LexEVS 5.x Query Service Extension - Vocab_Wiki

IIE:r{‘r'iﬁ National Cancer Institute U.5. National Institutes of Health | wwwv.cancer.gov

ecaBlG Knowledge Center

& part of the rieg Suppart Netwark & Login create account account help

Home Knowledge Centers Discussion Forums Bugs/Feature Requests Development Code

page discussion view source history
LexEVS 5.x Query Service Extension

LexEVS 5.x Design and Architecture Guide LexEVS Information Models > LexEVS 5.x Design and Architecture Guide LexEVS Architecture > LexEVS 5.x Programmer's

vocabke contents Guide > LexEVS 5.x APl > LexEVS 5.x Query Service Extension
= Main Page
= What's New Contents [hide]
= Forums 1 Introduction
= Bugzilla 2 Lucene Lazy Loading
= Code Repository 3 Searching
= Feedback 3.1 The org.LexGrid.LexBIG.Extensions.Extendable.Search interface
= Contact Us 3.2 Default AND

3.3 Algorithms
3.3.1 More precise DoubleMetaphoneQuery
3.3.2 Case-insensitive substring
4 Sorting
4.1 The org.LexGrid.LexBIG.Extensions.Extendable.Sort interface
5 SQL Optimizations

tools

= LexBIG/LexEVS
m LexWiki

= NCI Protégé

= Related Tools and

Models
5.1 The n+1 SELECTS Problem
projects 5.2 The n+1 SELECTS Problem Example
= |exAjax 5.3 The n+1 SELECTS Solution Example
= LexGrid
= Cancer Data Introduction
Standards Repository
(caDSR) This document is a section of the Programmer's Guide. It is new for LexEVS v5.1.
= Common Terminology LexEVS v5.1 implements the following performance and behavior enhancements in the Query Services Extension:

Criteria for Adverse
Events (CTCAE)
Open Health Natural

= Lucene lazy loading for improved query retrieval performance
= Search interface for plugging in custom search algorithms

Language Processing = Enhanced and new search algorithms for improved accuracy and performance
(OHNLP) Consortium = Sort interface for plugging in custom sort algorithms
= Ontology Development = SQL optimization for improved performance in large scale query retrievals
and Information R
Extraction (ODIE) Lucene Lazy Loadlng

After the Lucene search is complete, the system stores only the Document id of documents that match the search criteria. Then,
when information from the document is needed, it is retrieved from the document. This is helpful in iterator-type scenarios, where
retrieval can be done one at a time.

semantic infrastructure

= S| Main Page

= |nitiatives

= Requirements Backgroud - Lucene Documents

other resources Lucene stores information in documents, and these documents have fields that are used to hold information. Each document has a
= Library of Documents unigue id. For example, an index of people may be indexed in Lucene as:

B Documentation @nd | | § 7T TTTTTTTT T T TS omosoossmoossooossosoooooo
Training for Tools Document: id 1

First Name: John

Last Name: Doe

Sex: Male

Age: 45

Index of Terminologies

Standards and : :
Standards Influencing ; Z
Organizations ! Document: id 2 E
= Outreach ! First Name: Jane]
1 Last Name: Doe |

X Sex: Female
external links

Age: 40
= VCDE Workspace . etc.
= caBIG® Community
Website e b
= caBIG® Support LexEVS stores information about entities in this way. Property names and values, as well as qualifiers, language, and various other
Service Providers information about the entity are held in Lucene indexes.
help Backgroud - Querying Lucene
= Editing Wiki Pages Lucene provides a query mechanism to search through the indexed documents. Given a search query, Lucene will provide the

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Query_Service_Extension[2/1/2010 11:34:38 PM]

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Design_and_Architecture_Guide_LexEVS_Information_Models
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Design_and_Architecture_Guide_LexEVS_Architecture
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Programmer%27s_Guide
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Programmer%27s_Guide
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_API
javascript:toggleToc()
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Programmer%27s_Guide
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Main_Page
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/What's_New
https://cabig-kc.nci.nih.gov/MediaWiki/index.php/Knowledge_Center_Forum_Index
https://cabig-kc.nci.nih.gov/Bugzilla
https://cabig-kc.nci.nih.gov/WebSVN
https://cabig.nci.nih.gov/kc_customer_feedback/Vocab
mailto:vocabkc@mayo.edu
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexBig_and_LexEVS
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexWiki
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/NCI_Prot�g�
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Tools_and_Related_Models
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Tools_and_Related_Models
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexAjax
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexGrid
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Cancer_Data_Standards_Repository_%28caDSR%29
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Cancer_Data_Standards_Repository_%28caDSR%29
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Cancer_Data_Standards_Repository_%28caDSR%29
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/CTCAE
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/CTCAE
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/CTCAE
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/OHNLP
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/OHNLP
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/OHNLP
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Ontology_Development_and_Information_Extraction_(ODIE)
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Ontology_Development_and_Information_Extraction_(ODIE)
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Ontology_Development_and_Information_Extraction_(ODIE)
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/SI_Main_Page
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/SI_Conop_Initiatives
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/SI_Conop_Initiatives_Requirements_Master_List
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Document_Library
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Documentation_and_Training
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Documentation_and_Training
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Terminologies
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Standards_and_Standards_Influencing_Organizations
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Standards_and_Standards_Influencing_Organizations
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Standards_and_Standards_Influencing_Organizations
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Outreach#Tool_Outreach
https://cabig.nci.nih.gov/workspaces/VCDE
https://cabig.nci.nih.gov/
https://cabig.nci.nih.gov/
https://cabig.nci.nih.gov/esn/service_providers
https://cabig.nci.nih.gov/esn/service_providers
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/VKC_Editing_Help
http://www.cancer.gov/
http://www.cancer.gov/
http://www.cancer.gov/
https://cabig-kc.nci.nih.gov/
https://cabig-kc.nci.nih.gov/
https://cabig-kc.nci.nih.gov/MediaWiki/index.php/Knowledge_Center_Index
https://cabig-kc.nci.nih.gov/MediaWiki/index.php/Knowledge_Center_Index
https://cabig-kc.nci.nih.gov/MediaWiki/index.php/Knowledge_Center_Forum_Index
https://cabig-kc.nci.nih.gov/Bugzilla/
https://ncisvn.nci.nih.gov/WebSVN/
https://ncisvn.nci.nih.gov/WebSVN/
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=Talk:LexEVS_5.x_Query_Service_Extension&action=edit
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.x_Query_Service_Extension&action=edit
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.x_Query_Service_Extension&action=history
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=Special:UserLogin&returnto=LexEVS_5.x_Query_Service_Extension
http://wikiutils.nci.nih.gov/KC_signup
https://cabig-kc.nci.nih.gov/MediaWiki/index.php/Help:Contents

LexEVS 5.x Query Service Extension - Vocab_Wiki

= Editing Forum Posts
= Contact Us

search

toolbox

What links here
Related changes

Upload file

Special pages

Printable version

Permanent link
Print as PDF

document id and the score of the match. (Lucene assigns every match a score, depending on the strength of the match given the
query.)

So, if the above index is queried for "First Name = Jane AND Last Name = Doe", the result will be the document id of the match (2),
and the score of the match (a float number, usually between 1 and 10).

Notice that none of the other information is returned, such as sex or age. It is useful for that extra information to be there, because if it
exists in the Lucene indexes we do not have to make a database query for it. But, retrieving data from Lucene documents is
expensive, just as retrieving data from a database would be.

Lazy Retrieval

Lazy retrieval can be leveraged to increase performance in LexEVS. Consider this simplified LexEVS entity index:

Document: id 1
Code: C12345
Name: Heart

Document: id 2
Code: C67890
Name: Foot

Document: id 3
Code: C98765
Name: Heart Attack

If a user constructs a query (Name = Heart*), the query will return with the matching Document ids (1 and 2). Previously, LexEVS
would immediately retrieve the Code and Name fields from the matches, and use them to construct the results that would be
ultimately returned to the user. This does not scale well, especially for general queries in large ontologies. In a large ontology, a query
of (Name = Heart*) may match tens of thousands of documents. Retrieving the information from all these documents is a significant
performance concern.

Instead of retrieving the information up front, LexEVS will simply store the document id for later use. When this information is actually
needed by the user (for example, the information needs to be displayed), it is retrieved on demand.

Searching

The org.LexGrid.LexBIG.Extensions.Extendable.Search interface

This interface enables the user to plug in custom search algorithms. Users can construct any type of query given search text. The
query can include wildcards, it can group search terms, etc.

Class: org.LexGrid.LexBIG.Extensions.Extendable.Search

Method: public org.apache.lucene.search.Query buildQuery(String searchText)

Description: Given a String search string, build a query object to match indexed Lucene documents

Default AND

Previously, for most search algorithms Lucene applied an OR to the terms if multiple terms were input as search text. For example, a
search of 'heart attack' would match all documents containing ‘heart' OR ‘attack’. This lead to non-intuitive query results being
returned. In LexEVS 5.1, the Lucene default is changed to AND. Consequently, search precision is increased and returned results are
more intuitive. In most cases the AND shrinks the number of results returned for a given query, which in turn increases overall
performance.

Algorithms

More precise DoubleMetaphoneQuery

DoubleMetaphoneQueries enable the user to input incorrectly spelled search text, while still returning results. Because this is a 'fuzzy'
search, it is important to structure the Query in a way that the most appropriate results are returned to the user first. For example, the
Metaphone computed value for "Breast" and "Prostrate" is the same. Given the search term "Breast", both "Breast" and "Prostrate" will
match with exactly the same score. Technically, this is correct behavior, but to the end user this is not desirable. To overcome this,
LexEVS v5.1 has introduced a new query, WeightedDoubleMetaphoneQuery.

WeightedDoubleMetaphoneQuery

This algorithm does not automatically assume that the user has spelled the terms incorrectly. Searches are also based on the actual
text that the user has input, along with the Metaphone value. Again, if the user input "Breast", the query will still match "Breast" and
"Prostrate”, but "Breast" will have a higher match score, because the actual user text is considered. This algorithm adds a greater
precision to this fuzzy-type query.

Algorithm:

E get: user text input
! 2: total score = 0

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Query_Service_Extension[2/1/2010 11:34:38 PM]

https://cabig-kc.nci.nih.gov/Vocab/forums/faq.php?mode=bbcode
mailto:vocabkc@mayo.edu
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Special:WhatLinksHere/LexEVS_5.x_Query_Service_Extension
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Special:RecentChangesLinked/LexEVS_5.x_Query_Service_Extension
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Special:Upload
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Special:SpecialPages
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.x_Query_Service_Extension&printable=yes
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.x_Query_Service_Extension&oldid=7009
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=Special:PdfPrint&page=LexEVS_5.x_Query_Service_Extension

LexEVS 5.x Query Service Extension - Vocab_Wiki

metaphone score = 0

actual score = 0

metaphone value = lucene.computeMetaphoneValue(user text input)
metaphone score = lucene.scoreMetaphoneValue(metaphone value)
actual score = lucene.score(user text input)

total score = metaphone score + actual score

halt

©CoO~NO U AW

Case-insensitive substring
The SubStringSearch algorithm is intended to find substrings within a large string. For example:
‘with a heart attack’
Will match:
‘The patient with a heart attack was seen today.'
Also, a leading and trailing wildcard will be added, so
‘th a heart atta'
Will also match:
‘The patient with a heart attack was seen today.'

Algorithm:

get: user text input

2: user text input = "*" + user text input + "*"
3: score = lucene.score(user text input)

4: halt

Sorting

The org.LexGrid.LexBIG.Extensions.Extendable.Sort interface
This interface allows users to plug in customized Sort algorithms to sort query results:

Class: org.LexGrid.LexBIG.Extensions.Extendable.Sort

public <T> Comparator<T> getComparatorForSearchClass(Class<T> searchClass) throws
LBParameterException

Method:

Description: Given a Class that this Sort is valid for, return the correct Comparator to compare the results and sort.

Method: public boolean isSortValidForClass(Class<?> clazz)

Description: Return whether or not this Sort is valid for Sorting on a given Class.

= Sorting on Different Class types
A single Sort may be applicable for a variety of Class types. For instance, both an 'Association' and an 'Entity' may be sorted by
'Code’, but the actual implementation of retrieving the Code and comparing it may be different between the two. It is the job of the
Sort to implement a Comparator for each potential Class that it is eligible to sort.

= Default Sorting
All result sets are sorted by default by Lucene Score, meaning that the best match according to Lucene will always be returned
first by default. Note that if two or more result sets are being Unioned, Intersected, or Differenced, the user must explicitly call a
'matchToQuery' sort on the result set as a whole to order all of the results.

= Sort Contexts
Sorts may be applicable in one or more 'Contexts.' (see: org.LexGrid.LexBIG.DataModel.InterfaceElements.types.SortContext)
This means that a Sort may apply only to a CodedNodeSet, or only to a CodedNodeGraph, or some combination. Sorts will only
be employed by the API if they match the Context in which the results are being sorted.

= Performance Issues
Sorting is generally computationally expensive, because in order to correctly sort, the field to be sorted has to be fully retrieved for
the entire result set. For very specific or refined queries, this may not be a problem, but for large ontologies or very general
queries, performance may be a concern. To alleviate this, 'Post sort' has been introduced.

= Post Sorting

In order to minimize the performance impact of sorting, users are encouraged to use a 'Post sort' where possible. A Post sort is
done after the result set has been restricted, thus limiting the amount of information that must be retrieved in order to perform the
sort. For instance, a query may match a set of Entities:

{"Heart", "Heart Failure", "Heart Attack, "Arm", "Finger", ...}

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Query_Service_Extension[2/1/2010 11:34:38 PM]

LexEVS 5.x Query Service Extension - Vocab_Wiki

As described earlier, all results are by default sorted by Lucene score, so if we limit the result set to the top 3, the result is:

~
T
®
o
5
~
T
®
@
5
~
n
)
-
c
S
Q.
T
@
)
=
~
>
(=
~+
Y
o
~
o

The restricted set can then be 'Post' sorted; and because the result set has been limited to a reasonable number of matches, sorting
and retrieval time can be minimized.

Algorithm:

1: get: Sort requested by user

2: get: Context sort is being applied to
3: if: sort is not valid for Context
halt

4: else:

5: get: Class to be sorted on

6: if: sort is not valid for Class

halt

7: get: Comparator for Sort - given (Class to be sorted on)
8: sort results using Comparator for Sort
9: halt

SQL Optimizations

The n+1 SELECTS Problem

The n+1 SELECTS Problem refers to how information can optimally be retrieved from the database, preferably using as few queries
as possible. This is desirable because query overhead is a concern. Every query must be packaged and sent to the database engine,
processed, packaged again and transferred to the client. Although the overhead may be minimal (a few milliseconds), it does not
scale. Although sometimes obvious, n+1 queries can remain in a system undetected until scaling problems are noticed.

To avoid this problem, a JOIN query can be used.
In LexEVS v5.1, there were three n+1 SELECT queries fixed:
= The EntryState while building the CodedEntry
= The EntityDescription on AssociatedConcepts
= AssociationQualifiers on AssociatedConcepts
The n+1 SELECTS Problem Example
Given two database tables, retrieve the Code, Name, and Qualifier for each Code
Table Codes
Code Name
C01234 Heart
C98765 Heart Attack
Table Qualifiers
Code Qualifier

C01234 isAnOrgan
C98765 isADisease

[%2]
m
-
m
O
1
*
-
el
o
=
o
o
Q.
o
2]

Results in:

Code Name
C01234 Heart
C98765 Heart Attack

To get the Qualifiers, separate SELECTs must be used for each.
SELECT * FROM Qualifiers where Code = C01234

And
SELECT * FROM Qualifiers where Code = C98765

This sequence results in 1 Query to retrieve the data from the Codes table, and then n Queries from the Qualifiers table. This results
in n+1 total Queries.

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Query_Service_Extension[2/1/2010 11:34:38 PM]

LexEVS 5.x Query Service Extension - Vocab_Wiki

The n+1 SELECTS Solution Example

Given two database tables, retrieve the Code, Name, and Qualifier for each Code.
Table Codes

Code Name

C01234 Heart

C98765 Heart Attack

Table Qualifiers

Code Qualifier

C01234 isAnOrgan
C98765 isADisease

Results in:
Code Name Qualifier
C01234 Heart isAnOrgan

C98765 Heart Attack isADisease

Because of the JOIN, only one Query is needed to retrieve all of the data from the database.

Categories: VKC Contents | Documentation | LexEVS

@ MAYO CLINIC This page was last modified on 22 December 2009, at 13:01. This page has been accessed 122 times.
PRIVACY NOTICE | DISCLAIMER : ACCESSIBILITY APPLICATION SUPPORT

N

TITLITE
——

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Query_Service_Extension[2/1/2010 11:34:38 PM]

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Special:Categories
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Category:VKC_Contents
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Category:Documentation
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Category:LexEVS
http://www.cancer.gov/
http://www.dhhs.gov/
http://www.nih.gov/
http://www.usa.gov/

	nih.gov
	LexEVS 5.x Query Service Extension - Vocab_Wiki

	VyeV9TZXJ2aWNlX0V4dGVuc2lvbgA=:
	form1:
	q:
	sa:

