
LexEVS 5.x caCORE Data Service API - Vocab_Wiki

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_caCORE_Data_Service_API[2/1/2010 11:38:43 PM]

LexEVS 5.x caCORE Data Service API
LexEVS 5.x API > LexEVS 5.x Query Service Extension > LexEVS 5.x Value Domain Service > LexEVS 5.x Pick List Service > LexEVS 5.x caCORE Data Service API

Contents [hide]

1 Introduction
2 caCORE LexEVS Components
3 LexEVS Data Sources

3.1 NCI Thesaurus
3.2 NCI Metathesaurus

4 Interfaces
4.1 LexEVSDistributed
4.2 LexEVSDataService
4.3 LexEVSService

5 Search Paradigm
5.1 Querying the System
5.2 QueryOptions
5.3 Examples of Use

6 Web Services API
6.1 Configuration
6.2 Building a Java SOAP Client

7 XML-HTTP API
7.1 Service Location and Syntax
7.2 Examples of Use
7.3 Working with Result Sets

8 Distributed LexEVS API
8.1 Overview
8.2 Architecture
8.3 LexEVS Annotations
8.4 Aspect Oriented Programming Proxies
8.5 LexEVS API Documentation
8.6 LexEVS Installation and Configuration
8.7 Example of Use

Introduction
This document is a section of the Programmer's Guide.

This document describes the components of the caCORE LexEVS and the service interface layer provided by the EVS API
architecture. It gives examples of how to use the EVS APIs. It also describes the Distributed LexEVS API and the Distributed LexEVS
APIAdapter.

caCORE LexEVS Components
The caCORE LexEVS API is a public domain, open source wrapper that provides full access to the LexEVS Terminology Server.
LexEVS hosts the NCI Thesaurus, the NCI Metathesaurus, and several other vocabularies. Java clients accessing the NCI Thesaurus
and Metathesaurus vocabularies communicate their requests via the open source caCORE LexEVS APIs, as shown in Overview of the
caCORE LexEVS 4.0 release components.

vocabkc contents

Main Page
What's New
Forums
Bugzilla
Code Repository
Feedback
Contact Us

tools

LexBIG/LexEVS
LexWiki
NCI Protégé
Related Tools and
Models

projects

LexAjax
LexGrid
Cancer Data
Standards Repository
(caDSR)
Common Terminology
Criteria for Adverse
Events (CTCAE)
Open Health Natural
Language Processing
(OHNLP) Consortium
Ontology Development
and Information
Extraction (ODIE)

semantic infrastructure

SI Main Page
Initiatives
Requirements

other resources

Library of Documents
Documentation and
Training for Tools
Index of Terminologies
Standards and
Standards Influencing
Organizations
Outreach

external links

VCDE Workspace
caBIG® Community
Website
caBIG® Support
Service Providers

help

Editing Wiki Pages

Home Knowledge Centers Discussion Forums Bugs/Feature Requests Development Code
Repository

 discussion view source history

Log in create account account help

page

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_API
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Query_Service_Extension
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Value_Domain_Service
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Pick_List_Service
javascript:toggleToc()
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_Programmer%27s_Guide
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Main_Page
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/What's_New
https://cabig-kc.nci.nih.gov/MediaWiki/index.php/Knowledge_Center_Forum_Index
https://cabig-kc.nci.nih.gov/Bugzilla
https://cabig-kc.nci.nih.gov/WebSVN
https://cabig.nci.nih.gov/kc_customer_feedback/Vocab
mailto:vocabkc@mayo.edu
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexBig_and_LexEVS
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexWiki
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/NCI_Prot�g�
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Tools_and_Related_Models
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Tools_and_Related_Models
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexAjax
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexGrid
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Cancer_Data_Standards_Repository_%28caDSR%29
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Cancer_Data_Standards_Repository_%28caDSR%29
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Cancer_Data_Standards_Repository_%28caDSR%29
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/CTCAE
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/CTCAE
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/CTCAE
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/OHNLP
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/OHNLP
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/OHNLP
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Ontology_Development_and_Information_Extraction_(ODIE)
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Ontology_Development_and_Information_Extraction_(ODIE)
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Ontology_Development_and_Information_Extraction_(ODIE)
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/SI_Main_Page
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/SI_Conop_Initiatives
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/SI_Conop_Initiatives_Requirements_Master_List
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Document_Library
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Documentation_and_Training
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Documentation_and_Training
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Terminologies
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Standards_and_Standards_Influencing_Organizations
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Standards_and_Standards_Influencing_Organizations
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Standards_and_Standards_Influencing_Organizations
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Outreach#Tool_Outreach
https://cabig.nci.nih.gov/workspaces/VCDE
https://cabig.nci.nih.gov/
https://cabig.nci.nih.gov/
https://cabig.nci.nih.gov/esn/service_providers
https://cabig.nci.nih.gov/esn/service_providers
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/VKC_Editing_Help
http://www.cancer.gov/
http://www.cancer.gov/
http://www.cancer.gov/
https://cabig-kc.nci.nih.gov/
https://cabig-kc.nci.nih.gov/
https://cabig-kc.nci.nih.gov/MediaWiki/index.php/Knowledge_Center_Index
https://cabig-kc.nci.nih.gov/MediaWiki/index.php/Knowledge_Center_Index
https://cabig-kc.nci.nih.gov/MediaWiki/index.php/Knowledge_Center_Forum_Index
https://cabig-kc.nci.nih.gov/Bugzilla/
https://ncisvn.nci.nih.gov/WebSVN/
https://ncisvn.nci.nih.gov/WebSVN/
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=Talk:LexEVS_5.x_caCORE_Data_Service_API&action=edit
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.x_caCORE_Data_Service_API&action=edit
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.x_caCORE_Data_Service_API&action=history
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=Special:UserLogin&returnto=LexEVS_5.x_caCORE_Data_Service_API
http://wikiutils.nci.nih.gov/KC_signup
https://cabig-kc.nci.nih.gov/MediaWiki/index.php/Help:Contents

LexEVS 5.x caCORE Data Service API - Vocab_Wiki

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_caCORE_Data_Service_API[2/1/2010 11:38:43 PM]

Figure 4.1 - Overview of the caCORE LexEVS 4.0 release components

The open source interfaces provided as part of caCORE LexEVS 5.x include Java APIs, a SOAP interface, and an HTTP REST
interface. The Java APIs are based on the EVS 3.2 object model and the LexEVS Service object model.

The EVS 3.2 model, exposed as part of caCORE 3.2, has been re-released with LexEVS as the back-end terminology service in
place of the proprietary Apelon DTS back end. The SOAP and HTTP REST interfaces are also based on the 3.2 object model. The
SDK 4.0 was used to generate the EVS 3.2 Java API, as well as the SOAP and HTTP REST interfaces.

The only difference between the EVS 3.2 API exposed as part of the caCORE LexEVS 5.x and the API exposed as part of caCORE
3.2 is the back-end terminology server used to retrieve the vocabulary data. The interface (API calls) are the same and should only
require minor adjustments to user applications.

Note:
You cannot integrate caCORE 3.2 components with caCORE LexEVS 5.x. If you used multiple components of caCORE
3.2 (for example, EVS with caDSR), you need to continue to work with the caCORE 3.2 release until the other caCORE
4.0 components are available.

The LexEVS object model was developed by the Mayo Clinic. In its native form, the associated API assumes a local, non-distributed
means of access. With caCORE LexEVS 5.x, a proxy layer enables EVS API clients to access the native LexEVS API from anywhere
without having to worry about the underlying data sources. This is called the Distributed LexEVS (DLB) API.

The DLB Adapter is another option for caCORE LexEVS 5.x clients who choose to interface directly with the LexEVS API. This is
essentially a set of convenience methods intended to simplify the use of the LexEVS API. For example, a series of method calls
against the DLB API might equate to a single method call to the DLB Adapter.

Note:
The DLB Adapter is not intended to represent a complete set of convenience methods. As part of the caCORE LexEVS
5.x release, the intention is that users will work with the DLB API and suggest useful methods of convenience to the
EVS Development Team.

LexEVS Data Sources
The LexEVS data source is the open source LexEVS terminology server. EVS clients interface with the LexEVS API to retrieve
desired vocabulary data. The EVS provides the NCI with services and resources for controlled biomedical vocabularies, including the
NCI Thesaurus and the NCI Metathesaurus.

NCI Thesaurus
The NCI Thesaurus is composed of over 27,000 concepts represented by about 78,000 terms. The Thesaurus is organized into 18
hierarchical trees covering areas such as Neoplasms, Drugs, Anatomy, Genes, Proteins, and Techniques. These terms are deployed
by the NCI in its automated systems for uses such as key wording and database coding.

NCI Metathesaurus
The NCI Metathesaurus maps terms from one standard vocabulary to another, facilitating collaboration, data sharing, and data pooling
for clinical trials and scientific databases. The Metathesaurus is based on the Unified Medical Language System (UMLS) developed by
the National Library of Medicine (NLM). It is composed of over 70 biomedical vocabularies.

Editing Forum Posts
Contact Us

toolbox

What links here
Related changes
Upload file
Special pages
Printable version
Permanent link
Print as PDF

search

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Image:Overview_LexEVS_4.0_Release_Components.jpg
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Image:Note.jpg
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Image:Note.jpg
https://cabig-kc.nci.nih.gov/Vocab/forums/faq.php?mode=bbcode
mailto:vocabkc@mayo.edu
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Special:WhatLinksHere/LexEVS_5.x_caCORE_Data_Service_API
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Special:RecentChangesLinked/LexEVS_5.x_caCORE_Data_Service_API
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Special:Upload
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Special:SpecialPages
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.x_caCORE_Data_Service_API&printable=yes
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=LexEVS_5.x_caCORE_Data_Service_API&oldid=7440
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php?title=Special:PdfPrint&page=LexEVS_5.x_caCORE_Data_Service_API

LexEVS 5.x caCORE Data Service API - Vocab_Wiki

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_caCORE_Data_Service_API[2/1/2010 11:38:43 PM]

Interfaces
Main interfaces included in the LexEVSAPI package.

LexEVSDistributed
The Distributed LexEVS Portion of LexEVSAPI. This interface is a framework for calling LexEVS API methods remotely, along with
enforcing security measures. JavaDoc

LexEVSDataService
The caCORE-SDK Data Service Portion of LexEVSAPI. This extends on the caCORE ApplicationService to provide additional Query
Options. JavaDoc

LexEVSService
The Main LexEVSAPI Interface. This includes support for caCORE-SDK Data Service calls as well as remote LexBIG API calls.
JavaDoc

Search Paradigm
The caCORE LexEVS architecture includes a service layer that provides a single, common access paradigm to clients that use any of
the provided interfaces. As an object-oriented middleware layer designed for flexible data access, caCORE LexEVS relies heavily on
strongly typed objects and an object-in/object-out mechanism.

Accessing and using a caCORE LexEVS system requires the following steps:

1. Ensure that the client application has access to the objects in the domain space.
2. Formulate the query criteria using the domain objects.
3. Establish a connection to the server.
4. Submit the query objects and specify the desired class of objects to be returned.
5. Use and manipulate the result set as desired.

caCORE LexEVS systems use four native application programming interfaces (APIs). Each interface uses the same paradigm to
provide access to the caCORE LexEVS domain model, with minor changes specific to the syntax and structure of the clients. The
following sections describe each API, identify installation and configuration requirements, and provide code examples.

The sequence diagram in Sequence diagram - caCORE 4.0 LexEVS API search mechanism illustrates the caCORE LexEVS API
search mechanism implemented to access the NCI EVS vocabularies.

Figure 4.4 - Sequence diagram - caCORE 4.0 LexEVS API search mechanism

Querying the System
LexEVS conforms to the caCORE SDK API – for more information see caCORE SDK 4.1 Programmer's Guide

QueryOptions
QueryOptions are designed to give the user extra control over the query before it is sent to the system. QueryOptions may be used
to modify a query in these ways:

1. ‘CodingScheme’ – Restricts the query to the specified Coding Scheme, instead of querying every available Coding Scheme.
2. CodingSchemeVersionOrTag’ – Restricts the query to the specified Version of the Coding Scheme. Note that:

a. This may NOT be specified without also specifying the ‘CodingScheme’ attribute.

http://lexevsapi.nci.nih.gov/lexevsapi50/docs/org/LexGrid/LexBIG/caCore/interfaces/LexEVSDistributed.html
http://lexevsapi.nci.nih.gov/lexevsapi50/docs/org/LexGrid/LexBIG/caCore/interfaces/LexEVSDataService.html
http://lexevsapi.nci.nih.gov/lexevsapi50/docs/org/LexGrid/LexBIG/caCore/interfaces/LexEVSService.html
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Image:CaCORE_4.0_LexEVS_API_Search_Mechanism.jpg
https://gforge.nci.nih.gov/docman/view.php/148/15067/caCore_SDK_v41_ProgrammersGuide.pdf
http://lexevsapi.nci.nih.gov/lexevsapi50/docs/org/LexGrid/LexBIG/caCore/applicationservice/QueryOptions.html

LexEVS 5.x caCORE Data Service API - Vocab_Wiki

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_caCORE_Data_Service_API[2/1/2010 11:38:43 PM]

b. If left unset, it will default to the version of the Coding Scheme tagged as “PRODUCTION” in the system.

1. ‘SecurityTokens’ – Security Tokens to use with the specified query. These Security Tokens are scoped to the current query
ONLY. An subsequent queries will also need to specify the necessary Query Options.

2. ‘LazyLoad’ – Some high use-case model Objects have bee ‘lazy-load’ enabled. This means that some attributes and
associations of a model Object may not be fully populated when returned to the user. This allows for faster query times. This
defaults to false, meaning that all attributes and associations will be eagerly fetched by the server and model Objects will
always be fully populated. To enable this on applicable Objects, set to true.
NOTE: Lazy Loading may only be used in conjunction with specifying a Coding Scheme and Version with the ‘CodingScheme’
and ‘CodingSchemeVersionOrTag’ attributes above.

3. ‘ResultPageSize’ – the page size of results to return. The higher the number, the more results the system will return to the user
at once. The client will request the next group of query results transparenly. This parameter is useful for performance tuning.
For example, if a query returns a result of10,000 Objects, a ‘ResultPageSize’ of ‘1000’ would make 10 calls to the server
returning a page of 1000 results each time. If left unset, this value will default to the default set Page Size

Examples of Use
Example 4.1: Query By Example with No Query Options

1 public static void main(String[] args)
2 {
3 try {
4 LexEVSApplicationService appService =
5 (LexEVSApplicationService)ApplicationServiceProvider.
6 getApplicationService("EvsServiceInfo");
7 Entity entity = new Entity()
8 entity.setEntityCode(“C1234”);
9 List<Entity> list = appService.search(Entity.class, entity);
10 } catch(ApplicationException ex){
11 }
12 }

Explanation of statements in explains specific statements in the code by line number .

Line
Number

Explanation

4
Creates an instance of a class that implements the LexEVSApplicationService interface. This interface defines the service
methods used to access data objects.

7
Construct the Query By Example Object and populate it with the desired search critieria. For this example, seach for any
‘Entity’ with an ‘entityCode’ attribute equaling ‘C1234’.

9

Calls the search method of the LexEVSApplicationService object.

This method returns a List Collection. This list will contain all of the ‘Entity’ Objects that match the search critieria. It this
case, it will return all ‘Entity’ Objects with an ‘entityCode’ of “C1234”.

Table 4.6 - Explanation of statements in :

Example 4.2 : Query By Example with Query Options

1 public static void main(String[] args)
2 {
3 try {
4 LexEVSApplicationService appService =
5 (LexEVSApplicationService)ApplicationServiceProvider.
6 getApplicationService("EvsServiceInfo");
7 QueryOptions queryOptions = new QueryOptions();
8 queryOptions.setCodingScheme(“NCI Thesaurus”);
9 CodingSchemeVersionOrTag csvt = new CodingSchemeVersionOrTag();
10 csvt.setVersion(“09.10d”);
11 queryOptions.setCodingSchemeVersionOrTag(csvt);
12 Entity entity = new Entity()
13 entity.setEntityCode(“C1234”);
14 List<Entity> list = appService.search(Entity.class, entity, queryOptions);
15 } catch(ApplicationException ex){
16 }
17 }

Explanation of statements in explains specific statements in the code by line number.

Line
Number

Explanation

4
Creates an instance of a class that implements the LexEVSApplicationService interface. This interface defines the service
methods used to access data objects.

