

entityAssnsToEntityTr codingSchemeName renamed from codingSchemeId
 containerName renamed from containerDC
 entityCode renamed from associationId
 sourceEntityCodeNamespace renamed from sourceCodingSchemeId
 sourceEntityCode renamed from sourceId
 sourceType removed
 targetEntityCodeNamespace renamed from targetCodingSchemeId
 targetEntityCode renamed from targetId

nciThesHist entityCode renamed from entityId

As a result of the deprecation of the EVS API, the following classes are no longer available:

EVSQuery and EVSQueryImpl
EVSQueryDAOImpl - Not a public API.
EVSWSDAOImpl - Not a public API.
EVSWSQuery - Not a public API.
DLBAdapter - Not a public API.
DLBWrapper (DLBWrapper is extended by DLBAdapter and it is not been used anywhere else) - Not a public
API.
EVSApplicationService and EVSApplicationServiceImpl

EVSApplicationService and LexEVS Counterparts

EVSApplicationService

evsSearch and search

These methods are replaced either by the LexEVS API or the LexEVS caCORE SDK Data Service 'search' method.
This uses the standard caCORE SDK API. More information about the caCORE SDK can be obtained on the
caCORE SDK site.

EVSQuery Methods and LexEVS Counterparts

EVSQuery

getTree

- all 'getTree' functionality is replaced by the LexEVS CodedNodeGraph API. For example:

is replaced by:

Also, various methods in LexBIGServiceConvenienceMethods can be used to show hierarchies.

See methods
getHierarchyRoots
getHierarchyRootSet
getHierarchyLevelNext
getHierarchyLevelPrev

 public void getTree(String vocabularyName, String rootCode, boolean
direction, boolean isaFlag, int attributes, int levels, Vector roles);

 CodedNodeGraph cng = lexevsService.getNodeGraph(String codingScheme,
CodingSchemeVersionOrTag, versionOrTag, String relationContainerName);
 ResolvedConceptReference[] rcr = cng.resolveAsList(ConceptReference
graphFocus, boolean resolveForward,
 boolean
resolveBackward, int resolveCodedEntryDepth, int
resolveAssociationDepth,
 LocalNameList
propertyNames, PropertyType[] propertyTypes, SortOptionList
sortOptions,
 int
maxToReturn).getResolvedConceptReference();

getHierarchyPathToRoot

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.BuildTreeForCode
org.LexGrid.LexBIG.example.ListHierarchy
org.LexGrid.LexBIG.example.ListHierarchyByCode
org.LexGrid.LexBIG.example.ListHierarchyPathToRoot

searchDescLogicConcepts

LexEVS provides many ways to restrict the result of a query. The method 'searchDescLogicConcepts' searches for
matches based on a text String. To conduct similar queries using LexEVS, use the CodedNodeSet API.

Obtain a CodedNodeSet from LexEVS:

Once established, the CodedNodeSet can be further restricted using the various 'restrict' methods in the
CodedNodeSet API.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.SoundsLike
org.LexGrid.LexBIG.example.FindCodesForDescription

getConceptWithPropertyMatching

See example above. For Property-specific matching, see the following method in the CodedNodeSet API

restrictToProperties

This will ensure that each of the results will have at least one Propety that matches the supplied criteria.

isSubConcept

In LexEVS, use the CodedNodeGraph API to find the immediate relations of a Concept. For instance:

 CodedNodeSet nodes = lexevsService.getNodeSet(String codingScheme,
CodingSchemeVersionOrTag versionOrTag, LocalNameList entityTypes);

 CodedNodeGraph cng = lexevsService.getNodeGraph(String codingScheme,
CodingSchemeVersionOrTag versionOrTag, String relationContainerName);
 ResolvedConceptReference[] rcr = cng.resolveAsList(ConceptReference
graphFocus, boolean resolveForward, boolean resolveBackward,
 int
resolveCodedEntryDepth, int resolveAssociationDepth, LocalNameList
propertyNames,
 PropertyType[]
propertyTypes, SortOptionList sortOptions, int
maxToReturn).getResolvedConceptReference();

Set the ConceptReference graphFocus to the desired code, this will focus the Graph. The check the relationships.

Alternatively, use the CodedNodeGraph API method 'areCodesRelated'

isRetired

Use the LexBIGServiceConvenienceMethods API method 'isCodeRetired' method.

getDescendants

Use the LexEVS HistoryService API

Obtain a the HistoryService API as follows:

To get the decendents of a given code, use the 'getDecendants' method:

getPropertyValues

Through the Entity class, all Properties (Presentations, Definitions, etc) are available.

Entity
To find the 'Presentations' of a given Entity:

To find the 'Definitions' of a given Entity:

 Boolean areCodesRelated(NameAndValue association, ConceptReference
sourceCode, ConceptReference targetCode, boolean directOnly)

 HistoryService historySvc = lexevsService.getHistoryService
(StringcodingSchemeName);

 NCIChangeEventList changeEventList = historySvc.getDescendants
(ConceptReference conceptReference);

 Entity entity =;
 Presentation[] presentations = entity.getPresentation();

 Entity entity =;
 Definition[] definitions = entity.getDefinition();

To find the 'Comments' of a given Entity:

To find the non-classified Properties of a given Entity:

getAncestors

Use the LexEVS HistoryService API

Obtain a the HistoryService API as follows:

To get the ancestors of a given code, use the 'getDecendants' method:

getSubConcepts

Use the CodedNodeGraph API to find the immediate relations of a Concept. For instance:

Focus the 'graphFocus' on the desired Concept to see relationships from a given Concept.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

 Entity entity =;
 Comment[] comments= entity.getComment();

 Entity entity =;
 Property[] properties = entity.getProperties();

 HistoryService historySvc = lexevsService.getHistoryService
(StringcodingSchemeName);

 NCIChangeEventList changeEventList = historySvc.getAncestors
(ConceptReference conceptReference);

 CodedNodeGraph cng = lexevsService.getNodeGraph(String codingScheme,
CodingSchemeVersionOrTag versionOrTag, String relationContainerName);
 ResolvedConceptReference[] rcr = cng.resolveAsList(ConceptReference
graphFocus, boolean resolveForward, boolean resolveBackward,
 int
resolveCodedEntryDepth, int resolveAssociationDepth, LocalNameList
propertyNames,
 PropertyType[]
propertyTypes, SortOptionList sortOptions, int
maxToReturn).getResolvedConceptReference();

getSuperConcepts

See above 'getSubConcepts' -- setting your resolve direction (boolean resolveForward, boolean resolveBackward) will
determine if sub-concepts or super-concepts are resolved.

getPropertiesByConceptCode

To find the Properties of a given code, for example, code 'C1234' in the 'NCI Thesaurus' ontology - first obtain a
'CodedNodeSet' from the 'NCI Thesaurus' ontology:

Next, restrict that to the desired Code ('C1234' in this example):

Lastly, resolve the match.

To view the Properties, see 'getPropertyValues' above.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

getVocabularyNames

Use the 'LexBIGService' API method 'getSupportedCodingSchemes' - and extract the Names (local name, registered
name, etc...) as needed.

getAllVocabularies

Use the 'LexBIGService' API method 'getSupportedCodingSchemes'.

 ResolvedConceptReferenceList cns = lbSvc.getCodingSchemeConcepts("NCI
Thesaurus", null);

 //First create a ConceptReferenceList to describe the Concept to search for.
 //In this example we use the helper class 'ConvenienceMethods'.
 ConceptReferenceList crefs =
ConvenienceMethods.createConceptReferenceList(new String[]
{ "C1234"}, "NCI Thesaurus");

 //Next, restrice the CodedNodeSet.
 cns.restrictToCodes(crefs);

 ResolvedConceptReferenceList matches = cns.resolveToList(null, null,
null, 1);

getVocabularyByName

Use 'LexBIGService' API method 'resolveCodingScheme'.

getVocabularyVersion

Use 'LexBIGService' API method 'resolveCodingScheme' and extract the 'representsVersion' attribute from the
Resulting CodingScheme.

getConceptEditAction

Use the LexEVS HistoryService API

Obtain a the HistoryService API as follows:

To get the 'EditActionList' of a given code, use the 'getEditActionList' method:

getRootConcepts

Use 'LexBIGServiceConvenienceMethods' API method 'getHierarchyRoots' or 'getHierarchyRootSet'

searchSourceByCode

Use 'CodedNodeSet' API - adding a 'restrictToCodes' restriction.

To find the a given code, for example, code 'C1234' in the 'NCI Thesaurus' ontology - first obtain a 'CodedNodeSet'
from the 'NCI Thesaurus' ontology:

Next, restrict that to the desired Code ('C1234' in this example):

 HistoryService historySvc = lexevsService.getHistoryService
(StringcodingSchemeName);

 NCIChangeEventList changeEventList = historySvc.getEditActionList(ConceptReference conceptReference,
CodingSchemeVersion codingSchemeVersion);

 ResolvedConceptReferenceList cns = lbSvc.getCodingSchemeConcepts("NCI
Thesaurus", null);

Lastly, resolve the match.

searchSourceByAtomCode

In the NCI MetaThesaurus, fidning the 'source' of an 'Atom' is equivalent to finding the 'source' of a given Property of
an Entity. Each CUI (which is equivalent to an Entity in LexEVS) may contain several Presentation Properties
(Atoms or AUI's of that CUI). Each of these Presentation Properties is Qualified by a 'source-code' Qualifier, which
reflects the code of this Atom in its original source, and a 'source' qualifier, which states the source itself that this
Atom came from.

getMetaConceptNameByCode

To find the Properties of a given code, for example, code 'C1234567' in the 'NCI MetaThesaurus' ontology - first
obtain a 'CodedNodeSet' from the 'NCI MetaThesaurus' ontology:

Next, restrict that to the desired Code ('C1234567' in this example):

Lastly, resolve the match.

To see the name of the code, use 'getEntityDescription' on the resulting ResolvedConceptReference. The
'EntityDescription' will always be equal to the Preferred Presentation in the Default Language.

 //First create a ConceptReferenceList to describe the Concept to
search for.
 //In this example we use the helper class 'ConvenienceMethods'.
 ConceptReferenceList crefs = ConvenienceMethods.createConceptReferenceList
(new String[]
{ "C1234"}, "NCI Thesaurus");

 //Next, restrice the CodedNodeSet.
 cns.restrictToCodes(crefs);

 ResolvedConceptReferenceList matches = cns.resolveToList(null, null,
null, 1);

 ResolvedConceptReferenceList cns = lbSvc.getCodingSchemeConcepts("NCI
MetaThesaurus", null);

 //First create a ConceptReferenceList to describe the Concept to
search for.
 //In this example we use the helper class 'ConvenienceMethods'.
 ConceptReferenceList crefs =
ConvenienceMethods.createConceptReferenceList(new String[]
{ "C1234567"}, "NCI MetaThesaurus");

 //Next, restrice the CodedNodeSet.
 cns.restrictToCodes(crefs);

 ResolvedConceptReferenceList matches = cns.resolveToList(null, null,
null, 1);

getMetaSources

Use the 'LexBIGService' API method 'getMappings'. Extract for this the Supported Association Qualifiers using the
'getSupportedSource' method. Note: This can be applied to any Coding Scheme, not just the NCI MetaThesaurus.

getChildren

Use the 'CodedNodeGraph' API.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

getParent

Use the 'CodedNodeGraph' API.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

getBroaderConcepts

Use the CodedNodeGraph API to find the immediate relations of a Concept. Resolve forward or backwards based
on the hierarchy structure of the ontology.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

getNarrowerConcepts

Use the CodedNodeGraph API to find the immediate relations of a Concept. Resolve forward or backwards based
on the hierarchy structure of the ontology.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

getRelatedConcepts

Use the CodedNodeGraph API to find the immediate relations of a Concept.

For examples, see the LexEVS Example classes

org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

containsInverseRole

Use the LexBIGServiceConvenienceMethods API method 'isReverseName' method.

containsRole

Use the LexBIGServiceConvenienceMethods API method 'isForwardName' method.

getAllAssociationTypes

Use the 'LexBIGService' API method 'getMappings'. Extract for this the Supported Associations using the
'getSupportedAssociation' method.

getAllConceptAssociationQualifierTypes

Use the 'LexBIGService' API method 'getMappings'. Extract for this the Supported Association Qualifiers using the
'getSupportedAssociationQualifier' method.

getAllConceptAssociationTypes

Use the 'LexBIGService' API method 'getMappings'. Extract for this the Supported Associations using the
'getSupportedAssociation' method.

getAllConceptPropertyQualifierTypes

Use the 'LexBIGService' API method 'getMappings'. Extract for this the Supported Property Qualifiers using the
'getSupportedPropertyQualifier' method.

getAllConceptPropertyTypes

Use the 'LexBIGService' API method 'getMappings'. Extract for this the Supported Properties using the
'getSupportedProperty' method.

getAllLicenses

Use the 'LexBIGService' API method 'resolveCodingSchemeCopyright'. To get the Copyright for every loaded

ontology, do this for each one.

getAllPropertyTypes

Use the 'LexBIGService' API method 'getMappings'. Extract for this the Supported Properties using the
'getSupportedProperty' method.

getAllQualifierTypes

Use the 'LexBIGService' API method 'getMappings'. Extract for this the Supported Property Qualifiers using the
'getSupportedPropertyQualifier' method.

getAllRoleNames

Use the 'LexBIGService' API method 'resolveCodingScheme'. Once the CodingScheme Object is obtained, use the
method 'getRelations'.

getAllSubConceptCodes

Use the CodedNodeGraph API to find the immediate relations of a Concept.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

getAllSynonymTypes

Use the 'LexBIGService' API method 'getMappings'. Extract for this the Supported Associations using the
'getSupportedAssociation' method. NOTE: Different ontologies may describe their 'Synonym' relations differently.

getAllTermAssociationQualifierTypes

Use the 'LexBIGService' API method 'getMappings'. Extract for this the Supported Association Qualifiers using the
'getSupportedAssociationQualifier' method.

getAllTermPropertyQualifierTypes

Use the 'LexBIGService' API method 'getMappings'. Extract for this the Supported Property Qualifiers using the
'getSupportedPropertyQualifier' method.

getAllTermPropertyTypes

Use the 'LexBIGService' API method 'getMappings'. Extract for this the Supported Property using the
'getSupportedProperty' method.

getParentConcepts

Use the CodedNodeGraph API to find the immediate relations of a Concept.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

getChildConcepts

Use the CodedNodeGraph API to find the immediate relations of a Concept.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

hasParents

Use the CodedNodeGraph API to find the immediate relations of a Concept.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

hasChildren

Use the CodedNodeGraph API to find the immediate relations of a Concept.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

getDescLogicConcept

A 'DescLogicConcept' can be thought of as an 'Entity' in LexEVS. To obtain an Entity, use the CodedNodeSet API,
restricting the query as necessary.

For instance, a 'DescLogicConcept' with a code of 'C1234' can be queried for by the example below. The example
will return a ResolvedConceptReference and ultimately an Entity, but is functionally the same as searching for a
DescLogicConcept.

To find the a given code, for example, code 'C1234' in the 'NCI Thesaurus' ontology - first obtain a 'CodedNodeSet'

from the 'NCI Thesaurus' ontology:

Next, restrict that to the desired Code ('C1234' in this example):

Lastly, resolve the match.

getHistoryRecords

Use the HistoryService API 'getBaselines' and specify the required Data range.

Obtain a the HistoryService API as follows:

Use the 'getBaselines' method:

getHistoryStartDate

Use the HistoryService API method 'getEarliestBaseline';

Obtain a the HistoryService API as follows:

Use the 'getEarliestBaseline' method:

 ResolvedConceptReferenceList cns = lbSvc.getCodingSchemeConcepts("NCI
Thesaurus", null);

 //First create a ConceptReferenceList to describe the Concept to
search for.
 //In this example we use the helper class 'ConvenienceMethods'.
 ConceptReferenceList crefs =
ConvenienceMethods.createConceptReferenceList(new String[]
{ "C1234"}, "NCI Thesaurus");

 //Next, restrice the CodedNodeSet.
 cns.restrictToCodes(crefs);

 ResolvedConceptReferenceList matches = cns.resolveToList(null, null,
null, 1);

 HistoryService historySvc = lexevsService.getHistoryService
(StringcodingSchemeName);

 SystemReleaseList systemReleaseList = historySvc.getBaselines(Date
releasedAfter, Date releasedBefore);

 HistoryService historySvc = lexevsService.getHistoryService
(StringcodingSchemeName);

getHistoryEndDate

Use the HistoryService API method 'getLatestBaseline';

Obtain a the HistoryService API as follows:

Use the 'getLatestBaseline' method:

getCodeActionChildren

Use the HistoryService API method 'getDescendants'; Obtain a the HistoryService API as follows:

Use the 'getDescendants' method:

getCodeActionParents

Use the HistoryService API method 'getAncestors';

Obtain a the HistoryService API as follows:

Use the 'getDescendants' method:

 SystemRelease systemRelease = historySvc.getEarliestBaseline();

 HistoryService historySvc = lexevsService.getHistoryService
(StringcodingSchemeName);

 SystemRelease systemRelease = historySvc.getLatestBaseline();

 HistoryService historySvc = lexevsService.getHistoryService
(StringcodingSchemeName);

 NCIChangeEventList changeEventList = historySvc.getDescendants
(ConceptReference conceptReference);

 HistoryService historySvc = lexevsService.getHistoryService
(StringcodingSchemeName);

 NCIChangeEventList changeEventList = historySvc.getAncestors
(ConceptReference conceptReference);

getAssociationCollectionbyCode

Use the CodedNodeGraph API to find the immediate relations of a Concept. For instance:

Focus the 'graphFocus' on the desired Concept to see relationships from a given Concept.

Once focused and resolved, use the 'getSourceOf' or 'getTargetOf' methods on the ResolvedConceptReference to find
the Associations of a given Code.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

getSemanticTypeCollectionbyCui

Use 'CodedNodeSet' API - adding a 'restrictToCodes' restriction.

Note that a CUI is simply a reference to a Code in the NCI MetaThesaurus ontology.

To find the a given code, for example, code 'C1234' in the 'NCI Thesaurus' ontology - first obtain a 'CodedNodeSet'
from the 'NCI Thesaurus' ontology:

Next, restrict that to the desired Code ('C1234' in this example):

Lastly, resolve the match.

Once the ResolvedConceptReference has been obtained, extract the desired Properties and inspect the Qualifiers for

 CodedNodeGraph cng = lexevsService.getNodeGraph(String codingScheme,
CodingSchemeVersionOrTag versionOrTag, String relationContainerName);
 ResolvedConceptReference[] rcr = cng.resolveAsList(ConceptReference
graphFocus, boolean resolveForward, boolean resolveBackward,
 int
resolveCodedEntryDepth, int resolveAssociationDepth, LocalNameList
propertyNames,
 PropertyType[]
propertyTypes, SortOptionList sortOptions, int
maxToReturn).getResolvedConceptReference();

 ResolvedConceptReferenceList cns = lbSvc.getCodingSchemeConcepts("NCI
Thesaurus", null);

 //First create a ConceptReferenceList to describe the Concept to
search for.
 //In this example we use the helper class 'ConvenienceMethods'.
 ConceptReferenceList crefs =
ConvenienceMethods.createConceptReferenceList(new String[]
{ "C1234"}, "NCI Thesaurus");

 //Next, restrice the CodedNodeSet.
 cns.restrictToCodes(crefs);

 ResolvedConceptReferenceList matches = cns.resolveToList(null, null,
null, 1);

the Semantic Type.

getQualifierCollectionbyName

Use 'CodedNodeSet' API - adding a 'restrictToCodes' restriction.

Note that a CUI is simply a reference to a Code in the NCI MetaThesaurus ontology.

To find the a given code, for example, code 'C1234' in the 'NCI Thesaurus' ontology - first obtain a 'CodedNodeSet'
from the 'NCI Thesaurus' ontology:

Next, restrict that to the desired Code ('C1234' in this example):

Lastly, resolve the match.

Once the ResolvedConceptReference has been obtained, extract the desired Properties and inspect the Qualifiers.

NOTE: Associations between codes may also have Qualifiers.

getAtomCollectionbyCui

In LexEVS, a NCI MetaThesaurus CUI is represented by an Entity (with the CUI being the code for that Entity).
Atoms of that CUI are represented by 'Presentation'(s) of the Entity.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

getSynonymCollectionbyCui

Use 'CodedNodeGraph' API - restricting to Synonym Associations. Note: Each ontology may describe their Synonym
Associations differently.

For examples, see the LexEVS Example classes

 ResolvedConceptReferenceList cns = lbSvc.getCodingSchemeConcepts("NCI
Thesaurus", null);

 //First create a ConceptReferenceList to describe the Concept to
search for.
 //In this example we use the helper class 'ConvenienceMethods'.
 ConceptReferenceList crefs =
ConvenienceMethods.createConceptReferenceList(new String[]
{ "C1234"}, "NCI Thesaurus");

 //Next, restrice the CodedNodeSet.
 cns.restrictToCodes(crefs);

 ResolvedConceptReferenceList matches = cns.resolveToList(null, null,
null, 1);

org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

getSourceCollectionbyCui

Use 'CodedNodeSet' API - adding a 'restrictToCodes' restriction.

Note that a CUI is simply a reference to a Code in the NCI MetaThesaurus ontology.

To find the a given code, for example, code 'C1234' in the 'NCI Thesaurus' ontology - first obtain a 'CodedNodeSet'
from the 'NCI Thesaurus' ontology:

Next, restrict that to the desired Code ('C1234' in this example):

Lastly, resolve the match.

Once the ResolvedConceptReference has been obtained, extract the desired Properties and inspect Source using
'getSource'.

getSemanticTypeCollectionbyCui

Use 'CodedNodeSet' API - adding a 'restrictToCodes' restriction.

Note that a CUI is simply a reference to a Code in the NCI MetaThesaurus ontology.

To find the a given code, for example, code 'C1234' in the 'NCI Thesaurus' ontology - first obtain a 'CodedNodeSet'
from the 'NCI Thesaurus' ontology:

Next, restrict that to the desired Code ('C1234' in this example):

 ResolvedConceptReferenceList cns = lbSvc.getCodingSchemeConcepts("NCI
Thesaurus", null);

 //First create a ConceptReferenceList to describe the Concept to
search for.
 //In this example we use the helper class 'ConvenienceMethods'.
 ConceptReferenceList crefs =
ConvenienceMethods.createConceptReferenceList(new String[]
{ "C1234"}, "NCI Thesaurus");

 //Next, restrice the CodedNodeSet.
 cns.restrictToCodes(crefs);

 ResolvedConceptReferenceList matches = cns.resolveToList(null, null,
null, 1);

 ResolvedConceptReferenceList cns = lbSvc.getCodingSchemeConcepts("NCI
Thesaurus", null);

Lastly, resolve the match.

Once the ResolvedConceptReference has been obtained, extract the desired Properties and inspect the Semantic
Types. Semantic Types are held as Qualifiers to the Properties of an Entity.

getSourcebyDefinition

Use 'CodedNodeSet' API - adding a 'restrictToCodes' restriction.

To find the a given code, for example, code 'C1234' in the 'NCI Thesaurus' ontology - first obtain a 'CodedNodeSet'
from the 'NCI Thesaurus' ontology:

Next, restrict that to the desired Code ('C1234' in this example):

Lastly, resolve the match.

Once the ResolvedConceptReference has been obtained, using 'getDefinition', extract the Definition Collection from
the Entity. Then extract the source using 'getSource'

getDefinitionCollectionbyCui

 //First create a ConceptReferenceList to describe the Concept to
search for.
 //In this example we use the helper class 'ConvenienceMethods'.
 ConceptReferenceList crefs =
ConvenienceMethods.createConceptReferenceList(new String[]
{ "C1234"}, "NCI Thesaurus");

 //Next, restrice the CodedNodeSet.
 cns.restrictToCodes(crefs);

 ResolvedConceptReferenceList matches = cns.resolveToList(null, null,
null, 1);

 ResolvedConceptReferenceList cns = lbSvc.getCodingSchemeConcepts("NCI
Thesaurus", null);

 //First create a ConceptReferenceList to describe the Concept to
search for.
 //In this example we use the helper class 'ConvenienceMethods'.
 ConceptReferenceList crefs =
ConvenienceMethods.createConceptReferenceList(new String[]
{ "C1234"}, "NCI Thesaurus");

 //Next, restrice the CodedNodeSet.
 cns.restrictToCodes(crefs);

 ResolvedConceptReferenceList matches = cns.resolveToList(null, null,
null, 1);

Use 'CodedNodeSet' API - adding a 'restrictToCodes' restriction.

To find the a given code, for example, code 'C1234' in the 'NCI Thesaurus' ontology - first obtain a 'CodedNodeSet'
from the 'NCI Thesaurus' ontology:

Next, restrict that to the desired Code ('C1234' in this example):

Lastly, resolve the match.

Once the ResolvedConceptReference has been obtained, use the 'getReferencedEntry' method to obtain the actual
Entity. Using the 'getDefinition', extract the Definition Collection from the Entity.

getPropertyCollectionbyName

To find the Properties of a given code, for example, a code with a name of 'Heart' in the 'NCI Thesaurus' ontology -
first obtain a 'CodedNodeSet' from the 'NCI Thesaurus' ontology:

Next, restrict that to the desired Code Name ('Heart' in this example): Note: To match the String 'Heart' exactly, use
the search algorithm 'exactMatch'.

Lastly, resolve the match.

To view the Properties, see 'getPropertyValues' above.

 ResolvedConceptReferenceList cns = lbSvc.getCodingSchemeConcepts
("NCI Thesaurus", null);

 //First create a ConceptReferenceList to describe the Concept to search for.
 //In this example we use the helper class 'ConvenienceMethods'.
 ConceptReferenceList crefs = ConvenienceMethods.createConceptReferenceList
(new String[]
{ "C1234"}, "NCI Thesaurus");

 //Next, restrice the CodedNodeSet.
 cns.restrictToCodes(crefs);

 ResolvedConceptReferenceList matches = cns.resolveToList(null, null,
null, 1);

 ResolvedConceptReferenceList cns = lbSvc.getCodingSchemeConcepts
("NCI Thesaurus", null);

//Next, restrice the CodedNodeSet.
 cns = cns.restrictToMatchingDesignations("Heart", null, "exactMatch", null);

ResolvedConceptReferenceList matches = cns.resolveToList(null, null, null, 1);

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

getPropertyCollectionbyCode

To find the Properties of a given code, for example, code 'C1234' in the 'NCI Thesaurus' ontology - first obtain a
'CodedNodeSet' from the 'NCI Thesaurus' ontology:

Next, restrict that to the desired Code ('C1234' in this example):

Lastly, resolve the match.

To view the Properties, see 'getPropertyValues' above.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

fetchPropertyCollectionByCodes

See 'getPropertyCollectionbyCode;

getRoleCollectionbyCode

Use the CodedNodeGraph API to find the immediate relations of a Concept.

If a desired Relations Collection is requested (for example, 'roles'), the 'relationContainerName' may be restricted. For
instance:

 ResolvedConceptReferenceList cns = lbSvc.getCodingSchemeConcepts
("NCI Thesaurus", null);

 //First create a ConceptReferenceList to describe the Concept to search for.
 //In this example we use the helper class 'ConvenienceMethods'.
 ConceptReferenceList crefs = ConvenienceMethods.createConceptReferenceList
(new String[]
{ "C1234"}, "NCI Thesaurus");

 //Next, restrice the CodedNodeSet.
 cns.restrictToCodes(crefs);

 ResolvedConceptReferenceList matches = cns.resolveToList(null, null,
null, 1);

Focus the 'graphFocus' on the desired Concept to see relationships from a given Concept.

Once focused and resolved, use the 'getSourceOf' or 'getTargetOf' methods on the ResolvedConceptReference to find
the Associations of a given Code.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

getInverseRoleCollectionbyCode

Use the CodedNodeGraph API to find the immediate relations of a Concept. To find the Inverse Roles, restricting
the Relations Container may be necessary (see getRoleCollectionbyCode above). Depending on how the onotology
defines an 'inverse' role or association, these can be restricted as well.

For instance:

Focus the 'graphFocus' on the desired Concept to see relationships from a given Concept.

Once focused and resolved, use the 'getSourceOf' or 'getTargetOf' methods on the ResolvedConceptReference to find
the Associations of a given Code.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

getInverseAssociationCollectionbyCode

Use the CodedNodeGraph API to find the immediate relations of a Concept.

To find the Inverse Collections, restricting the Relations Container may be necessary (see
getInverseRoleCollectionbyCode above). Depending on how the onotology defines an 'inverse' role or association,
these can be restricted as well.

 //Restrict the 'relationContainerName' to the desired container.
NOTE: These containers are
 //ontology specific--each ontology defines its own relation container names.
 CodedNodeGraph cng = lexevsService.getNodeGraph(String codingScheme,
CodingSchemeVersionOrTag versionOrTag, String relationContainerName);
 ResolvedConceptReference[] rcr = cng.resolveAsList(ConceptReference
graphFocus, boolean resolveForward, boolean resolveBackward,
 int resolveCodedEntryDepth, int
resolveAssociationDepth, LocalNameList propertyNames,
 PropertyType[] propertyTypes,
SortOptionList sortOptions, int maxToReturn).getResolvedConceptReference();

 CodedNodeGraph cng = lexevsService.getNodeGraph(String codingScheme,
CodingSchemeVersionOrTag versionOrTag, String relationContainerName);
 ResolvedConceptReference[] rcr = cng.resolveAsList(ConceptReference
graphFocus, boolean resolveForward, boolean resolveBackward,
 int resolveCodedEntryDepth, int
resolveAssociationDepth, LocalNameList propertyNames,
 PropertyType[] propertyTypes,
SortOptionList sortOptions, int maxToReturn).getResolvedConceptReference();

For instance:

Focus the 'graphFocus' on the desired Concept to see relationships from a given Concept.

Once focused and resolved, use the 'getSourceOf' or 'getTargetOf' methods on the ResolvedConceptReference to find
the Associations of a given Code.

For examples, see the LexEVS Example classes
org.LexGrid.LexBIG.example.FindRelatedCodes
org.LexGrid.LexBIG.example.FindPropsAndAssocForCode

getHasParentsbyCode

Either:

Use the 'LexBIGServiceConvenienceMethods' API method 'getHierarchyLevelPrev'
Use the CodedNodeGraph API to resolve the immediate Associations of a given code, and check if they exist.

getHasChildrenbyCode

Either:

Use the 'LexBIGServiceConvenienceMethods' API method 'getHierarchyLevelNext'
Use the CodedNodeGraph API to resolve the immediate Associations of a given code, and check if they exist.

getIsRetiredbyCode

Use the 'LexBIGServiceConvenienceMethods' API method 'isCodeRetired'

getLocalNames

Use the 'LexBIGService' API method 'getSupportedCodingSchemes' - and extract the Names (local name, registered
name, etc...) as needed.

OWL Loader Enhancements
Substantial changes have been implemented in LexEVS 5.0 during the conversion of the OWL loader. The NCI OWL

 CodedNodeGraph cng = lexevsService.getNodeGraph(String codingScheme,
CodingSchemeVersionOrTag versionOrTag, String relationContainerName);
 ResolvedConceptReference[] rcr = cng.resolveAsList(ConceptReference
graphFocus, boolean resolveForward, boolean resolveBackward,
 int resolveCodedEntryDepth, int
resolveAssociationDepth, LocalNameList propertyNames,
 PropertyType[] propertyTypes,
SortOptionList sortOptions, int maxToReturn).getResolvedConceptReference();

loader has been decommissioned and replaced with a more generic Protégé OWL loader. All effort has been made to
ensure that no previous functionally has been lost during this transition. Priority was given to maintaining existing
functionality while improving the OWL loader.

Enhancements and changes made to the OWL loader:

Improve OWL model footprint by upgrading to latest Protégé (3.4 w/improved support for database
streaming)

Provide ability to enable use the Protégé DB support (Protégé database will serve as cache while we build
the LexEVS model from OWL)

Add support for NCI-based complex props (processing of XML fragments)

Add support for preferences

Add support for manifest

Add support to split role and associations (consider splitat relation container level as done by NCIT
loader)

When resolving IndividualProperties, changed casting from 'OWLNamedClass' to super interface
'RDFSNamedClass'.

When determining the Entity Id, there were some spots that were using the 'getBrowserText()' method on
the 'OWLNamedClass' class. The 'getBrowserText()' was intended to give Protege a nice display string --
but in order to get the id we wanted we want to use the 'getLocalName()' method.

Now we do not create 'domain' and 'range' associations if there is no target of the association.

When processing OWLObjectProperties, changed casting from 'OWLObjectProperty' to super interface
'RDFProperty'

When processing Instances, changed casting from 'OWLNamedClass' to super interface 'RDFSClass', and
'OWLIndividual' to super interface 'RDFResource'.

When determining the the Entity code during load of an association, we now parse the string based on a
colon OR hash symbol.
For example:

http://someNamespace.org:C12345 would resolve to 'C12345'
and

http://someNamespace.org#C12345 would also resolve to 'C12345'
We used to process only the colon.

The isDefined() property is now set on created entities.

Removed the following OWL preferences - dataTypeNameBoolean, associatonNameHasType, and
associationNameHasTypeURN.

Annotation properties are now stored in terms of presentation/comments.

Manifest supports forward and reverse association names.

The codedNodeSet restriction added to restrict lucene-based queries.

RDF local names are used instead of 'textualPresentation' and 'comment' property names.

Updated SupportedCodingScheme.isImported set to "true" as default.

The previous NCI Loader and related dependencies have been removed.

Non-concept entities by EMF EntityService are being handled correctly.

Memory profiling options 0 and 3 removed from external interfaces.

Instances are streamed under the enhanced memory profile options.

Update made to properly store/retrieve the entity type in lucene indexing.

Update made for use of association code as the 'id' in supported associations are consistent with hierarchy
and general API declarations that work with associations (same for GUI interfaces).

Loader preference "CreateConceptForObjectProp" is added. It controls whether concept entities are
created for object properties defined in the OWL source. The default is false.

Loader preference "DatatypePropSwitch" is added. It controls how data type properties are converted to
components of the LexGrid model. If 'association' is specified, each data type property is recorded in
LexGrid as an entity-to-entity relationship. If 'conceptProperty' is specified, traditional LexGrid
properties are created and assigned directly to new entities. If 'both' is specified, both entity relationships
and standard LexGrid entity properties are generated. The default is 'both'.

Namespace prefixes from the owl source will be registered as supportedNamespace instead of
supportedCodingScheme.

Copyright information is no more hardcoded into the loader. The copyright should be specified in the
manifest.

The Loader will not hardcode the codingschemeName as NCI_Thesaurus. Manifest option has to be used
to change it.

Associations have been distributed among two containers (association and roles)

Concepts will not have properties "NCI-preferred-term" and "CONCEPT-NAME". How ever, required
properties can be introduced by using preferences option "PrioritizedPresentationNames",
"PrioritizedDefinitionNames" and "PrioritizedCommentNames".

Complex properties are not handled by default by the owl loader. Use preference option
"ProcessComplexProps" to enable it.

The restrictions an equivalent class are connected to the parent concept as it was done in NCI-OWL
loader. However, if strict owl implementation is required (restrictions an equivalent class not connected
to the parent concept) , use the preference option "StrictOWLImplementation"

Deprecated concepts issue has been resolved by comparing "rdfResource.getRDFType().getName()" with
the literal.

Root node identification: If the preference option "MatchRootName" is specified, the root nodes are
identified from it. Otherwise root node is identified from the protege owl api.

The associations "hasInstance", "hasDomain", "hasRange", "hasDatatype" and "hasDatatypeValue" has

been renamed to "instance", "domain", "range", "datatype", "datatypevalue" respectively.

LexGrid data streaming options have been introduced for effective memory utilizations. Users can
choose the memory safe modes based on the requirements.

Deployment Artifacts

LexEVS Components

LexEVS 5.0 deployment artifacts have been completely refactored. The usage and installation of these components is
documented in the LexEVS 5.0 Installation Guide.

Filename Description

LexEVS_50_localRuntime.jar

LexEVS Local Runtime Environment -
Includes the LexBIG API, loaders, and
administrative utilities developed as part of the
LexEVS project.

LexEVS_50_localRuntime_dependencies.jar

LexEVS Local Runtime 3rd Party
Dependencies - Includes code from other open
source projects required by the LexEVS Java
API, packaged as a single jar for convenient
deployment.

LexEVS_50_client.jar
LexEVS Java Client - Enables Java programs
to establish a connection to LexEVS
distributed, web or caGrid runtime services.

LexEVS_50_clientDependencies.zip
LexEVS Java Client 3rd Party Dependencies -
Contains all code required by the LexEVS Java
Client.

LexEVS_50_webRuntime_tomcat.zip
LexEVS_50_webRuntime_jboss.zip

LexEVS Web-Enabled Runtime Environment -
Includes Java runtime and dependencies, Java
distributed API, and caCORE SDK-generated
services. Can be deployed to Apache Tomcat
or JBoss containers. Each zip file contains
lexevsapi50.war file.

LexEVS_50_caGRIDServices_analytical_tomcat.zip
LexEVS_50_caGRIDServices_analytical_jboss.zip

LexEVS caGrid Analytical Services - Includes
analytic caGrid services working in terms of
the LexGrid model and LexBIG API,
resectively. Can be deployed to Apache
Tomcat or JBoss containers. Each zip file
contains wsrf.war file.

LexEVS_50_caGRIDServices_data_tomcat.zip
LexEVS_50_caGRIDServices_data_jboss.zip

LexEVS caGrid Data Services - Includes data
caGrid services working in terms of the
LexGrid model and LexBIG API, resectively.
Can be deployed to Apache Tomcat or JBoss
containers. Each zip file contains wsrf.war file.

LexEVS_50_caGridGUI.zip

LexEVS caGrid GUI - Provides a traditional
(fat-client) graphical user interface that
provides access to basic browse/query
functions provided by LexEVS caGrid
Services.

LexEVS_50_localRuntimeAndGUI_installer.jar
LexEVS Installer - Automated installer used to
unzip user selected components to a user
specified directory.

This page was last modified on 7 May 2009, at 18:55.

Retrieved from "https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.0_Migration_Guide"

LexEVS_50_Source.zip LexEVS source code - Contains full source
code.

LexEVS_50_caGRIDServices_analytical_client.jar
LexEVS Analytical Grid Services Client -
Enables Java programs to establish a
connection to LexEVS analytical grid services.

LexEVS_50_caGRIDServices_data_client.jar
LexEVS Data Grid Services Client - Enables
Java programs to establish a connection to
LexEVS data grid services.

LexEVS_50_caGRIDServices_analytical_client_dependencies.zip

LexEVS Analytical Grid Services 3rd Party
Dependencies - Includes code from other open
source projects required by the grid services,
packaged as a zip for convenient deployment.

LexEVS_50_caGRIDServices_data_client_dependencies.zip

LexEVS Data Grid Services 3rd Party
Dependencies - Includes code from other open
source projects required by the grid services,
packaged as a zip for convenient deployment.

[LexEVS_50_JavaDocs.zip LexEVS JavaDocs (HTML in ZIP file format)

LexEVS_50_source_readme.txt LexEVS source readme file - Overview of
what is included in the source distribution.

LexEVS_50_releasenotes.html
LexEVS release notes - Overview of resolved
issues and enhancements provided in the
release.

LexEVS_50_readme.txt LexEVS readme - Recent information for this
release.

LexEVS_50_Example_Code.zip LexEVS example code - code to demonstrate
LexEVS API.

CONTACT USPRIVACY NOTICEDISCLAIMERACCESSIBILITYAPPLICATION SUPPORT

