National Cancer Institute U.5. National Institutes of Health | www.cancergov

ocaBIG‘ Knowledge Center

A part of the Entarprise Support Netwark

Home

Knowledge Centers
= caGrid

Clinical Trials Management Systems

Data Sharing and Intellectual Capital

Molecular Analysis Tools

Tissue/Biospecimen Banking and Technology Tool
= Vocabulary

Discussion Forums
= caGrid
= Clinical Trials Management Systems

Data Sharing and Intellectual Capital

Molecular Analysis Tools

Tissue/Biospecimen Banking and Technology Tool
= Vocabulary

Bugs/Feature Requests

Development Code Repository

LexEVS 5.0 Programmer's Guide

From Vocab_Wiki

LexEVS Version 5.0 > LexEVS 5.0 Documentation > LexEVS 5.0 Administration Guide > LexEVS 5.0 Documentation > LexEVS 5.0 Programmer's Guide
Contents

Overview

This document is intended for developers looking for more information regarding the LexEVS API.

Software Requirements

Information regarding the software requirements LexEVS can be found in the LexEVS 5.0 Installation Guide.

Setting up your Environment

Information regarding the installation and configuration of the LexEV'S environment can be found in the LexEVS 5.0 Installation Guide.

LexEVS API

Programming interfaces for the system fall into three primary categories:
Core Services

Includes the LexBIGService, LexBIGServiceManager, CodedNodeSet and CodedNodeGraph classes, which provide the initial entry points
for programmatic access to all system features and data.

Service Extensions

The extension mechanism provides for pluggable system features. Current extension points allow for the introduction of custom load and
indexing mechanisms, unique query sort and filter mechanisms, and generic functional extensions which can be advertised for availability
to client programs.

Utilities

Utility classes, such as those implementing iterator support, are provided by the system to provide convenience and optimize the handling of
resources accessed through the runtime.



Core Services

Provides central entry points for programmatic access to system features and data.

cd LexBIG Service

dnEfaes

LacBiG Senvice
~ geiCodingScheme ConcepisSiing Coding SchemelersonOrTag. boofean) - ChdedhbdeSet
gefFilenSing) : Fiir
gefFileEdensons]) - ExdensonCesmption] ist
gefGenencEdenson(Zing) - GenencEaenson
geienencEdensions) - EdensonfEsoipionl st
get-isonSendos(Shnng) - HsonSanios
geilasljdzi=Time() - ek
geibichdigonthms]) - MbdleDeson ptioni st
geihodeGraphSifng CodingSchemeliersionCTeg. Sinng) - CodedhbdeGraph
getSenaceManagen Chieat) - LexBIE Servmeibnager gintersoes
geilenieMgladsts() | oBiG endoelitadsia LexBIGServicelbrager

=15 igon fum{Zrng) - 5 —r = - = = e z

gn ;:ﬁ;ﬁam;;fén;:; - SonDesaipliont i ~ aal;ﬂ'e[_ﬂwmgSﬂ:i‘eTEVemor!m:fmm_rOxiw‘mfersmF’eéence_.' waid o
geiSupportedCodingSchemesy) - Goding Scheme RendasngL i ai;w»e:s.’ioswsl-lxl"'_s\m\.émmp‘.mumGJdlngamemVasoth’emnw.Eh:?_- > woid
~ msoheCodingScheme{Sinng Coding SchemelersonOrTag) - CodingScheme ;; fxzmn%n;ﬁ_ﬁ; sonDesriptionlist
getdensonfegish) - EdensonRegisin
getidexSinng) - hdex

o

oo

]

i

F R

ainterGoes 1= R e

CodedadeSer-1 exBiG Senicellendsa ] g:g::fn?::;”i dopd ool !
+ n's".‘?o:'n;Sa&eme_q‘} -Absoluiz Coding Scheme\/em onfeferenceLis ~ gef oadEx=ngons) - ExensonDesaiptionlis
+ msle) - MedeiFopendis g G . ~  gelSymemfklsfionstuilder) : Symemfklsfonstuider
F N __P:-Ct-suﬁ;l_&:fiﬁ_ew.bﬂug@mI?gmnafersmﬁséesse; Svid | | emoweCoding Scheme Versionidb sofuis Coding Scheme VersionRekence) - void
: Jest}s_c:_:_oﬁmems\qa.m;lﬁ MO ~  removeCoding Scheme Versonvk 50z Absoluie CodngSchame Vers onReEence | - vord
= E\ﬁﬂmoﬁ:pew_;d:_ma.l:-mn;lﬁ,‘ ‘void ~ EmoveH sonSanios Sing - void
+ SNt TolslueEiing. Saing - woid ~  seiVerson Tagiibsduie Coding Schene VersonRefkenoe, Sinng) - woid

anefzoes
Codedhode Ser
differencs(Codediode Zef - ChdedhbdeSet

inierseciCodedibdeSef) © Codediode St

IsCodeln Set(Concepi Referenoe | - Boolesn

esnhe|SonCotionlis LomiNenel =) - ResohedConcepifeBenoe sizsir

resoheSonCotionlig LocsiNemelis, Locs/hemel is) - Resolved Conoeni Eferenceslizraior
resheTolis{ZotDpionlis, locsihemelist inf) : ResohedChnoepifefmncelis

esohe TolistSotOpionli=, locaibemel 15 LocsfNamel it inf - ResohedConcepi RERrenoelis
EEs ToCodesConoepiRefrencel i) - Codedhbds Set

resing TovisichingDesgnaionsSnng. hoolean, Smng, Sing) - Chdedhbde Set

o TolMzichingDesgradongSing. SearchiDesgnationCpion, Siing Siing) : Codedhode Set

s ToMeichingProperesl ocslhameli=, Sining, E&ing Shing) : CbdedModeSet

msnc TovsichingPropedeslosivemeli=s, losiNemel s LossiNamel st MemeAndiEluel s Siang. Sng, Smng) - Chdedibdeset
s ToPrgpeniss LocsNamel =) - Chdedhbde et

estnc ToPropenieslocaMemsl 15 LocefVamelis Localivemelis, MemedndVavelis) - Codedhbds Sef
union{Codedivode 5ef - Codedibds 5=t

R

oo

qinEranes

Codedhode Graph
s CodesRziziedMamednd\sive, Concepifsfamnce, ConcepiRefence, boolssn) - Boolzsn
interseciCodedibdeGieph) - ChdedhbdeGraph
IsCodeihGraph|ConepiRefence) - Boolsan
limCodeRelzdonshipsConcepiRefrence, ConcepiRefmnce, boolean) - ConcepiRefencel s
msoheds = ConeepiReirenoe. bodean, boolzan, in LocaNemelis, SonCptionlis inf - ResoledConcepiRekrencelis
resohed sl igConoepiReirence, bodlsan, boolsan, nt, Logsihemelis, SorCptionlis LocsiNamelis, inf) - ResdvedConoen Refsiencelis
s Tod ssocztionshemedndlzlvelig, hemedndVisliel =) - CodedhbdeGraph
esino ToCodesCodedMode 221 - ChdedhbdeGraph
s ToCode Systen Sinng) © CodedhbdeGragh
esnc ToSowoe Code s Chdedibde Bet) - CodediodeGeph
s ToSowoeCode Sysiem(Sinng) - CodedhbdeGrph
N ToTarget ChdesCodedioge Sef) - CodedhbdeGraph
smsing TolzrgeiChde Sysiem Sinng ! - CodediodeGraph
iohpoelistConoepiReferance. boolean, boolean, int int) - CodedhbdeSet
wnion(CodediodeGeph) - CodedibieGeph

[l

N

e

P

LexBIGService
Components of interest include:

CodedNodeGraph

A virtual graph where the edges represent associations and the nodes represent concept codes. A CodedNodeGraph describes a graph that
can be combined with other graphs, queried or resolved into an actual graph rendering.

CodedNodeSet
A coded node set represents a flat list of coded entries.
LexBIGService

This interface represents the core interface to a LexEVS service.



LexBIGServiceManager

The service manager provides a single write and update access point for all of a service's content.

The service manager allows new coding schemes to be validated and loaded, existing coding schemes to be retired and removed and the
status of various coding schemes to be updated and changed.

LexBIGServiceMetadata

Interface to perform system-wide query over optionally loaded metadata for loaded code systems and providers.

Service Extensions

Provides registration and lookup for pluggable system features.

cd Extensions

«interfacss «interfacss
ExtensionRegisiry Extendable
getExponExtension{Sinng) - ExtensionDezcnpticn ~  getDezcription() : Sinng
getE. IExfensio ExtenzionDeszcrptionlizt ~ geifame() ; Sinr
geiFilferExtensi ring) : ExtenzicnDezcnption ~ getProviden] : Siring
g erExiension enzicnDezcriptionl izt ~ getVersion() © Sinng

getFensnicExt : ExtenzionDesc

getFenancExd
getindexExten ring] : ExtenzionDescription
getindexExten : ExtenzionDescnptionl izt

getl osdExtension(Sinng) ; ExtensionDezchplion
getl padExtensions() : ExtenzsionDescripiionlizt
getSorCxtenzion[Sinng) : SonDescrption
getSoriExienszions(} - SorfDescrpticnl izt
registerExponExfenzion(ExtenzsionDezcniption)
regizterilterExtension{ExtensionDezcn
registerGenerncExdension{ExtensionDescrpiion)  void
regizterndexExtenzion/ExtensionDezcripti
regisier cadExtension|ExfensionDezcrpfio
registerSornExtenzion(SonDezcription) | void
unregisterExponExiension
unregizterFilterExtension St
unregisterFenancExtension| S
unregisterndexExtension|Sirng) . void
vnregizien cadExtensio q) - woid
unregizterSonCxtenzion{Sinng) . void

02 oY ophay g o g pd o v ophasy g o on

Extensions
Components of interest include:

ExtensionRegistry

Allows registration and lookup of implementers for extensible pieces of the LexEVS architecture.

Extendable

Marks a class as an extension to the LexEVS application programming interface. This allows for centralized registration, lookup, and access
to defined functions.

Query Extensions

Query extensions provide the ability to further constrain or manage query results.

cd Query

Extendsbie Extendsble
Compsrator ainterfaces
ainterfaces Filter

Sort ~  match{RezolvedConcepiReference) © boolean




Query

Components of interest include:

Filter

Allows for additional filtering of query results.
Sort

Allows for unique sorting of query results. This interface provides a comparator to evaluate order of any two given items from the result set.

Load Extensions

Load extensions are responsible for the validation and import of content to the LexEVS repository. Vocabularies may be imported from a
variety of formats including LexGrid canonical XML, NCI Thesaurus (OWL), and NCI MetaThesaurus (UMLS RRF).

=d Load

anErizose 3
LewGrid_Loader

e dpEe
NCJI_Meta Thes auru sl aader

wiersEs

UMLS_Loader

o e

080 HistoryLoader

e e

Metalata loader

Load

Components of interest include:

Loader

The loader interface validates and/or loads content for a service.

LexGrid Loader

Validates and/or loads content provided in the LexGrid canonical XML format.

NCI_MetaThesauruslLoader

Validates and/or loads the complete NCI MetaThesaurus. Content is supplied in RRF format. Note: To load individual coding schemes,
consider using the UMLS_Loader as an alternative.



OBO_Loader
Validates and/or loads content provided in Open Biomedical Ontologies (OBO) text format.
OWL _Loader

Validates and/or loads content provided in Web Ontology Language (OWL) XML format. Note that for LexEVS phase 1 this loader is
designed to specifically handle the NCI Thesaurus as provided in OWL format.

Text_Loader

A loader for delimited text type files. Text files come in one of two formats: indented code/designation pair or indented
code/designation/description triples.

UMLS_Loader

Load one or more coding schemes from UMLS RRF format stored in a SQL database.

MetaData_L oader
Validates and/or loads content provided in metadata xml format. The only requirement of the xml file is that it be a valid xml file.

NCIHistoryLoader

A loader that takes the delimited NCI history file and applies it to a coding scheme.

OBOHistoryl oader

Load an OBO change history file.

Export Extensions

Export extensions are responsible for the export of content from the LexEV'S repository to other representative vocabulary formats.

cd Export

Exfends ble
sinterfacss
Expornter

A

zinterfaoes
Lex Grid_Exporter

ainterfaces
OBD_Exporter
+ exponfAbzcluieCodingSchemeVerzionReference, URI, boolean, boolean, boolean) - void
+ getDB0Vermicn() - Sinng

sinterfacss
OWL_Exporter

+ exporfAbzoluteCodingScheme VersionReference, URN, boolean, boolean, boolean) & void

Export

Components of interest include:



Exporter
Defines a class of object used to export content from the underlying LexGrid repository to another repository or file format.

LexGrid_Exporter

Exports content to LexGrid canonical XML format.

OBO_Exporter

Exports content to OBO text format.

OWL_Exporter
Exports content to OWL XML format.

Index Extensions

Index extensions are built to optimize the finding, sorting and matching of query results.

cd Index .~

Loader
winterfaces
IndexLoader

+ cleamAbzoiuteCodingSchemeVersionRefersnce, indsx, boole
+ lpad{AbzoluteCoding SchemeVersionReference, index, boolesn, boolean) & void
+ rebuildidbzoluteCodingSchemsVersio!

nRsference index, boolesn) - void

Extendsble
ainterfaoes
Index

+ getlosden)  Indexlosder
+ locsteld ngDezignations(CodediNodeSed, Sinng, boolean, Sinng) © CodedNodeSet
hingProperiez{CodedNodeSet, LocsiNamelizt, Sinng, Sinng) : CodedNodeSet

+ [locsteld

Index
Components of interest include:

Index

Identifies expected behavior and an associated loader to build and maintain a named index. Note that a single loader may be used to
maintain multiple named indexes.

IndexLoader

Manages registered index extensions. A single loader may be used to create and maintain multiple indexes over one or more coding
schemes.

It is the responsibility of the loader to properly interpret each index it services by name, version, and provider.

Generic Extensions

Generic extensions provides a mechanism to register application-specific extensions for reference and reuse.



cd Generic

Exfendsbie
ainterfacen
(GenericExtension

winterfaces
LexBIG ServiceConvenienceMethods

~ codeToName|Sinng, Sinng, CodingSchemeVersionOrTag) - Sinng

~ cresteCodeNodeSef{Sinng(], Stnng, CodingSchemelVerzionCrTag) © CodedNodeSet
~ getChildrenOff Sirng, Sinng, 19, Siring, CodingSchemeVersionOrTag, boolean) -
~ getEndNeodes(Sinng, CodingSchemeVerzionCOrTag, Sining, Sinng) - ResolvedConcept
~ geiParentzOf Sinng, Sinng, Sinng, Sinng, CodingSchemeVersionCrTag, boolean) ©
~ geiRenderingDetsil(Sinng, CodingSchemeVerzionOrTag) - CodingSchemeRendenng

~ gefTopNodesz|5 , CodingSchemeVersionOrTag, Siing, Sirng) - ResclvedConcepiReferencel izt
~ fzCodeRet g, Sining, CodingSchemeVersionCrTag) : booiesn

~ nameToCo ng, Siring, CodingSchemeVerzionOag) ;- Sinng

Generic

Components of interest include:

GenericExtension

The generic extension class. Classes that implement this class are accessible via the LexBIGService interface.

LexBIGServiceConvenienceMethods

Convenience methods to be implemented as a generic extension of the LexEVS API.

Utilities

Defines helper classes externalized by the LexEVS API.

Iterators

Iterators are used to provide controlled resolution of query results.

cd lterators

ainterfaces
EntityListiterator
+ hasiNexi]) : boolesn
+ numberRemaining|) - int
+ relesse() ; void

xinterfaces
ResolvedConcepiReferencesiterator

(1 : RezplvedConcepifRefersnce
+ npextfint] : RezoivedConceptReferencel izt

Iterators

Components of interest include:

EntityListlterator



Generic interface for flexible resolution of LexEVS objects.

ResolvedConceptReferenceslterator

An iterator for retrieving resolved coding scheme references.

Additional Utility Classes

Note: It is highly recommended that all LexEV'S programmers familiarize themselves with the classes contained in the
org.LexGrid.LexBIG.Utility package. Many useful features are provided in an effort to increase approachability of the APl and assist
the programmer in common tasks. This package currently contains the following classes: Constructors — Helper class to ease creating
common objects. ConvenienceMethods — One-stop shopping for convenience methods that have been implemented against the LexEVS
API. LBConstants — Provides constants for use in the LexEVS API. ObjectToString — Provides centralized formatting of LexEVS Objects
to String representations.

Code Examples
Concept Resolution
Programmers access coded concepts by acquiring first a node set or graph. After specifying optional restrictions, the nodes in this set or

graph can be resolved as a list of ConceptReference objects which in turn contain references to one or more Concept objects. The
following example provides a simple query of concept codes:

// Create a basic service object for data retrieval
LexBIGService IbSvc = new LexBIGServicelmpl();

// Create a concept reference list appropriate for this coding scheme and

// this concept code where the parameters are a String array consisting of

// a single value and the name of the coding scheme where this concept resides.

ConceptReferenceList crefs = ConvenienceMethods.createConceptReferencelList(
new String[] {code}, SAMPLE_SCHEME);

// Initialize a coding scheme version object with a version number for the
// sample scheme.

CodingSchemeVersionOrTag csvt = new CodingSchemeVersionOrTag();
csvt.setVersion(VERSION);

// Initialize a CodedNodeSet Object with all concepts in our sample coding

// scheme. (We named the scheme we wanted and by using the Boolean value,

// false, retrieved both active and inactive concepts.) This method call

// ignores the version tag using the null parameter. The final

/7 restrictToCodes(crefs) method call restricts the return to the single

// code in the previously initialized list of one.

CodedNodeSet nodes = IbSvc.getCodingSchemeConcepts(SAMPLE_SCHEME, csvt).
restrictToCodes(crefs);

// Build a list of references from the current (and already restricted) set
// and restrict them further to the single property of NCI_NAME and
// restrict to a single answer (parameter 1)).
ResolvedConceptReferencelList matches = nodes.resolveToList(
null, ConvenienceMethods.createLocalNameList("'FULL_SYN™), 1);

// Does our list of one contain the single reference we were looking for?
// 1T so, then initialize a ResolvedConceptReference with the result and
// initialize a Concept object by calling the getReferencedEntry()

// method. The Concept object is the base information model object and
// contains, among other things, the CONCEPT_NAME value we were seeking.
// We retrieve it with a call to the first element in the properties list,
// getting the text && it"s accompanying content.
if(matches.getResolvedConceptReferenceCount() <> 0)

ResolvedConceptReference ref = (ResolvedConceptReference)matches.
enumerateResolvedConceptReference() .nextElement();
Concept entry = ref.getReferencedEntry();
System.out.printIn(Matching synonym: " +
entry.getPresentation(0).getvalue() );

else

System.out.printin(*No match found");

Service Metadata Retrieval

The LexEVS system maintains service metadata which can provide client programs with information about code system content and
assigned copyright/licensing information. Below is an brief example showing how to access and print some of this metadata:



// We can get a CodingSchemeRenderingList object directly from the

// LexBigService.

LexBIGService Ibs = new LexBIGServicelmpl();

CodingSchemeRenderingList schemeList = Ibs.getSupportedCodingSchemes();

for (CodingSchemeRendering csr : schemelList.getCodingSchemeRendering())
CodingSchemeSummary css = csr.getCodingSchemeSummary();
// Print separator then details from the CodingSchemeSummary

System.out.printin( ;
System.out.println(ObjectToString.toString(css));

// Set up a coding scheme reference to resolve Copyright

String urn = css.getCodingSchemeURI();

String version = css.getRepresentsVersion();

CodingSchemeVersionOrTag csVorT =
Constructors.createCodingSchemeVersionOrTagFromVersion(version);

CodingScheme cs = Ibs.resolveCodingScheme(urn, csVorT);

System.out.printIn(""Copyright: " +cs.getCopyright().getContent());

// Get the final details from the RenderingDetail
RenderingDetail rd = csr.getRenderingDetail();
System.out.printIn(ObjectToString.toString(rd));
System.out.printinQ);

Combinatorial Queries

One of the most powerful features of the LexEVS architecture is the ability to define multiple search and sort criteria without intermediate
retrieval of data from the LexEVS service. Consider the following code snippet:

System.out.printin("Example double restriction query with additional "
+"application of sort criteria and restricted return values.');

// Declare the service...

LexBIGService Ibs = new LexBlIGServicelmpl();

// Start with an unconstrained set of all codes for the vocabulary
CodingSchemeVersionOrTag csvt = new CodingSchemeVersionOrTag();
csvt.setVersion(VERSION);

CodedNodeSet cns = lbs.getCodingSchemeConcepts(SAMPLE_SCHEME, csvt);

// Constrain to concepts with designations (assigned text presentations
// that contain text that sounds like “heart ventricle”
cns.restrictToMatchingDesignations(
"hart ventrickle",
SearchDesignationOption.ALL,
MatchAlgorithms.DoubleMetaphoneLuceneQuery.toString(),
null);

// Further restrict the results to concepts with a semantic type of
// "Anatomical Structure”
cns.restrictToMatchingProperties(
Constructors.createLocalNameList(*'Semantic_Type'),
“"Anatomical Structure",
“exactMatch",
null);

// Indicate that the resulting list should be sorted with the best

// results first and then sorted by code if there is a tie.

SortOptionList sortCriteria = Constructors.createSortOptionList(
new String[] {"matchToQuery", "code"});

// Indicate to return only the assigned UMLS_CUI and

// textualPresentation properties.

LocalNameList restrictTo =ConvenienceMethods.createlLocalNameList(
new String[] {"UMLS_CUI", "textualPresentation"} );

/7 still nothing computed yet.
// Perform the query && resolve the sorted/filtered list with a
// maximum of 6 items returned.
ResolvedConceptReferenceList list = cns.resolveToList(
sortCriteria, restrictTo, null, 6);
// Print the results
ResolvedConceptReference[] rcr = list.getResolvedConceptReference();
for (ResolvedConceptReference rc : rcr)

System.out.printin(*Resolved Concept: +" +rc.getConceptCode());

This example shows a simple yet powerful query to search a code system based on a “sounds like” match algorithm (the list of all available
match algorithms can be listed using the ‘ListExtensions —m’ admin script).

Declaring the target concept space

The coded node set (variable ‘cns’) is initially declared to query the NCI Thesaurus vocabulary. At this point the concept space included by



the set can be thought of as unrestricted, addressing every defined coded entry (the ‘false” value on the declaration indicates to also include
inactive concepts). However, it important to note that no search is performed by the LexEVS service at this time.

Applying filter criteria

Similarly, no computation is performed (to realize query results) during invocation of the restrictToMatchingDesignations() and
restrictToMatchingProperties() methods. However, these calls effectively narrow the target space even further, indicating that filters
should be applied to the information returned by the LexEVS query service.

Using the Lucene Query Syntax and other text matching functions

The text criteria applied in methods such as restrictToMatchingDesignations() uses one of a number of powerful text processing
applications to provide the user with broad capability for text based searches. Text matches can be simple applications of exactMatch,
startsWith or contains algorithms as well as powerful regular expressions and Lucene Query syntax (used in the LuceneQuery function.) As
shown above these options are passed into the restrictToMatchingDesignations() Method as parameters.

Lucene Queries are well documented and can be very powerful. The uninitiated user may need some background on their use however. The
user should start here with the official Lucene Query Parser documentation.

Keep in mind that some LexEVS queries such as "startsWith" and "contains" use wild card searches under the covers, so that use of wild
cards in this context can cause errors in searches involving these search types.

Instead it is best to use the flexibility of the Lucene Query searches in the matchingDesignation by using the Lucene Query searches in
LexEVS where most searches will work much as described in the query syntax documentation.

Special characters in the Lucene Query search can cause unexpected results. If you are not using special characters as recommended for
various Lucene search mechanisms then your searches may not return expected results or may return an error. If the value you are searching
upon contains say, parenthesis, you will need to place the value in quotations. The escape characters described in the Lucene
Documentation do not work at this time.

Likewise you should not expect to see a Lucene Query narrow down search results as you progressively enter a longer substring more
closely matching your term of interest. Instead use the contains method.

Applying sorting criteria

Multiple sort algorithms can be applied to control the order of items returned. In this case, we indicate that results are to be sorted based on
primary and secondary criteria. The "matchToQuery" algorithm indicates to sort the result according to best match as determined by the
search engine. The "code" item indicates to perform a secondary sort based on concept code.

Note: the list of all available sort algorithms can be listed using the ‘ListExtensions —s” admin script.

Restricting the information returned for matching items

The LexEV'S API also allows the programmer to restrict the values returned for each matching concept. In this example, we chose to return
only the UMLS CUI and assigned text presentations.

Retrieving the result

A query is finally performed during the ‘resolve’ step, with results returned to the declared list. It is at this point that the LexEVS service
does the heavy lifting. By declaring the full extent of the request up front (namespace, match criteria, sort criteria, and returned values), the
service then has the opportunity to optimize the query path. In addition, in this example we restrict the number of items returned to a
maximum of 6. This combined approach has the benefit of reducing server-side processing while minimizing the volume and frequency of
traffic between the client program and the LexEVS service.

Note: While this section provides one example of combining criteria, this same pattern can be applied to many of the CodedNodeSet and
CodedNodeGraph operations. It is strongly recommended that programmers familiarize themselves with this programming model and its
application.

Additional Resources

The examples and automated test programs provided by the LexEVS installation (see file breakdown in Overview of the Software) are
available as additional reference materials.

LexEVS GUI



The LexEVS Graphical User Interface, or GUI, is an optional component of the LexEVS install which will be in the /gui folder of the base
LexEVS installation (see file breakdown in Overview of the Software). The GUI is meant to provide a simple tool to test LexEVS API
methods and quickly view the results; almost all public methods defined by the LexEVS API are supported. This guide provides a brief
overview of how the GUI can aid programmers in writing code to the LexEVS API.

Note: The LexEVS GUI supports both administrative and test functions. Please refer to the LexEVS Administrator’s Guide for instructions
on using the GUI as an administration tool.
Launching the GUI

Depending on the operating systems that you selected at installation time, you should have one or more of the following programs in
the /gui folder:

Linux_64-1bGUI _sh Linux-1bGUI _sh
0SX-1bGUI .command Windows-1bGUI .bat

Launch the GUI by executing the appropriate script for your platform. You will be presented with an application that looks like this:

® LexBIG 1.0 alpha —ET

Commands Load Terminology, Export Terminology”  Help

Available Code Systems

Code Syskem Mame I Code System Yersion I LIRK | Tag I Skatus I Last Update Time ek Code Set |

Arino Acid Onkalogy Z006/05/18 htkp: [ fvnen, co-ode. .. active 10:46:10 AM on 0°

alkos urn:nid: ALY, Get Code Graph |
cell UMNASSIGMNED urn:lsid:bicontology... active 212233 PMaon 10)

COSTAR, 1989-1995 §9-95 urnioid: 2, 16.840.1... active 4:32:03 PM an 09) Get History |
Dictyostelium discoideum anatormy  UMASSIGHNED urn:lsid:bicontology... active 12:21:51 PMaon 0%

Drug Ontology Schema unknown hitkp: f feaen, oval-an, active 4:14:16 PM an 10/ Refresh |
Galen additions For Lexical Proc...  unknown http:/fexample.org. .. active 41§49 PMon 10 —/——————————
gene_ontology UMNASSIGMED urn:lsid:bicontology... active 12:16:29 PM an 0% B |
GMP 2.0 urrioid: 11,11.0,2 artive 2:45:02 PM on 101 B

MCI MetaThesaurus 200510E urnioid:2,16.540.1. ., active 2:06:17 PMon O7f e |
MCI SEER ICD Meoplasm Code ... 1999 urnioid: 2, 16.840.1... inactive 11:11:08 AM on 0% e i
MCI_Thesaurus 03 12a urrioid:2,16.540.1,,.  PRODUCTION | active 10:356:35 AM an 10 ST |
SMODEMT 2000 SNODENT active 10:15:21 AM on 0¢ s

Remove |

Fermoye History

4] | _,I Rebuild Index |

Selected CodedModeSets and CodedModeGraphs Restrictions

(B glelg| I

Interseckion

Add

Edit: |
Difference I

REMOVE

)

T
i

Restrict bo Cades

¥ou must choose a single Code Set or Graph on the left,

Rsk bo Source Codes

Bt to Target Godes

Rermove |

Overview

The upper section of the GUI shows all of the code systems currently loaded, along with corresponding metadata. The lower section of the
GUI is used to combine, restrict and resolve Code Sets and Code Graphs.

The lower left section is where you can perform Boolean logic on Code Sets and Code Graphs. The lower right section is where you can



introduce restrictions on Code Sets and Code Graphs and browse results.

Note:

The menu options are used primarily for administrative functions, and are covered in detail by the LexEVS Administrator’s Guide. In

addition, all of the disabled buttons in the top half of the application are used for administrative functions, and are also described in the
LexEVS Administrator’s Guide.

Creating New Queries

There are four buttons on the top half that are of interest for creating queries.

Refresh — This button causes the LexEVS GUI to reread the available terminologies and their respective metadata. This can be useful
when using the GUI to view a LexEVS environment that is being modified by another process.

Get History — If a terminology with available history data is selected, this button opens a history browser to view it via the NCI
history API. This option is currently only applicable when working with the NCI Thesaurus terminology.

Get Code Set —This button causes the selected terminology to be added to the lower left section of the GUI as a code set — which is
noted by a ‘CS’ prefix.

Get Code Graph —This button causes the selected terminology to be added to the lower left section of the GUI as a code graph —
which is noted by a ‘CG’ prefix.

Customizing Queries

After selecting a code system and clicking on Get Code Set or Get Code Graph, a row will be added to the lower left section of the GUI
for each click. There are seven buttons in the lower left section that allow combinatorial logic between the code sets in the lower left.

Union — This button is enabled if two Code Sets or two Code Graphs are selected in the lower left. Clicking the button creates a new
virtual Code Set or Code Graph which represents the Boolean union of the two selected items. All restrictions applied to the
individual items still apply.

Intersection — This button is enabled if two Code Sets or two Code Graphs are selected in the lower left. Clicking the button creates a
new virtual Code Set or Code Graph which represents the Boolean intersection of the two selected items. All restrictions applied to
the individual items still apply.

Difference — This button is enabled if two Code Sets or two Code Graphs are selected in the lower left. Clicking the button creates a
new virtual Code Set which represents the Boolean difference of the two selected Code Sets. All restrictions applied to the individual
items still apply.

Restrict to Codes — This button is enabled if a Code Set and a Code Graph are selected in the lower left. Clicking the button creates a
new virtual Code Graph which will be restricted to concept codes occurring in the selected Code Set.

Restrict to Source Codes — This button is enabled if a Code Set and a Code Graph are selected in the lower left. Clicking the button
creates a new virtual Code Graph which will have its source codes restricted to codes occurring in the selected Code Set.

Restrict to Target Codes — This button is enabled if a Code Set and a Code Graph are selected in the lower left. Clicking the button
creates a new virtual Code Graph which will have its target codes restricted to codes occurring in the selected Code Set.

Remove — This button is enabled if any Code Set or Code Graph (or virtual Code Set or Code Graph) is selected in the lower left.
Clicking the button will remove the selected item from the list.

The lower right section of the GUI is used to apply restrictions to Code Sets or Code Graphs, and set the variables that need to be passed
into the resolve method.

Working with Code Sets

If a Code Set is selected in the lower left, then the lower right section will look like this:



ML SEER U MEORIAST 008 ... | 199 UFMEI: <, Ll et L INACCIve L B —
MCI_Thesaurus 03.12a urmioid:2,16.840.1,..  PRODUCTION  active 10:3536:35 AM on 10
SMODEMT 2000 SMODENT active 10:15:21 AM on 08

Deactiyate

Remoxve I
Femnoye Historsy |
‘J | _d Rebuild Tndesx I

Selected CodedModeSets and CodedModeGraphs Restrictions

0 0Z3) - Aukomaobiles 1.0 Coded Node Set 0 - Automobiles 1.0
i |
Intersection |

Edit

Difference | —~
Remowe |

RectrictiboiCades

I only Include Active Codes

RsE Lo Source Codes

RsE to Target Codes

Remove |

Set Sork Cptions | Resolve Code Set

In the lower right section, there are two halves — the top half and the bottom half. The top half is used to apply restrictions. The bottom half
provides query options and resolution.

= Add - This button introduces a new restriction to the Coded Node Set. Clicking it will bring up the following dialog box for creating
restrictions:
Bl Configure Restriction

Restriction Type |[HssgealdnyiFE=1duy

Makch Text I
Match Algorithm ILuceneQuery j
Makch Language I j

Freferred Only [

Ok, Cancel

The top drop down list indicates the type of restriction to add. The rest of the dialog box will change depending on the type of restriction
selected. All required parameters for the selected restriction type will be presented.

Edit — This button is enabled when a restriction is selected. Clicking it allows revision of an existing restriction.

Remove —This button is enabled when a restriction is selected. Clicking it removes the selected restriction.

Only Include Active Codes — This check box indicates whether or not to include inactive codes when resolving the selected code set.
Set Sort Options — This button will bring up a dialog box to choose the desired sort order of the results.

Resolve Code Set — This button will bring up a result window where the Code Set will be resolved and displayed.

Working with Code Graphs

If you select a Coded Node Graph in the lower left section of the LexEVS GUI, the lower right section will look like this:



L4

Hemoye Histary.

| ﬂ Febiild Index |

Selected CodedModeSets and CodedModeGraphs Restrictions

0 (C5) - Aukomobiles 1.0 Zoded Mode Graph 1 - Automobiles 1.0
Hriem |

1 (I235) - Automobiles 1.0

&dd

i Edit |
Bifference
Remoyve |

Rst to Source Codes - .
s Relation Containe | I -

Rt bo Target Codes Focus Code |

Inbersection

Restrict bo Codes

Focus Code System I j
B I Max Resolve Depth |-1 IV Resolve Forward [ Resolve Backward

Set Sort Options | Resolve as Set | Resolve as Graph |

Again, there are two halves to the lower right section. The top half allows restrictions to be applied to the selected Code Graph, and it works
the same as it does for a Coded Node Set. Please see the section above on applying restrictions to a Coded Node Set.

The lower half provides additional variables applicable when resolving a Coded Node Graph. For further explanation of these options, refer
to the LexEVS API documentation.

Relation Container (Optional) — Indicates the CodingScheme Relations container to query. The drop down list is populated with
allowable selections.

Focus Code (Optional) — Provides the code used as a starting point when resolving graph relations. This value is required for some
queries, depending on the nature of requested associations.

Focus Code System (Optional) — Indicates the code system containing the Focus Code. The drop down list is populated with
allowable selections.

Max Resolve Depth — How many levels deep should the graph be resolved? -1 is the default, which does not limit the depth.
Resolve Forward — Populate codes downstream from the focus node (based on directionality defined by each association).
Resolve Backward — Populate codes upstream from the focus node (based on directionality defined by each association).

Set Sort Options — This button will bring up a dialog box to choose the desired sort order of the results.

Resolve As Set — Resolves and displays the graph results as a coded node set.

Resolve As Graph —Resolves and displays the graph results.

Viewing Query Results

Clicking on the Resolve buttons for either a Coded Node Set or a Coded Node Graph will bring up the Result Browser window:



B§ Result Browser _ (O] x|

TO001 - Truck oding Scheme: sutomobiles - ornioidi11.11.0.1 :]
Ford - Ford Mokor Comparny oncept Code: TOOO1

005 - Domestic Auko Makers ntity Description: Truck

73 - Cldsmobile tatus: 65

Con01 - Car s Active: true

ADDD1 - Aukomobile irst Yersion: true

M - General Mokors ast Yersion: krue

Jaguar - Jaguar resentation £1: Truck

Chesy - Chewrolet Is Preferred: trus

Language: en
Match If Mo Context: true

TOOO1 A0001
Truck = Automobile

The left side shows a list of all the concept codes returned. When a concept code is selected on the left, the upper right will show a full
description of the selected code. The lower right will show a graph view of the neighboring concepts.

When a Coded Node Graph is resolved, the result viewing window will look like this (this is the same Code System as above):

BB Result Browser [_1O}

A0001 - Automobile |
TO001 - Truck

o0l - Car

Brakes -

Tires -

Batteries -

005 - Domestic Auko Makers

Ford - Ford Mokor Comparnr: ll
Jaguar - Jaguar

GM - General Mokors

73 - Oldsmobile

Chieny - Chevrolet

TOOO1
Truck:
C0001
i) Car
AD001 Tt Brakes
Automobile s,
= Tires
FesSuteype s
top-thing Batteries
Fethes Ford
00s esinme  FOrd Motar Company
Domestic Auto Malers .o GM

General Motors

The left side still has a list of all of the concepts in the graph. The upper right will give a description of the selected concept. The lower right
shows the entire graph.

The lower right section is adjustable, and dynamic. It responds to mouse clicks, dragging, and numerous key combinations. Beyond a depth
of 3, the graph may “collapse” and not show all of the nodes until you click on a node. Clicking on a node will cause it to expand out and



display its children. Here are a list of key combinations recognized by the graph viewer:

LEFT CLICK + MOUSE MOVEMENT — Drags the view.

RIGHT CLICK + MOUSE MOVEMENT UP OR DOWN — Zooms in or out.
RIGHT CLICK (ON WHITE SPACE) — Zooms the view to fit.

CTRL + “+’ — Expands the graph connection lines

CTRL + “-* — Contracts the graph connection lines

CTRL + ‘1’ (OR ‘2’ OR ‘3’ OR ‘4’) — Changes the orientation of the graph.

LexEVS caCORE Data Services API

INTERACTING WITH CACORE LEXEVS

This chapter describes the components of the caCORE LexEVS and the service interface layer provided by the EVS API architecture. It
gives examples of how to use the EVS APIs. It also describes the Distributed LexEVS API and the Distributed LexEVS APIAdapter.

caCORE LexEVS Components

The caCORE LexEVS API is a public domain, open source wrapper that provides full access to the LexEVS Terminology Server. LeXEVS
hosts the NCI Thesaurus, the NCI Metathesaurus, and several other vocabularies. Java clients accessing the NCI Thesaurus and
Metathesaurus vocabularies communicate their requests via the open source caCORE LexEVS APIs, as shown in Overview of the caCORE
LexEVS 4.0 release components.

-L;_ s EE:TH[_‘ ““";"”_" | =)
&L ‘g,ﬁl ==
~-EEd| =)

Also supported. .. The Legacy Infrastructure

soar] o | cacomEd 2 d orsrec | 4 ors
] L

¥ a

heataphrne | &8

e 1T =43
| =

Figure 4.1 - Overview of the caCORE LexEVS 4.0 release components

The open source interfaces provided as part of caCORE LexEVS 5.x include Java APIs, a SOAP interface, and an HTTP REST interface.
The Java APIs are based on the EVS 3.2 object model and the LexEVS Service object model.

The EVS 3.2 model, exposed as part of caCORE 3.2, has been re-released with LexXEVS as the back-end terminology service in place of the
proprietary Apelon DTS back end. The SOAP and HTTP REST interfaces are also based on the 3.2 object model. The SDK 4.0 was used to
generate the EVS 3.2 Java API, as well as the SOAP and HTTP REST interfaces.

The only difference between the EVS 3.2 API exposed as part of the caCORE LexEVS 5.x and the API exposed as part of caCORE 3.2 is
the back-end terminology server used to retrieve the vocabulary data. The interface (API calls) are the same and should only require minor
adjustments to user applications.

Note:
You cannot integrate caCORE 3.2 components with caCORE LexEVS 5.x. If you used multiple components of caCORE 3.2
(for example, EVS with caDSR), you need to continue to work with the caCORE 3.2 release until the other caCORE 4.0
components are available.

The LexEVS object model was developed by the Mayo Clinic. In its native form, the associated APl assumes a local, non-distributed means
of access. With caCORE LexEVS 5.x, a proxy layer enables EVS API clients to access the native LexEVS API from anywhere without



having to worry about the underlying data sources. This is called the Distributed LexEVS (DLB) API.

The DLB Adapter is another option for caCORE LexEVS 5.x clients who choose to interface directly with the LexEVS API. This is
essentially a set of convenience methods intended to simplify the use of the LexEVS API. For example, a series of method calls against the
DLB API might equate to a single method call to the DLB Adapter.

Note:

The DLB Adapter is not intended to represent a complete set of convenience methods. As part of the caCORE LexEVS 5.x
release, the intention is that users will work with the DLB API and suggest useful methods of convenience to the EVS
Development Team.

LexEVS Data Sources

The LexEVS data source is the open source LexEV'S terminology server. EVS clients interface with the LexEVS API to retrieve desired
vocabulary data. The EVS provides the NCI with services and resources for controlled biomedical vocabularies, including the NCI
Thesaurus and the NCI Metathesaurus.

NCI Thesaurus

The NCI Thesaurus is composed of over 27,000 concepts represented by about 78,000 terms. The Thesaurus is organized into 18
hierarchical trees covering areas such as Neoplasms, Drugs, Anatomy, Genes, Proteins, and Techniques. These terms are deployed by the
NCI in its automated systems for uses such as key wording and database coding.

NCI Metathesaurus

The NCI Metathesaurus maps terms from one standard vocabulary to another, facilitating collaboration, data sharing, and data pooling for
clinical trials and scientific databases. The Metathesaurus is based on the Unified Medical Language System (UMLS) developed by the
National Library of Medicine (NLM). It is composed of over 70 biomedical vocabularies.

Interfaces
Main interfaces included in the LexEVSAPI package.
LexEVSDistributed

The Distributed LexEVS Portion of LexEVSAPI. This interface is a framework for calling LexEVS APl methods remotely, along with
enforcing security measures. JavaDoc

LexEVSDataService

The caCORE-SDK Data Service Portion of LexEVSAPI. This extends on the caCORE ApplicationService to provide additional Query
Options. JavaDoc

LexEVSService

The Main LexEVSAPI Interface. This includes support for caCORE-SDK Data Service calls as well as remote LexBIG API calls. JavaDoc
Search Paradigm

The caCORE LexEVS architecture includes a service layer that provides a single, common access paradigm to clients that use any of the
provided interfaces. As an object-oriented middleware layer designed for flexible data access, caCORE LexEVS relies heavily on strongly
typed objects and an object-in/object-out mechanism.

Accessing and using a caCORE LexEVS system requires the following steps:

Ensure that the client application has access to the objects in the domain space.
Formulate the query criteria using the domain objects.

Establish a connection to the server.

Submit the query objects and specify the desired class of objects to be returned.
Use and manipulate the result set as desired.

g0 E



caCORE LexEVS systems use four native application programming interfaces (APIs). Each interface uses the same paradigm to provide
access to the caCORE LexEVS domain model, with minor changes specific to the syntax and structure of the clients. The following sections
describe each API, identify installation and configuration requirements, and provide code examples.

The sequence diagram in Sequence diagram - caCORE 4.0 LexEVS API search mechanism illustrates the caCORE LexEVS API search
mechanism implemented to access the NCI EVS vocabularies.

e s ) 3 i i s B O MY

11
—

s

.........

Figure 4.4 - Sequence diagram - caCORE 4.0 LexEVS API search mechanism

Querying the System
LexEVS conforms to the caCORE SDK API — for more information see caCORE SDK 4.1 Programmer's Guide
QueryOptions

QueryOptions are designed to give the user extra control over the query before it is sent to the system. QueryOptions may be used to modify
a query in these ways:

1. ‘CodingScheme’ — Restricts the query to the specified Coding Scheme, instead of querying every available Coding Scheme.
2. CodingSchemeVersionOrTag’ — Restricts the query to the specified Version of the Coding Scheme. Note that:

a. This may NOT be specified without also specifying the ‘CodingScheme’ attribute.
b. If left unset, it will default to the version of the Coding Scheme tagged as “PRODUCTION” in the system.

1. *SecurityTokens’ — Security Tokens to use with the specified query. These Security Tokens are scoped to the current query ONLY.
An subsequent queries will also need to specify the necessary Query Options.

2. ‘LazylLoad’ — Some high use-case model Objects have bee ‘lazy-load’ enabled. This means that some attributes and associations of a
model Object may not be fully populated when returned to the user. This allows for faster query times. This defaults to false, meaning
that all attributes and associations will be eagerly fetched by the server and model Objects will always be fully populated. To enable
this on applicable Objects, set to true.

NOTE: Lazy Loading may only be used in conjunction with specifying a Coding Scheme and Version with the *‘CodingScheme’ and
‘CodingSchemeVersionOrTag’ attributes above.

3. ‘ResultPageSize’ — the page size of results to return. The higher the number, the more results the system will return to the user at
once. The client will request the next group of query results transparenly. This parameter is useful for performance tuning. For
example, if a query returns a result 0f10,000 Objects, a ‘ResultPageSize’ of ‘1000° would make 10 calls to the server returning a page
of 1000 results each time. If left unset, this value will default to the default set Page Size

Examples of Use

Example 4.1: Query By Example with No Query Options



OCONOURWNE

=
o

public static void main(String[] args)

try {
LexEVSApplicationService appService =
(LexEVSApplicationService)ApplicationServiceProvider.
getApplicationService(EvsServicelnfo™);
Entity entity = new Entity(Q)
entity.setEntityCode(“C1234);
List<Entity> list = appService.search(Entity.class, entity);
} catch(ApplicationException ex){
}

Explanation of statements in explains specific statements in the code by line number .

Line .
Number Explanation

4 Creates an instance of a class that implements the LexEVSApplicationService interface. This interface defines the service
methods used to access data objects.

7 Construct the Query By Example Object and populate it with the desired search critieria. For this example, seach for any
‘Entity” with an ‘entityCode’ attribute equaling ‘C1234’.
Calls the search method of the LexEVSApplicationService object.

9

This method returns a List Collection. This list will contain all of the ‘Entity’” Objects that match the search critieria. It this
case, it will return all “‘Entity’ Objects with an ‘entityCode’ of “C1234".

Table 4.6 - Explanation of statements in :

Example 4.2 : Query By Example with Query Options

1 public static void main(String[] args)

2 {

3 try {

4 LexEVSApplicationService appService =

5 (LexEVSApplicationService)ApplicationServiceProvider.

6 getApplicationService(“EvsServicelnfo™);

7 QueryOptions queryOptions = new QueryOptions();

8 queryOptions.setCodingScheme(“NCI Thesaurus™);

9 CodingSchemeVersionOrTag csvt = new CodingSchemeVersionOrTag();
10 csvt.setVersion(“09.10d™);

11 queryOptions.setCodingSchemeVersionOrTag(csvt);

12 Entity entity = new Entity(Q)

13 entity.setEntityCode(“C1234);

14 List<Entity> list = appService.search(Entity.class, entity, queryOptions);
15 } catch(ApplicationException ex){

16

17 3}

Explanation of statements in explains specific statements in the code by line number.

Line .
Number Explanation

4 Creates an instance of a class that implements the LexEVSApplicationService interface. This interface defines the service
methods used to access data objects.

[7 ||Construct the QueryOptions Object.

8 Populate the QueryOptions with the desired Coding Scheme.

9 Construct a CodingSchemeVersionOrTag Object.

[10 ||Populate the CodingSchemeVersionOrTag Object with the desired Version.

[11 ||Populate the QueryOptions with the above CodingSchemeVersionOrTag Object.

12 Construct the Query By Example Object and populate it with the desired search critieria. For this example, seach for any
‘Entity” with an ‘entityCode’ attribute equaling ‘C1234’.
Calls the search method of the LexEVSApplicationService object, along with the QueryOptions.

14 This method returns a List Collection. This list will contain all of the ‘Entity” Objects that match the search critieria, while
being further modified by the QueryOptions. It this case, it will return all ‘Entity’ Objects with an ‘entityCode’ of “C1234”
belonging to the CodingScheme “NCI Thesaurus” Version “09.10d”.




Table 4.7 - Explanation of statements in :
Web Services API

The caCORE LexEVS Web Services API enables access to caCORE LexEVS data and vocabulary data from development environments
where the Java API cannot be used, or where use of XML Web services is more desirable. This includes non-Java platforms and languages
such as Perl, C/C++, .NET framework (C#, VB.Net), and Python.

The Web services interface can be used in any language-specific application that provides a mechanism for consuming XML Web services
based on the Simple Object Access Protocol (SOAP). In those environments, connecting to caCORE LexEVS can be as simple as providing
the end-point URL. Some platforms and languages require additional client-side code to handle the implementation of the SOAP envelope
and the resolution of SOAP types.To view a list of packages that cater to different programming languages, visit
http://mww.w3.0rg/TR/SOAP/ and http://www.soapware.org/.

To maximize standards-based interoperability, the caCORE Web service conforms to the Web Services Interoperability Organization (WS-
1) basic profile. The WS-I basic profile provides a set of non-proprietary specifications and implementation guidelines that enable
interoperability between diverse systems. For more information about WS-I compliance, visit http://www.ws-i.org.

On the server side, Apache Axis is used to provide SOAP-based, inter-application communication. Axis provides the appropriate
serialization and deserialization methods for the JavaBeans to achieve an application-independent interface. For more information about
Axis, visit http://ws.apache.org/axis/.

Configuration

The caCORE/LexEVS WSDL file is located at http://lexevsapi.nci.nih.gov/lexevsapi50/services/lexevsapi50Service?wsdl. In addition to
describing the protocols, ports, and operations exposed by the caCORE LexEVS Web service, this file can be used by a number of IDEs and
tools to generate stubs for caCORE LexEVS objects. This enables code on different platforms to instantiate native objects for use as
parameters and return values for the Web service methods. For more information on how to use the WSDL file to generate class stubs,
consult the specific documentation for your platform.

The caCORE LexEVS Web services interface has a single end point called Iexevsapi50Service, which is located at
http://lexevsapi.nci.nih.gov/lexevsapi50/services/lexevsapi50Service. Client applications should use this URL to invoke Web service
methods.

Building a Java SOAP Client

LexEVSAPI provides a tool to create a Java SOAP client capable of connecting to a LexEVSAPI SOAP service.

In the ./webServiceSoapClient contains a build.xml file that will construct a LexEVSAPI SOAP client. Before building, you may edit this
build.xml file to customize the build process. Editable properties include ‘wsdlURL’ and ‘webServiceNamespace’. An example
configuration is below:

<property name="wsdlURL" value="http://bmidev4:8180/lexevsapi50/services/lexevsapi50Service?wsdl'/>
<property name="‘webServiceNamespace" value="http://bmidev4:8180/lexevsapi50/services/lexevsapi50Service'/>

To build the client, use the command ‘ant all’ from the ./webServiceSoapClient directory.

XML-HTTP API

The caCORE LexEVS XML-HTTP API, based on the REST (Representational State Transfer) architectural style, provides a simple
interface using the HTTP protocol. In addition to its ability to be invoked from most Internet browsers, developers can use this interface to
build applications that do not require any programming overhead other than an HTTP client. This is particularly useful for developing Web
applications using AJAX (Asynchronous JavaScript and XML).

Service Location and Syntax

The CORE EVS XML-HTTP interface uses the following URL syntax:



http://{server}/{servlet}?query={returnClass}&{criteria}
&startindex={index}
&codingSchemeName={codingSchemeName}
&codingSchemeVersion={codingSchemeVersion}
Table 4.12 explains the syntax, indicates whether specific elements are required, and gives examples.
| Element | Meaning | Required | Example
Name of the Web server on which
server the caCORE LexEVS 5.0 Web Yes lexevsapi -nci .nih.gov/lexevsapi50
application is deployed.
URI and name of the servlet that _
; 1 50/GetXML
servlet will accept the HTTP GET Yes exevsapt ©
requess. lexevsapi50/GetHTML
Class name indicating the type of
returnClass objects that this query should Yes query=DesclLogicConcept
return.

. Search request criteria describing _ .
criteria the requested objects. Yes DescLogicConcept [@id=2]
index ||Starting index of the resultset.  |[No |lstartindex=25

_ Restrict the query to a specific _ _
codingSchemeName Coding Scheme Name. No codingSchemeName=NCIl_Thesaurus
No
_ . ||Restrict the query to a specific _ o
codingSchemeVersion Coding Scheme Version. NOTE: Must be used in codingSchemeVersion=09.12d
conjunction with a
‘codingSchemeName’

Table 4.12 - URL syntax used by the caCORE LexEVS XML-HTTP interface

The caCORE LexEVS architecture currently provides two servlets that accept incoming requests:

= GetXML returns results in an XML format that can be parsed and consumed by most programming languages and many document
authoring and management tools.
= GetHTML presents result using a simple HTML interface that can be viewed by most modern Internet browsers.

Within the request string of the URL, the criteria element specifies the search criteria using XQuery-like syntax. Within this syntax, square
brackets ([ and ]) represent attributes and associated roles of a class, the at symbol (@) signals an attribute name/value pair, and a forward

slash character (/) specif

ies nested criteria.

Criteria statements in XML-HTTP queries generally use the following syntax (although you can also build more complex statements):

ClassName} [@{attributeName}={value}]/

{ClassName}[@{attributeName}={value}]/..

i{ClassName}[@{attributeName}={value}] [@{attributeName}={value}]..

Table 4.13 explains the syntax for criteria statements and gives examples.

Parameter

Meaning

Example

ClassName

The name of a class.

Entity

[attributeName|The name of an attribute of the return class or an associated class|_entitycode]

|value

|[The value of an attribute.

|[c123*

Table 4.13 - Criteria statements within XML-HTTP queries

Examples of Use




The examples in Table 4.14 demonstrate the usage of the XML-HTTP interface. In actual usage, these queries would either be submitted by
a block of code or entered in the address bar of a Web browser.

Note that the servlet name GetXML in each of the examples can be replaced with GetHTML to view with layout and markup in a browser.

| Query |Ihttp://evsapi.nci.nih.gov/evsapi41/GetX ML ?query=DescLogicConcept[_entityCode=C123*]|
[Semantic Meaning|[Find all objects of type Entity that contain an ‘entityCode’ matching the pattern ‘C123*’. |

Table 4.14 - XML-HTTP interface examples

Working with Result Sets

Because HTTP is a stateless protocol, the caCORE LexEVS server cannot detect the context of any incoming request. Consequently, each
invocation of GetXML or GetHTML must contain all of the information necessary to retrieve the request, regardless of previous requests.
Developers should consider this when working with the XML-HTTP interface.

Controlling the Start Index

To specify a specific start position in the result set, specify the &startindex parameter. This will scroll to the desired position
within the set of results.

Internal-Use Parameters

A number of parameters, such as &resultCounter, &pageSize, and &page, are used internally by the system and are not
designed to be set by the user.

NOTE:

When specifying attribute values in the query string, note that use of the following characters generates an error: [ 1/\ # & %

Distributed LexEVS API
Overview

In place of the existing EVS 3.2 object model, caCORE LexEVS is making a gradual transition toward a pure LexEV'S back-end
terminology server and exposure of the LexEVS Service object model. caCORE 3.2 and earlier required a custom API layer between
external users of the system and the proprietary Apelon Terminology Server APls. With the transition to LexEVS, caCORE LexEVS can
publicly expose the open source terminology service API without requiring a custom API layer.

Architecture

The LexEVS API is exposed by the LexEVS caCORE System for remote, distributed access (Figure 4.5). The caCORE System’s
LexEVSApplicationService class implements the LexBIGService interface, effectively exposing LeXEVS via caCORE.

Since in many cases the objects returned from the LexB1GService are not merely beans, but full-fledged data access objects (DAQOSs), the
caCORE LexEVS client is configured to proxy method calls into the LexEV'S objects and forward them to the caCORE server so that they
execute within the LexEV'S environment.



caCORE caCORE
Client ApplicationSenvice |- —Spring Ramoling— . ez

LexBIG
Chent

LexBIG Datastore

Figure 4.5 - DLB Architecture

The DLB environment will be configured on the caCORE LexEV'S Server (http://lexevsapi.nci.nic.gov/lexevsapi50). This will give the
server access to the LexEV'S database and other resources. The client must therefore go through the caCORE LexEVS server to access any
LexEVS data.

LexEVS Annotations

To address LexEVS DAOs, the LexEVS API integration incorporated the addition of (1) Java annotation marking methods that can be
safely executed on the client side; and (2) classes that can be passed to the client without being wrapped by a proxy. The annotation is
named @lgClientSideSafe. Every method in the LexEVS API that is accessible to the caCORE LexEVS user had to be considered and
annotated if necessary.

Aspect Oriented Programming Proxies

LexEVS integration with caCORE LexEVS was accomplished using Spring Aspect Oriented Programming (AOP) to proxy the LexEVS
classes and intercept calls to their methods. The caCORE LexEVS client wraps every object returned by the LexB1GService inside an AOP
Proxy with advice from a LexB1GMethodInterceptor (“the interceptor™).

The interceptor is responsible for intercepting all client calls on the methods in each object. If a method is marked with the
@lgClientSideSafe annotation, it proceeds normally. Otherwise, the object, method name, and parameters are sent to the caCORE
LexEVS server for remote execution.



Clem AppicationService caCORE Serval LexBiGZarvice) [2:]

gElCoreiMNamezal

geiCodedhodeset | |- Ll
getCoteinGeSEl
sal |

CodedilodsSet

[ = B
This method has o
reste arnotation, |

£ [ is nal inlercegled.

|

| o
e L i This mathod |5 marked by
restriciTaCodes s & AnNotAtian, S0t & |
Inbarcagtac and gant to
e Server . |
|

R oy 195

resolveTolist

avacieeRamalely

|
u;

-
axacufeRams
[ i85 resahveTalist -H' EaL —
|
|

Figure 4.6 - Sequence diagram showing method interception

LexEVS API Documentation

The Mayo Clinic wrote the LexEV'S 5.0 API. Documentation describing the LexEVS Service Model is available on the LexGRID
Vocabulary Services for caBIG® GForge site at https://gforge.nci.nih.gov/frs/?group_id=14.

LexEVS Installation and Configuration

The DLB API is strictly a Java interface and requires Internet access for remote connectivity to the caCORE LexEVS server. Access to the
DLB API requires access to the lexevsapi-client.jar file, available for download on the NCICB Web site. The Iexevsapi-
client._jar file needs to be available in the classpath. For more information, see Installing and Configuring the LexEV'S 5.0 Java API.

Example of Use

Example 4.6: Using the DLB API

The following code sample shows use of the DLB API to retrieve the list of available coding schemes in the LexEV'S repository.



1 public class Test {

2 /**

3 * Initialize program variables

4 */

5

6 private String codingScheme = null;
7 private String version = null;

8

9
10 LexBIGService IbSvc;

11

12 public Test(String codingScheme, String version)

13

14 //Set the LexEVS URL (for remote access)

15 String evsUrl

= “http://lexevsapi.nci.nih.gov/lexevsapi50/http/remoteService”;
16

17 boolean isRemote = true;

18 this.codingScheme = codingScheme;

19 this.version = version;

20

21 // Get the LexBIG service reference from LexEVS
Application Service

22 IbSvc = (LexEVSApplicationService)

ApplicationServiceProvider
.getApplicationServiceFromurl
(evsUrl, "EvsServicelnfo™);

23

24 // Set the vocabulary to work with

25 Boolean retval = adapter.setVocabulary(codingScheme);
26

27 codingSchemeMap = new HashMap();

28 try {

32 // Using the LexBIG service, get the supported coding
schemes

33 CodingSchemeRenderingList csrl =
IbSvc.getSupportedCodingSchemes();

34

35 // Get the coding scheme rendering

36 CodingSchemeRendering[] csrs =
csrl.getCodingSchemeRendering();

37

38 // For each coding scheme rendering...

39 for (int i=0; i<csrs.length; i++) {

40 CodingSchemeRendering csr = csrs[i];

A1

42 // Determine whether the coding scheme rendering
is active or not

43 Boolean isActive = csr.getRenderingDetail

() .getVersionStatus()
.equals(CodingSchemeVersionStatus.ACTIVE);

A4 if (isActive !'= null && isActive.equals

(Boolean.TRUE)) {

A5

46 // Get the coding scheme summary

A7 CodingSchemeSummary css =

csr.getCodingSchemeSummary() ;

A8

49 // Get the coding scheme formal name

50 String formalname = css.getFormalName();

51

52 //Get the coding scheme version

53 String representsVersion =

css.getRepresentsVersion();

54 CodingSchemeVersionOrTag vt = new;

55 CodingSchemeVersionOrTag();

56 vt.setVersion(representsVersion);

57

58 // Resolve coding scheme based on the formal

name

59 CodingScheme scheme = null;

60

61 try {

62 scheme =
IbSvc.resolveCodingScheme(formalname, vt);

63 if (scheme != null)

64 {

65 codingSchemeMap.put((Object)

:formalname, (Object) scheme);

66

67 } catch (Exception e) {

68 // Resolve coding scheme based on the URI

69 String uri = css.getCodingSchemeURI();

70 try {

71 scheme = IbSvc.resolveCodingScheme

(uri, vt);

72 it (scheme != null)

73 {

74 codingSchemeMap.put((Object)

iformalname, (Object) scheme);

75 }

76 } catch (Exception ex) {

77 String localname = css.getLocalName();

78

79 // Resolve coding scheme based on the

local name
80 try {




LexEVS Analytical Grid Service API

The following table summarizes the operations available through the LexEVS Analytical Grid Service. Each of the operations is also
defined in detail below. The grid analytical service and related operations are viewable via the caGrid Portal (http://cagrid-
portal.nci.nih.gov).

Using the API
There are two (2) different interfaces for accessing the LexEVS Grid Services:

1. org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter, or
2. org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

Option 1, org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter provides an interface for interacting with the LexEVS Grid
Services. This Interface is intended to mirror the existing LeXEVS API as much as possible. There is no object wrapping for semantic
purposes on this interface. This allows existing applications of the LexEVS API to use Grid Services without code changes.

This Interface may be acquired by instantiating LexBIGServiceAdapter with the Grid Service URL as a parameter.

LexBIGService Ibs = new LexBlIGServiceAdapter
(“http://lexevsapi-analytical50.nci.nih.gov/wsrf/services/cagrid/LexEVSGridService™);

Option 2, org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter also provides an interface for interacting with the
LexEVS Grid Services. However, this Interfaces is the semantically defined interface. All method parameters and return values are defined
and annotated as CDEs to be loaded into caDSR. This Interface is intended to be caGrid Silver Level Compliant.

This Interface may be acquired by instantiating LexBIGServiceGridAdapter with the Grid Service URL as a parameter.

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter
(“http://lexevsapi-analytical50.nci.nih.gov/wsrf/services/cagrid/LexEVSGridService);

Method Descriptions

getCodingSchemeConcepts

|getCodingSchemeConceptS(CodingSchemeIdentification, CodingSchemeVersionOrTag) |
[Description:  ||Returns the set of all (or all active) concepts in the specified coding scheme. |
org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification,

Input: org.LexGrid.LexBIG.DataModel.Core.CodingSchemeVersionOrTag

|Output: ||org.LexG rid.LexBIG.cag rid.LexBIGCaGridServices.CodedNodeSet.stubs.types.CodedNodeSetReference|
[Exception:  |RemoteException |
Implementation

Details:

Implementation:

Step 1: Create a Resource on the server and populate it with the requested
org.LexGrid.LexBIG.LexBIGService.CodedNodeSet.

Step 2: Return the Client Reference to the user. This Reference has the above
org.LexGrid.LexBIG.LexBIGService.CodedNodeSet as a Resource. An
org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.service.CodedNodeSetClient object is built from
the above Reference.

Sample Call:

Step 1: Connect to the LexEV'S caGrid Service using the
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);



Step 2: Build a org.LexGrid.LexBIG.DataModel.Core.CodingSchemeVersionOrTag containing the
Version information for the desired Coding Scheme

CodingSchemeVersionOrTag csvt = new CodingSchemeVersionOrTag(); csvt.setVersion
("testVersion™);

Step 3: Build an org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification to hold the
Coding Scheme name.

CodingSchemeldentification codingScheme = new CodingSchemeldentification();
codingScheme.setCode(code);

Step 4: Invoke the LexBIG caGrid service as follows: CodedNodeSetGrid cns =
Ibs.getCodingSchemeConcepts(codingScheme, csvt);

getFilter

|getFiIter(ExtensionIdentification) |

Description: Returns an instance of the filter extension registered with the given name.

Input: org.LexGrid.LexBIG.DataModel.cagrid.Extensionldentification

[Output: |lorg.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.Filter stubs.types. FilterReference |
Exception: RemoteException

Implementation||Implementation:

Details:

Step 1: Create a Resource on the server and populate it with the requested
org.LexGrid.LexBIG.Extensions.Query.Filter

Step 2: Return the Client Reference to the user. This Reference has the above
org.LexGrid.LexBIG.Extensions.Query.Filter as a Resource. This client is a Service
Context that allows the user to call regular org.LexGrid.LexBIG.Extensions.Query.Filter
API calls through the grid service. An
org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.Filter.client.FilterClient object is
built from the above Reference. This FilterClient implements the Interface
org.LexGrid.LexBIG.Extensions.Query.Filter. This makes calling Grid Service Calls
through org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.Filter.client.FilterClient
transparent to the end user.

Sample Call:

Step 1: Connect to the LexEVS caGrid Service using the
org.LexGrid.LexBIG.cagrid.adapters.LexBlGServiceAdapter or
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);

Step 2: Build an org.LexGrid.LexBIG.DataModel.cagrid.Extensionldentification to hold
the Extension name.

Extensionldentification extension = new Extensionldentification();
extension.setLexBIGExtensionName(name);

Step 3: Invoke the LexEVS caGrid service as follows:

Filter filter = Ibs.getFilter(extension);

getSortAlgorithm

|getSortAIgorithm(ExtensionIdentification) |
[Description:  |[Returns an instance of the sort extension registered with the given name. |




|Input: ||org.LexG rid.LexBIG.DataModel.cagrid.Extensionldentification
org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.Sort.
Output:
stubs.types.SortReference
[Exception:  ||RemoteException

Implementation
Details:

Implementation:

Step 1: Create a Resource on the server and populate it with the requested
org.LexGrid.LexBIG.Extensions.Query.Sort

Step 2: Return the Client Reference to the user. This Reference has the above
org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.Sort.client.SortClient as a Resource.
This client is a Service Context that allows the user to call regular
org.LexGrid.LexBIG.Extensions.Query.Sort API calls through the grid service. An
org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.Sort.client.SortClient object is built
from the above Reference. This SortClient implements the Interface
org.LexGrid.LexBIG.Extensions.Query.Sort. This makes calling Grid Service Calls
through org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.Sort.client.SortClient
transparent to the end user.

Sample Call:

Step 1: Connect to the LexEV'S caGrid Service using the
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);

Step 2: Build an org.LexGrid.LexBIG.DataModel.cagrid.Extensionldentification to hold
the Extension name.

Extensionldentification extension = new Extensionldentification();
extension.setLexBIGExtensionName(name);

Step 3: Invoke the LexEVS caGrid service as follows:

Filter filter = Ibs.getSortAlgorithm(extension);

getFilterExtensions

|getFilterExtensions() |

Returns a description of all registered extensions used to provide additional filtering of

Description: query results.

[Input: |Inone |
Output org.LexGrid.LexBIG.DataModel.Collections.ExtensionDescriptionList

Exception: RemoteException

Implementation
Details:

Implementation:

Step 1: Call this method on the associated LexEV'S Service instance (or Distributed
LexEVS instance) on the server, and forward the results.

Sample Call:

Step 1: Connect to the LexEVS caGrid Service using the
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);

Step 2: Invoke the LexEV'S caGrid service as follows:




ExtensionDescriptionList extDescList = Ibs.getFilterExtensions();

getServiceMetadata

|getServiceMetadata()

Return an interface to perform system-wide query over metadata for loaded code systems

Description: and providers.
[Input: [none
org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.LexBIGServiceMetadata.
Output:
stubs.types.LexBIGServiceMetadataReference
Exception: RemoteException

Implementation
Details:

Implementation:

Step 1: Create a Resource on the server and populate it with the requested
org.LexGrid.LexBIG.LexBIGService.LexBlGServiceMetadata

Step 2: Return the LexBIGServiceMetadataClient to the user. This
LexBIGServiceMetadataClient has the above
org.LexGrid.LexBIG.LexBIGService.LexBIGServiceMetadata as a Resource. An
org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.service.LexBlGServiceMetadataClient
object is built from the above Reference.

Sample Call:*

Step 1: Connect to the LexEV'S caGrid Service using the
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or
org.LexGrid.LexBIG.cagrid.adapters.LexBlGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);

Step 2: Invoke the LexEVS caGrid service as follows:

LexBIGServiceMetadataGrid metadata = Ibs.getServiceMetadata();

getSupportedCodingSchemes

|getSupportedCodingSChemes() |

Return a list of coding schemes and versions that are supported by this service, along

Description: with their status.

[Input: [[lnone |
Output: org.LexGrid.LexBIG.DataModel.Collections.CodingSchemeRenderingList

Exception: RemoteException

Implementation
Details:

Implementation:

Step 1: Call this method on the associated LexEV'S Service instance (or Distributed
LexEVS instance) on the server, and forward the results.

Sample Call:

Step 1: Connect to the LexEVS caGrid Service using the
org.LexGrid.LexBIG.cagrid.adapters.LexBlGServiceAdapter or
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);

Step 2: Invoke the LexEVS caGrid service as follows:




CodingSchemeRenderingList csrl = Ibs.getSupportedCodingSchemes();

getLastUpdateTime

|getLastUpdateTime() |

Return the last time that the content of this service was changed; null if no changes have
occurred. Tag assignments do not count as service changes for this purpose.

[Input: |Inone |

Description:

[Output: |liava.util.Date |
[Exception: |IRemoteException |
Implementation

Details: Implementation:

Step 1: Call this method on the associated LexEV'S Service instance (or Distributed
LexEVS instance) on the server, and forward the results.

Sample Call:

Step 1: Connect to the LexEVS caGrid Service using the
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);
Step 2: Invoke the LexEVS caGrid service as follows:

Date date = Ibs.getLastUpdate Time();

resolveCodingScheme

|reso|veCodingScheme(CodingSchemeIdentification, CodingSchemeVersionOrTag) |
Description: Return detailed coding scheme information given a specific tag or version identifier.
org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification,

Input: org.LexGrid.LexBIG.DataModel.Core.CodingSchemeVersionOrTag

[Output: |lorg.LexGrid.codingSchemes.CodingScheme |
[Exception: |IRemoteException |
Implementation

Details:

Implementation:

Step 1: Call this method on the associated LexEVS Service instance (or Distributed
LexEVS instance) on the server, and forward the results.

Sample Call:

Step 1: Connect to the LexEV'S caGrid Service using the
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);

Step 2: Build an org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification to
hold the Coding Scheme name.

CodingSchemeldentification codingScheme = new CodingSchemeldentification();
codingScheme.setCode(code);

Step 3: Build a org.LexGrid.LexBIG.DataModel.Core.CodingSchemeVersionOrTag
containing the Version information for the desired Coding Scheme




CodingSchemeVersionOrTag csvt = new CodingSchemeVersionOrTag();
csvt.setVersion(“testVersion");

Step 4: Invoke the LexEVS caGrid service as follows: CodedNodeSetGrid cns =
Ibs.resolveCodingScheme(codingScheme, csvt);

getNodeGraph

getNodeGraph(CodingSchemeldentification, CodingSchemeVersionOrTag,
RelationContainerldentification)

Returns the node graph as represented in the particular relationship set in the coding

Description: scheme
org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification,

Input: org.LexGrid.LexBIG.DataModel.Core.CodingSchemeVersionOrTag,
org.LexGrid.LexBIG.DataModel.cagrid.RelationContainerldentification
org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.

Output:
CodedNodeGraph.stubs.types.CodedNodeGraphReference

[Exception:  ||RemoteException

Implementation
Details:

Implementation:

Step 1: Create a Resource on the server and populate it with the requested
org.LexGrid.LexBIG.LexBIGService.CodedNodeGraph.

Step 2: Return the Client Reference to the user. This Reference has the above
org.LexGrid.LexBIG.LexBIGService.CodedNodeGraph as a Resource. An
org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.service.CodedNodeGraphClient
object is built from the above Reference.

Sample Call:

Step 1: Connect to the LexBIG caGrid Service using the
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);

Step 2: Build an org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification to
hold the Coding Scheme name.

CodingSchemeldentification codingScheme = new CodingSchemeldentification();
codingScheme.setCode(code);

Step 3: Build an org.LexGrid.LexBIG.DataModel.Core.CodingSchemeVersionOrTag
containing the Version information for the desired Coding Scheme

CodingSchemeVersionOrTag csvt = new CodingSchemeVersionOrTag(); csvt.setVersion
(“"testVersion");

Step 4: Build an org.LexGrid.LexBIG.DataModel.cagrid.RelationContainerldentification
containing the Relation Container information.

RelationContainerldentification container = new RelationContainerldentification();
container.setDc(name);

Step 5: Invoke the LexEVS caGrid service as follows, providing String parameters for the
desired Coding Scheme and Relationship Name: CodedNodeGraphGrid cng =
client.getNodeGraph(codingScheme, csvt, container);

getMatchAlgorithms




|getMatchAIgorithms()

Returns the node graph as represented in the particular relationship set in the coding

Description: scheme.

Input: none

[Output: |lorg.LexGrid.LexBIG.DataModel.Collections.ModuleDescriptionList
Exception: RemoteException

Details:

Implementation

Implementation:

Step 1: Call this method on the associated LexEVS Service instance (or Distributed
LexEVS instance) on the server, and forward the results.

Sample Call:

Step 1: Connect to the LexEV'S caGrid Service using the
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);

Step 2: Invoke the LexEVS caGrid service as follows: ModuleDescriptionList mdl =
Ibs.getMatchAlgorithms();

getGenericExtensions

getGenericExtensions()

Returns a description of all registered extensions used to implement application-specific
behavior that is centrally accessible from a LexBIGService.

Description:
Note that only generic extensions (base class GenericExtension) will be listed here. All
other classes are retrievable at the appropriate interface point (filter, sort, etc).

[Input: |[none

Output: org.LexGrid.LexBIG.DataModel.Collections.ExtensionDescriptionList

Exception: RemoteException

Details:

Implementation

Implementation:

Step 1: Call this method on the associated LexEVS Service instance (or Distributed
LexEVS instance) on the server, and forward the results.

Sample Call:

Step 1: Connect to the LexEV'S caGrid Service using the
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);

Step 2: Invoke the LexEVS caGrid service as follows: ExtensionDescriptionList edl =
Ibs.getGenericExtensions();

getGenericExtension

getGenericExtensions(Extensionldentification)

Description: ||Returns an instance of the application-specific extension registered with the given name.
[Input: |lorg.LexGrid.LexBIG.DataModel.cagrid.Extensionldentification

Output: org.LexGrid.LexBIG.DataModel.Collections.SortDescriptionList

Exception: RemoteException




Details:

Implementation

Implementation:

Step 1: Call this method on the associated LexEVS Service instance (or Distributed
LexEVS instance) on the server, and forward the results.

Sample Call:

Step 1: Connect to the LexEV'S caGrid Service using the
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);
NOTE: Currently this method will return a LexBIGServiceConvenienceMethods instance.

Step 2: Build an org.LexGrid.LexBIG.DataModel.cagrid.Extensionldentification to hold
the Extension name. Extensionldentification extension = new Extensionldentification();
extension.setLexBIGExtensionName(”LexBI1GServiceConvenienceMethods”);

Step 3: Invoke the LexEVS caGrid service as follows:
LexBIGServiceConvenienceMethodsGrid Ibscm = Ibs.getGenericExtensions(extension);

Step 4: Return the LexBIGServiceConvenienceMethodsClient to the user. This
LexBIGServiceConvenienceMethodsClient has the above
org.LexGrid.LexBIG.Extensions.Generic.LexBIGServiceConvenienceMethods as a
Resource. An
org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.service.CodedNodeGraphClient
object is built from the above Reference.

getHistoryService

|getHistoryServi

ce(CodingSchemeldentification)

|Description: ||Reso|ve a reference to the history api servicing the given coding scheme.
[Input: |lorg.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification
org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.
Output:
HistoryService.stubs.types.HistoryServiceReference
[Exception:  |RemoteException

Implementation
Details:

Implementation:

Step 1: Call this method on the associated LexXEVS Service instance (or Distributed LexEVS
instance) on the server, and forward the results.

Step 2: Return the HistoryServiceClient to the user. This HistoryServiceClient has the above
org.LexGrid.LexBIG.History.HistoryService as a Resource. This Client is a Service Context
that allows the user to call regular org.LexGrid.LexBIG.History.HistoryService API calls
through the grid service. HistoryServiceClient implements the Interface
org.LexGrid.LexBIG.History.HistoryService. This makes calling Grid Service Calls through
org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.HistoryService.client.HistoryServiceClient
transparent to the end user.

Sample Call:

Step 1: Connect to the LexEVS caGrid Service using the
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);

Step 2: Build an org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification to hold




the Coding Scheme name.

CodingSchemeldentification codingScheme = new CodingSchemeldentification();
codingScheme.setCode(code);

Step 3: Invoke the LexEVS caGrid service as follows: HistoryServiceGrid history =
Ibs.getHistoryService(codingScheme);

getSortAlgorithms

|getSortAIgorith

ms(SortContext)

Returns a description of all registered extensions used to provide additional filtering of

Description: query results.

[Input: |lorg.LexGrid.LexBIG.DataModel. InterfaceElements.types.SortContext
[Output: |lorg.LexGrid.LexBIG.DataModel.Collections.SortDescriptionList
[Exception: | RemoteException

Implementation
Details:

Implementation:

Step 1: Call this method on the associated LexEV'S Service instance (or Distributed
LexEVS instance) on the server, and forward the results.

Sample Call:

Step 1: Connect to the LexEVS caGrid Service using the
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);

Step 2: Invoke the LexEV'S caGrid service as follows: SortDescriptionList sortDescList
= Ibs.getSortAlgorithms(sortContext);

resolveCodingSchemeCopyright

|reso|veCodingSchemeCopyright(CodingSchemeIdentification) |

Description: Return coding scheme copyright given a specific tag or version identifier.

Input: org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification

[Output: |lorg.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeCopyRight |
Exception: RemoteException

Implementation
Details:

Implementation:

Step 1: Call this method on the associated LexEV'S Service instance (or Distributed
LexEVS instance) on the server, and forward the results.

Sample Call:

Step 1: Connect to the LexEVS caGrid Service using the
org.LexGrid.LexBIG.cagrid.adapters.LexBlGServiceAdapter or
org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);

Step 2: Build an org.LexGrid.LexBIG.DataModel.cagrid. CodingSchemeldentification to
hold the Coding Scheme name.

CodingSchemeldentification codingScheme = new




CodingSchemeldentification();

codingScheme.setCode(code);

Step 3: Build an org.LexGrid.LexBIG.DataModel.Core.CodingSchemeVersionOrTag
containing the Version information for the desired Coding Scheme

CodingSchemeVersionOrTag csvt = new CodingSchemeVersionOrTag();
csvt.setVersion("testVersion");

Step 4: Invoke the LexEVS caGrid service as follows: CodingSchemeCopyRight
copyright = Ibs.resolveCodingSchemeCopyright(codingScheme, csvt);

setSecurityToken

setSecurity Token(CodingSchemeldentification, Security Token)

Description: ||Sets the Security Token for the given Coding Scheme.

|Input: ||org.LexGrid.LexBIG.DataModeI.cagrid.CodingSchemeIdentification, gov.nih.nci.evs.security.SecurityToken

Output: org.LexGrid.LexBIG.cagrid.LexEVSGridService.stubs.types.LexEVSGridServiceReference.LexEVSGridServiceReference
Exception: RemoteException

Implementation
Details:

Implementation:

Step 1: Call this method on the associated LexXEVS Service instance (or Distributed LexEVS instance) on the server, and
forward the results.

Sample Call:

Step 1: Connect to the LexEVS caGrid Service using the org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter
or org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);

Step 2: Build an org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification to hold the Coding Scheme name.
CodingSchemeldentification codingScheme = new

CodingSchemeldentification(); codingScheme.setName(“codingScheme”);

Step 3: Build an gov.nih.nci.evs.security.SecurityToken containing the security information for the desired Coding
Scheme.

SecurityToken metaToken = new SecurityToken();
metaToken.setAccessToken(“token™);

Step 4: Invoke the LexEVS caGrid service as follows: This will return a reference to a new “LexBIGServiceGrid”
instance that is associated with the security properties that were passed in.

LexBIGServiceGrid Ibsg = Ibs.setSecurityToken(codingScheme, metaToken);

Usage Instructions

Service URL

The LexEVS Gri

d Service 4.2 URL is: http://lexevsapi.nci.nih.gov/wsrf/services/cagrid/LexEVSGridService.

The service is also accessible via the caGRID Portal.

Required Libraries




The libraries required for programmatic access to the LexEVS Grid Service are listed in the tables below. The 3rd Party Software Libraries
required for use of the LexEVS API Grid Service are listed in Table 4.1 and the NCICB software captured under the caBIG® umbrella are
listed in Table 4.2.

Table 4.1 3rd Party Libraries

| Product || Jars [ License | Home Page |
From Globus 4.0.2 Java Web Services Core
lib directory:
Apache WS- addressing-1.0,jar |[adressing 1.0.LICENSE http://www.globus.org/toolkit/downloads/4.0.2
Addressing
Source available at
http://ws.apache.org/addressing
Apache Axis||axis-ant.jar axis-jars.LICENSE http://ws.apache.org/axis
axis.jar
commons-pool-
1.3.jar
commons-logging-
1.1 jar
commons-lang-
2.2.jar
commons-
collections-3.2.jar
commons-codec-
1.3.jar
log4j-1.2.8.jar
jaxrpc.jar
saaj.jar
wsdl4j.jar
Qg?g;]se xercesImpl.jar xerces.LICENSE http://xerces.apache.org/xerces-j
Apache lucene-core- Lucene LICENSE http://lucene.apache.org/
Lucene 2.3.2.jar
lucene-regex-
2.3.2.jar
lucene-snowball-
2.3.2.jar
ASM - all
purpose Java
bytepode . llasm.jar http://asm.objectweb.org/license.htmi http://asm.objectweb.org/
manipulation : ) ' ' ' ’ ' )
and analysis
framework
Castor |[castor-1.2.jar [Ihttp:/Awww.castor.org/license.html |Ihttp:/Awww.castor.org/index.html
Globus cog-axis.jar http://www.globus.org/toolkit/legal/4.0/
Toolkit
cog-jglobus.jar
Bouncy
Castle jce-jdk13-125.jar |[http://www.bouncycastle.org/licence.html http://www.bouncycastle.org/
Crypto APIs
| I | I



Open Permis|\wsrf_core.jar

wsrf_core_stubs.jar

http://www.openpermis.org/BSDlicenceKent.txt

http://www.openpermis.org/

Apache

Wss4j.jar http://ws.apache.org/wss4j/license.html http://ws.apache.org/wss4j/
WSS4J
[Spring |lspring jar [[Spring LICENSE |Ihttp:/Avww.springframework.org

Table 4.2 NCICB/caBIG Libraries

| Library

| Associated JARs |

caGrid Software Libraries

caGrid-ServiceSecurityProvider-client-1.2 jar |

caGrid-ServiceSecurityProvider-common-1.2.jar

caGrid-ServiceSecurityProvider-stubs-1.2.jar

caGrid-core-1.2 jar

caGrid-metadata-common-1.2.jar

caGrid-metadata-data-1.2.jar

|caGrid-metadata-security-l.2.jar

caGrid-metadatautils-1.2.jar

EVS API Libaries

evsapi42-beans.jar

|evsapi42-framework.jar

LexEVS Grid Service Client Library

LexEVSGridService-client.jar

LexEVS Grid Service Stubs

LexEVSGridService-stubs.jar

[LexEVS Grid Service Common

||LexEVSGridService-common.jar

LexEVS Grid Service Service

LexEVSGridService-service.jar

LexEVS Grid Service Tests

LexEVSGridService-tests.jar

[caCORE SDK Library

|lsdk-client-framework.jar

LexEVS API

lexbig.jar

Custom Castor Serializer

castor-bean-serializer.jar

Downloads

For your convenience, the required libraries are available for download here:

https://gforge.nci.nih.gov/docman/view.php/491/14401/lexevs42-gridsrvc-jars.jar.

In order to programmatically access the LexEVS API Grid Service, these libraries need to be added to your local classpath.

Code Examples

For an example client, service calls, and SOAP messages, see http://gforge.nci.nih.gov/docman/view.php/491/14252/TestClient.zip

Example API usage

Example 1: Searching for concepts in NCI Thesaurus containing the string “Gene”




/Create a Connection to the Grid Service
LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(gridServiceURL);

/Set up the CodingSchemeldentification object to define the Coding
Scheme

CodingSchemeldentification csid = new CodingSchemeldentification();
csid.setName("NCI Thesaurus');

/Get the CodedNodeSet for that CodingScheme (This returns a
CodedNodeSet Service Context)

CodedNodeSetGrid cnsg = Ibs.getCodingSchemeConcepts(csid,
null); //getCodingSchemeConcepts is a Grid

Service Call

/Set the text to match
MatchCriteria matchText = new MatchCriteriaQ);
matchText.setText('Gene™);

/Define a SearchDesignationOption, if any
SearchDesignationOption searchOption = new SearchDesignationOption();

/Choose an algorithm to do the matching
Extensionldentification matchAlgorithm = new Extensionldentification

matchAlgorithm.setlLexBIGExtensionName(‘'contains™);

/Chose a language
Languageldentification language = new Languageldentification();
language.setldentifier(en");

/Restrict the CodedNodeSet
cnsg.restrictToMatchingDesignations(matchText, searchOption,
matchAlgorithm, language);

/restrictToMatchingDesignations is a Grid Service Call

/Create a SetResolutionPolicy to handle the details of Resolving
ithe CodedNodeSet

/Here, we will set the Maximum number of Concepts returned to 10.
SetResolutionPolicy resolvePolicy = new SetResolutionPolicy();
resolvePolicy.setMaximumToReturn(10);

/Do the resolve

ResolvedConceptReferenceList rcrlist = cnsg.resolveToList
(resolvePolicy); //resolveToList is a Grid

Service Call

/Use the returned ResolvedConceptReferenceList to print some
details about the concepts found
ResolvedConceptReference[] rcref = rcrlist.getResolvedConceptReference();
for (int 1 = 0; i < rcref.length; i++) {
System.out.printIn(rcref[i].getConceptCode());
System.out.printIn(rcref[i].getReferencedEntry().
getPresentation()[0] -getText() -getContent());

Error Handling
Error Connecting to LexEVS Grid Service

When connecting through the Java Client, java.net.ConnectException and org.apache.axis.types.URI.MalformedURIException may be
thrown upon an unsuccessful attempt to connect.

A MalformedURIException is thrown in the case if a poorly-formed URL string. In this case, the exception is thrown before an attempt to
connect is even made.

If the URL is well-formed, proper connection is tested. If the connection attempt fails, a ConnectException is thrown containing the reason
for the failure.

try{
LexBIGServiceGridAdapter Ibsg = new LexBIGServiceGridAdapter
(""http://localhost:8080/wsrf/services/cagrid/LexEVSGridService™);
i} catch(Java.net.ConnectException e){
//Error Connecting
e_printStackTrace();
i} catch(org.apache.axis.types.URI .MalformedURIException e){
//URL Syntax Error
e_printStackTrace();

This example shows a typical connection to the LexEVS Grid Service, with the two potential Exceptions being caught and handled as
necessary.

LexEVS Errors



LexEVS errors will be forwarded through the Distributed LexEVS layer and then on to the Grid layer. Input parameters, along with any
other LexEVS (or Distributed LexEVS) errors will be detected on the server, not the client, and forwarded. All Generic LexEVS (or
Distributed LexEVS) errors will be forwarded via a RemoteException, with the cause of the error and underlying LexEV'S error message
included.

Invalid Service Context Access

Service Context Services are not meant to be called directly. If the client attempts to do so, an
org.LexGrid.LexBIG.cagrid.LexEVSGridService.CodedNodeSet.stubs.types.InvalidServiceContextAccess Exception will be thrown. This
indicates a call was made to a Service Context without obtaining a Service Context Reference via the Main Service (see the above section
Service Contexts and State for more information).

Security Issues

LexEVS Grid Service Security

Certain vocabulary content accessible through the LexEV'S Grid Service may require extra authorization to access. Each client is required to
supply its own access credentials via Security Tokens. These Security Tokens are implemented by a SecurityToken object:

Name: SecurityToken Namespace: gme://caCORE.caCORE/3.2/gov.nih.nci.evs.security Package: gov.nih.nci.evs.security

Accessing Secure Content

A client establishes access to a secured vocabulary via the following Grid Service Calls:

Step 1: Connect to the LexEVS caGrid Service LexBIGServiceGrid Ibs = new LexBIGServiceGridAdapter(url);

Step 2: Build an org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification to hold the Coding Scheme name.
CodingSchemeldentification codingScheme = new CodingSchemeldentification(); codingScheme.setName(*“codingScheme™);
Step 3: Build an gov.nih.nci.evs.security.SecurityToken containing the security information for the desired Coding Scheme.
SecurityToken token = new SecurityToken (); token.setAccessToken(“security Token”);

Step 4: Invoke the LexEVS caGrid service as follows: This will return a reference to a new “LexBIGServiceGrid” instance that is associated
with the security properties that were passed in.

LexBIGServiceGrid Ibsg = Ibs.setSecurity Token(codingScheme, token);

It is important to note that the Grid Service “setSecurityToken” returns an
org.LexGrid.LexBIG.cagrid.LexEVSGridService.stubs.types .LexEVSGridServiceReference.LexEVSGridServiceReference object. This
reference must be used to access the secured vocabularies.

Implementation

Each call to “setSecurityToken” sets up a secured connection to Distributed LexEVS with the access privileges included in the
SecurityToken parameter. The LexEVSGridServiceReference that is returned to the client contains a unique key identifier to the secure
connection that has been created on the server. All subsequent calls the client makes through this LexEVSGridServiceReference will be
made securely. If additional SecurityTokens are passed in through the “setSecurityToken” Grid Service, the additional security will be
added and maintained.

The “setSecurityToken” Grid Service is a stateful service. This means that after the client sets a SecurityToken, any subsequent call will be
applied to that SecurityToken.

Secure connections are not maintained on the server indefinitely, but are based on load conditions. The server will allow 30 unique secure
connections to be set up for clients without any time limitations. As additional requests for secure connections are received by the server,
connections will be released by the server on an ‘oldest first” basis. No connection, however, may be released prior to 5 minutes after its
creation.

If no SecurityTokens are passed in by the client, a non-secure Distributed LexEV'S connection will be used. The server maintains one (and
only one) un-secured Distributed LexXEVS connection that is shared by any client not requesting security.



NOTE:

All non-secured information accessed by the LexEVS Grid Service is publicly available from NCICB and users are expected to follow the
licensing requirements currently in place for accessing and using NCI EVS information.

LexEVS Data Grid Service API

The LexEVS Data Grid Service

The LexEVS Data Grid Service is a standard caGrid Data service based on the LexEVS 2009 Model
caGrid Data Service Documentation

For complete documentation on caGrid Data Services, see caGrid Data Service Documentation
Querying The System

To query the LexEVS Data Grid Service, use the standard caGrid CQL query method to compose queries. See caGrid Data Service API
Documentation for more information.

Example LexEVS Queries
Query for a Concept with a specific Code

= Example: Concept: C12345

<CQLQuery xmlns="http://CQL.caBIG/1/gov.nih.nci.cagrid.CQLQuery">
<Target name="org.LexGrid.concepts.Concept'>
<Attribute name="_entityCode" value="C12345"
predicate="EQUAL_TO"/>
</Target>
</CQLQuery>

Query for a Concept with a specific Presentation Text

= Example: A concept with a namespace 'SNOMED Clinical Terms' that contains a Presentation equal to 'Heart'

<ns1:CQLQuery
mins:ns1="http://CQL.caB1G/1/gov.nih.nci.cagrid.CQLQuery">
<nsl:Target name="org.LexGrid.concepts.Entity">
<nsl:Group logicRelation="AND">
<nsl:Association name="org.LexGrid.concepts.Presentation"
roleName="_presentationList'">
<nsl:Group logicRelation="AND">
<nsl:Association name="org.LexGrid.commonTypes.Text"
roleName="_value'>
<nsl:Group logicRelation="AND">
<nsl:Attribute name="_content" predicate="EQUAL_TO"
alue="Heart"/>
</nsl:Group>
</nsl:Association>
</nsl:Group>
</nsl:Association>
<nsl:Attribute name="_entityCodeNamespace" predicate="EQUAL_TO"
alue=""SNOMED Clinical Terms"/>
</nsl:Group>
</nsl:Target>
</ns1:CQLQuery>

Restrict Results to Specific Attributes

= Example: Retrieve all of the 'locallds' of any 'SupportedAssociation' in the system.

<ns1:CQLQuery
mins:ns1="http://CQL.caBI1G/1/gov.nih.nci.cagrid.CQLQuery">
<nsl:Target name="org.LexGrid.naming.SupportedAssociation"/>
<nsl:QueryModifier countOnly="false">
<nsl:DistinctAttribute>_localld</nsl:DistinctAttribute>
</nsl:QueryModifier>
</ns1:CQLQuery>




Retrieved from "https://cabig-kc.nci.nih.gov/VVocab/KC/index.php/LexEVS 5.0 Programmer%27s_Guide"

= This page was last modified on 8 May 2009, at 20:59.

CONTACT USPRIVACY NOT__ICEDISCLAIMERACCESSIBILITYAPPLICATION SUPPORT