7 Construct the QueryOptions Object.

http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AEntity+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AEntity+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AEntity+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AApplicationException+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AEntity+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AEntity+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AEntity+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AApplicationException+java.sun.com&bntI=I%27m%20Feeling%20Lucky

LexEVS 5.x caCORE Data Service API - Vocab_Wiki

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_caCORE_Data_Service_API[2/1/2010 11:38:43 PM]

8 Populate the QueryOptions with the desired Coding Scheme.

9 Construct a CodingSchemeVersionOrTag Object.

10 Populate the CodingSchemeVersionOrTag Object with the desired Version.

11 Populate the QueryOptions with the above CodingSchemeVersionOrTag Object.

12
Construct the Query By Example Object and populate it with the desired search critieria. For this example, seach for any
‘Entity’ with an ‘entityCode’ attribute equaling ‘C1234’.

14

Calls the search method of the LexEVSApplicationService object, along with the QueryOptions.

This method returns a List Collection. This list will contain all of the ‘Entity’ Objects that match the search critieria, while
being further modified by the QueryOptions. It this case, it will return all ‘Entity’ Objects with an ‘entityCode’ of “C1234”
belonging to the CodingScheme “NCI Thesaurus” Version “09.10d”.

Table 4.7 - Explanation of statements in :

Web Services API
The caCORE LexEVS Web Services API enables access to caCORE LexEVS data and vocabulary data from development
environments where the Java API cannot be used, or where use of XML Web services is more desirable. This includes non-Java
platforms and languages such as Perl, C/C++, .NET framework (C#, VB.Net), and Python.

The Web services interface can be used in any language-specific application that provides a mechanism for consuming XML Web
services based on the Simple Object Access Protocol (SOAP). In those environments, connecting to caCORE LexEVS can be as
simple as providing the end-point URL. Some platforms and languages require additional client-side code to handle the
implementation of the SOAP envelope and the resolution of SOAP types.To view a list of packages that cater to different programming
languages, visit http://www.w3.org/TR/SOAP/ and http://www.soapware.org/ .

To maximize standards-based interoperability, the caCORE Web service conforms to the Web Services Interoperability Organization
(WS-I) basic profile. The WS-I basic profile provides a set of non-proprietary specifications and implementation guidelines that enable
interoperability between diverse systems. For more information about WS-I compliance, visit http://www.ws-i.org .

On the server side, Apache Axis is used to provide SOAP-based, inter-application communication. Axis provides the appropriate
serialization and deserialization methods for the JavaBeans to achieve an application-independent interface. For more information
about Axis, visit http://ws.apache.org/axis/ .

Configuration
The caCORE/LexEVS WSDL file is located at http://lexevsapi.nci.nih.gov/lexevsapi50/services/lexevsapi50Service?wsdl . In addition
to describing the protocols, ports, and operations exposed by the caCORE LexEVS Web service, this file can be used by a number of
IDEs and tools to generate stubs for caCORE LexEVS objects. This enables code on different platforms to instantiate native objects
for use as parameters and return values for the Web service methods. For more information on how to use the WSDL file to generate
class stubs, consult the specific documentation for your platform.

The caCORE LexEVS Web services interface has a single end point called lexevsapi50Service, which is located at
http://lexevsapi.nci.nih.gov/lexevsapi50/services/lexevsapi50Service . Client applications should use this URL to invoke Web service
methods.

Building a Java SOAP Client
LexEVSAPI provides a tool to create a Java SOAP client capable of connecting to a LexEVSAPI SOAP service.

In the ./webServiceSoapClient contains a build.xml file that will construct a LexEVSAPI SOAP client. Before building, you may edit this
build.xml file to customize the build process. Editable properties include ‘wsdlURL’ and ‘webServiceNamespace’. An example
configuration is below:

<property name="wsdlURL" value="http://bmidev4:8180/lexevsapi50/services/lexevsapi50Service?wsdl"/>
<property name="webServiceNamespace" value="http://bmidev4:8180/lexevsapi50/services/lexevsapi50Service"/>

To build the client, use the command ‘ant all’ from the ./webServiceSoapClient directory.

XML-HTTP API
The caCORE LexEVS XML-HTTP API, based on the REST (Representational State Transfer) architectural style, provides a simple
interface using the HTTP protocol. In addition to its ability to be invoked from most Internet browsers, developers can use this interface
to build applications that do not require any programming overhead other than an HTTP client. This is particularly useful for developing
Web applications using AJAX (Asynchronous JavaScript and XML).

http://www.w3.org/TR/SOAP/
http://www.soapware.org/
http://www.ws-i.org/
http://ws.apache.org/axis/
http://lexevsapi.nci.nih.gov/lexevsapi50/services/lexevsapi50Service?wsdl
http://lexevsapi.nci.nih.gov/lexevsapi50/services/lexevsapi50Service

LexEVS 5.x caCORE Data Service API - Vocab_Wiki

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_caCORE_Data_Service_API[2/1/2010 11:38:43 PM]

Service Location and Syntax
The CORE EVS XML-HTTP interface uses the following URL syntax:

http://{server}/{servlet}?query={returnClass}&{criteria}
 &startIndex={index}
 &codingSchemeName={codingSchemeName}
 &codingSchemeVersion={codingSchemeVersion}

Table 4.12 explains the syntax, indicates whether specific elements are required, and gives examples.

Element Meaning Required Example

server

Name of the Web server on which the
caCORE LexEVS 5.0 Web application is
deployed.

Yes lexevsapi.nci.nih.gov/lexevsapi50

servlet
URI and name of the servlet that will
accept the HTTP GET requests.

Yes
lexevsapi50/GetXML

lexevsapi50/GetHTML

returnClass
Class name indicating the type of objects
that this query should return.

Yes query=DescLogicConcept

criteria
Search request criteria describing the
requested objects.

Yes DescLogicConcept [@id=2]

index Starting index of the result set. No startIndex=25

codingSchemeName
Restrict the query to a specific Coding
Scheme Name.

No codingSchemeName=NCI_Thesaurus

codingSchemeVersion
Restrict the query to a specific Coding
Scheme Version.

No

NOTE: Must be used in
conjunction with a
‘codingSchemeName’

codingSchemeVersion=09.12d

Table 4.12 - URL syntax used by the caCORE LexEVS XML-HTTP interface

The caCORE LexEVS architecture currently provides two servlets that accept incoming requests:

GetXML returns results in an XML format that can be parsed and consumed by most programming languages and many document
authoring and management tools.
GetHTML presents result using a simple HTML interface that can be viewed by most modern Internet browsers.

Within the request string of the URL, the criteria element specifies the search criteria using XQuery-like syntax. Within this syntax,
square brackets ([and]) represent attributes and associated roles of a class, the at symbol (@) signals an attribute name/value pair,
and a forward slash character (/) specifies nested criteria.

Criteria statements in XML-HTTP queries generally use the following syntax (although you can also build more complex statements):

{ClassName}[@{attributeName}={value}] [@{attributeName}={value}]…

ClassName}[@{attributeName}={value}]/

{ClassName}[@{attributeName}={value}]/…

Table 4.13 explains the syntax for criteria statements and gives examples.

Parameter Meaning Example

ClassName The name of a class. Entity

attributeName The name of an attribute of the return class or an associated class _entityCode

value The value of an attribute. C123*

Table 4.13 - Criteria statements within XML-HTTP queries

Examples of Use
The examples in Table 4.14 demonstrate the usage of the XML-HTTP interface. In actual usage, these queries would either be
submitted by a block of code or entered in the address bar of a Web browser.

Note that the servlet name GetXML in each of the examples can be replaced with GetHTML to view with layout and markup in a
browser.

Query http://evsapi.nci.nih.gov/evsapi41/GetXML?query=DescLogicConcept [_entityCode=C123*]

http://evsapi.nci.nih.gov/evsapi41/GetXML?query=DescLogicConcept

LexEVS 5.x caCORE Data Service API - Vocab_Wiki

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_caCORE_Data_Service_API[2/1/2010 11:38:43 PM]

Semantic Meaning Find all objects of type Entity that contain an ‘entityCode’ matching the pattern ‘C123*’.

Table 4.14 - XML-HTTP interface examples

Working with Result Sets
Because HTTP is a stateless protocol, the caCORE LexEVS server cannot detect the context of any incoming request. Consequently,
each invocation of GetXML or GetHTML must contain all of the information necessary to retrieve the request, regardless of previous
requests. Developers should consider this when working with the XML-HTTP interface.

Controlling the Start Index

To specify a specific start position in the result set, specify the &startIndex parameter. This will scroll to the desired position
within the set of results.

Internal-Use Parameters

A number of parameters, such as &resultCounter, &pageSize, and &page, are used internally by the system and are not
designed to be set by the user.

NOTE:

When specifying attribute values in the query string, note that use of the following characters generates an error: [] / \ # & %

Distributed LexEVS API

Overview
In place of the existing EVS 3.2 object model, caCORE LexEVS is making a gradual transition toward a pure LexEVS back-end
terminology server and exposure of the LexEVS Service object model. caCORE 3.2 and earlier required a custom API layer between
external users of the system and the proprietary Apelon Terminology Server APIs. With the transition to LexEVS, caCORE LexEVS
can publicly expose the open source terminology service API without requiring a custom API layer.

Architecture
The LexEVS API is exposed by the LexEVS caCORE System for remote, distributed access (Figure 4.5). The caCORE System’s
LexEVSApplicationService class implements the LexBIGService interface, effectively exposing LexEVS via caCORE.

Since in many cases the objects returned from the LexBIGService are not merely beans, but full-fledged data access objects (DAOs),
the caCORE LexEVS client is configured to proxy method calls into the LexEVS objects and forward them to the caCORE server so
that they execute within the LexEVS environment.

Figure 4.5 - DLB Architecture

The DLB environment will be configured on the caCORE LexEVS Server (http://lexevsapi.nci.nic.gov/lexevsapi50). This will give the
server access to the LexEVS database and other resources. The client must therefore go through the caCORE LexEVS server to
access any LexEVS data.

LexEVS Annotations
To address LexEVS DAOs, the LexEVS API integration incorporated the addition of (1) Java annotation marking methods that can be
safely executed on the client side; and (2) classes that can be passed to the client without being wrapped by a proxy. The annotation

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Image:DLB_Architecture.jpg
http://lexevsapi.nci.nic.gov/lexevsapi50

LexEVS 5.x caCORE Data Service API - Vocab_Wiki

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_caCORE_Data_Service_API[2/1/2010 11:38:43 PM]

is named @lgClientSideSafe. Every method in the LexEVS API that is accessible to the caCORE LexEVS user had to be considered
and annotated if necessary.

Aspect Oriented Programming Proxies
LexEVS integration with caCORE LexEVS was accomplished using Spring Aspect Oriented Programming (AOP) to proxy the LexEVS
classes and intercept calls to their methods. The caCORE LexEVS client wraps every object returned by the LexBIGService inside an
AOP Proxy with advice from a LexBIGMethodInterceptor (“the interceptor”).

The interceptor is responsible for intercepting all client calls on the methods in each object. If a method is marked with the
@lgClientSideSafe annotation, it proceeds normally. Otherwise, the object, method name, and parameters are sent to the caCORE
LexEVS server for remote execution.

Figure 4.6 - Sequence diagram showing method interception

LexEVS API Documentation
The Mayo Clinic wrote the LexEVS 5.0 API. Documentation describing the LexEVS Service Model is available on the LexGRID
Vocabulary Services for caBIG® GForge site at https://gforge.nci.nih.gov/frs/?group_id=14 .

LexEVS Installation and Configuration
The DLB API is strictly a Java interface and requires Internet access for remote connectivity to the caCORE LexEVS server. Access to
the DLB API requires access to the lexevsapi-client.jar file, available for download on the NCICB Web site. The lexevsapi-
client.jar file needs to be available in the classpath. For more information, see Installing and Configuring the LexEVS 5.0 Java API.

Example of Use
Example 4.6: Using the DLB API

The following code sample shows use of the DLB API to retrieve the list of available coding schemes in the LexEVS repository.

public class Test {
/**
 * Initialize program variables
 */

 private String codingScheme = null;
 private String version = null;

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Image:Sequence_Diagram_Showing_Method_Interception.jpg
https://gforge.nci.nih.gov/frs/?group_id=14
http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I%27m%20Feeling%20Lucky

LexEVS 5.x caCORE Data Service API - Vocab_Wiki

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_caCORE_Data_Service_API[2/1/2010 11:38:43 PM]

 LexBIGService lbSvc;

 public Test(String codingScheme, String version) {
 //Set the LexEVS URL (for remote access)
 String evsUrl = “http://lexevsapi.nci.nih.gov/lexevsapi50/http/remoteService”;
 boolean isRemote = true;
 this.codingScheme = codingScheme;
 this.version = version;

 // Get the LexBIG service reference from LexEVS Application Service
 lbSvc = (LexEVSApplicationService)ApplicationServiceProvider.getApplicationServiceFromUrl(evsUrl, "EvsServiceInfo");

 // Set the vocabulary to work with
 Boolean retval = adapter.setVocabulary(codingScheme);

 codingSchemeMap = new HashMap();
 try {
 // Using the LexBIG service, get the supported coding schemes
 CodingSchemeRenderingList csrl = lbSvc.getSupportedCodingSchemes();

 // Get the coding scheme rendering
 CodingSchemeRendering[] csrs = csrl.getCodingSchemeRendering();

 // For each coding scheme rendering...
 for (int i=0; i<csrs.length; i++) {
 CodingSchemeRendering csr = csrs[i];

 // Determine whether the coding scheme rendering is active or not
 Boolean isActive = csr.getRenderingDetail().getVersionStatus().equals(CodingSchemeVersionStatus.ACTIVE);
 if (isActive != null && isActive.equals(Boolean.TRUE)) {
 // Get the coding scheme summary
 CodingSchemeSummary css = csr.getCodingSchemeSummary();

 // Get the coding scheme formal name
 String formalname = css.getFormalName();

 //Get the coding scheme version
 String representsVersion = css.getRepresentsVersion();
 CodingSchemeVersionOrTag vt = new;
 CodingSchemeVersionOrTag();
 vt.setVersion(representsVersion);

 // Resolve coding scheme based on the formal name
 CodingScheme scheme = null;

 try {
 scheme =lbSvc.resolveCodingScheme(formalname, vt);
 if (scheme != null){
 codingSchemeMap.put((Object) formalname, (Object) scheme);
 }
 } catch (Exception e) {
 // Resolve coding scheme based on the URI
 String uri = css.getCodingSchemeURI();
 try {
 scheme = lbSvc.resolveCodingScheme(uri, vt);
 if (scheme != null) {
 codingSchemeMap.put((Object) formalname, (Object) scheme);
 }
 } catch (Exception ex) {
 String localname = css.getLocalName();

 // Resolve coding scheme based on the local name
 try {
 scheme = lbSvc.resolveCodingScheme(localname, vt);
 if(scheme != null){
 codingSchemeMap.put((Object) formalname, (Object) scheme);
 }
 } catch (Exception e2) {
 }
 }
 }
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /**
 *Main
 */
 public static void main (String[] args)
 {
 String name = “NCI Thesaurus”;
 String version = “06.12d”;

 // Instantiate the Test Class
 Test test = new Test(name, version);
 }
}

Categories: VKC Contents | Documentation | LexEVS Code | LexEVS

This page was last modified on 20 January 2010, at 15:29. This page has been accessed 156 times.

CONTACT US PRIVACY NOTICE DISCLAIMER ACCESSIBILITY APPLICATION SUPPORT

http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3ABoolean+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AHashMap+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3ABoolean+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3ABoolean+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AObject+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AObject+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AException+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AObject+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AObject+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AException+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AObject+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AObject+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AException+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AException+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3AString+java.sun.com&bntI=I%27m%20Feeling%20Lucky
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Special:Categories
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Category:VKC_Contents
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Category:Documentation
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Category:LexEVS_Code
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Category:LexEVS

LexEVS 5.x caCORE Data Service API - Vocab_Wiki

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexEVS_5.x_caCORE_Data_Service_API[2/1/2010 11:38:43 PM]

http://www.cancer.gov/
http://www.dhhs.gov/
http://www.nih.gov/
http://www.usa.gov/

	nih.gov
	LexEVS 5.x caCORE Data Service API - Vocab_Wiki

	NPUkVfRGF0YV9TZXJ2aWNlX0FQSQA=:
	form1:
	q:
	sa:

