6
caMDR Warehouse -- Database Performance Testing Report

NCICB

caMDR Warehouse
Database Performance Testing Report on Oracle RDBMS
08/13/2008
Prepared by: Ekagra Software Technologies, Ltd.

For: The National Cancer Institute, Center for Biomedical Informatics and Information Technology (NCICBIIT)

Table of contents
31
Introduction

32
Oracle Implementations of the Warehouse

53
Warehouse Database Performance

53.1
Warehouse Database Operations and their Effects on Performance

63.2
Test Environment Specs

73.3
Determining a SQL Tuning set

83.4
Performance Tuning using the SQLAccess Advisor

93.4.1
Results for the ETL Table implementation

103.4.2
Results for the Mview Complete and Mview Fast implementations

104
Performance Testing Methodology

104.1
Testing Methodology

114.2
Performance Monitoring using AWR and ADDM

124.3
Testing Results

135
Conclusion

146
Best Practices for Optimal Database Performance

146.1
Gathering Statistics

146.2
SQL Tuning

146.3
Data Block Contention

156.4
Parallel Processing in Oracle

156.5
Correctly Sizing Memory Allocated to Oracle

16Appendix A -- Requirements and initial goals of the MDR warehouse

17Appendix B – ETL Diagrams for MDR Warehouse

1 Introduction
The MDR warehouse model uses a database to store metadata as a result of an ETL process originating from the current caDSR database. See Appendix A for the initial requirements of that guided the design of the warehouse model. Three implementations have been configured in the Oracle RDBMS environment to fulfill the requirements of the MDR Warehouse model:
· A stand alone table schema with a SQL ETL load process for complete data refreshes

· A Materialized view schema with Complete (reload from Scratch) refreshes

· A materialized view schema with Fast (incremental) refreshes
There is a need to evaluate the performance of each approach with the goal of comparing the results to determine which warehouse implementation would be optimal for the Oracle database environment. It’s important to note that the measure of performance here is query response times and the throughput of the database system.

The purpose of this document is to present the results of the implementation of a testing methodology that was devised for measuring and comparing the performance of the various Oracle implementations of the MDR warehouse database.
Also defined in this document are the best practice goals for configuring the Oracle database environment for the caMDR Warehouse.
2 Oracle Implementations of the Warehouse

The table below contains a dictionary list of the MDR Warehouse tables that are currently used in the performance testing.

	Table Name
	Definition

	ADMINISTERED_ELEMENT
	An Administered element is a component for which administrative information must be recorded. It may be a Data Element or one of its associated components (Representation, Value Domain, Data Element Concept, Conceptual Domain, Object Class, or Property) that require explicit specifications for reuse in or among enterprises. This table provides descriptive information about individual administered elements.

	AE_DEFINITION
	This table stores the alternate definition properties of all the Administered Elements

	AE_DESIGNATION
	This table stores the designation properties of all the Administered Elements

	AE_REF_DOCUMENT
	This table stores the reference documents of all the Administered Elements

	AE_RELATIONSHIP
	This table describes the relationships between pairs of administered elements

	AE_TYPE
	This table describes the stored types of administered elements, such as data elements, object classes, value domains, ...

	AE_UMA_RELATIONSHIP
	This table describes the relationships combining administered elements and UML model class attributes

	RELATIONSHIP_TYPE
	This table defines a set of relationship types that connect various objects

	UMC_RELATIONSHIP
	This table describes relationships between pairs of UML model classes

	UML_MOD_ATTRIBUTE
	This table contains descriptive information about UML model class attributes stored in caDSR

	UML_MOD_CLASS
	This table contains descriptive information about UML model classes stored in caDSR

Table 2.1 -- Dictionary Report on MDR Warehouse tables
As mentioned above, the database model for the MDR warehouse can be implemented on the Oracle RDBMS as any of the following schema types:

· The ETL table schema – Tables are the main model objects and the refresh mechanism is an ETL process made of a set of SQL scripts that truncate the tables before loading them by pulling from the caDSR database. The schema includes primary and foreign key indexes for most tables, and also a good number inversion entry indexes to optimize query performance.

· The Materialized View with Complete Refresh schema – As opposed to the ETL table schema, here all tables, except for the reference tables, are converted into Materialized views on pre-built tables with the COMPLETE REFRESH option and the QUERY REWRITE option (when applicable). The Query Rewrite option is not applicable on relationship tables that combine multiple queries, with each defining the data related to a relationship type. The same indexes that exist on the ETL table schema are present here as well.

· The Materialized View with FAST Refresh schema – Same as the Mview with complete Refresh schema, here also all tables, except for the reference tables, are converted into Materialized views on pre-built tables with the FAST REFRESH ON COMMIT option(when applicable) and the QUERY REWRITE option (when applicable). The same indexes that exist on the ETL table schema are present here as well. The Query Rewrite option and the Fast Refresh options are not applicable on relationship tables that combine multiple queries, with each defining the data related to a relationship type. The same indexes that exist on the other two schemas are present here as well.
Table 2.2 below summarizes the differences between the three schemas.
	Table Name
	ETL Table
	Mview Complete
	Mview Fast

	
	
	Mview Complete
	Mview Complete with Query Rewrite
	Mview Fast
	Mview Fast with Query Rewrite

	ADMINISTERED_ELEMENT
	Yes
	Yes
	Yes
	No
	No

	14 ADMINISTERED_ELEMENT tables
	N/A
	N/A
	N/A
	Yes
	Yes

	AE_DEFINITION
	Yes
	Yes
	Yes
	Yes
	Yes

	AE_DESIGNATION
	Yes
	Yes
	Yes
	Yes
	Yes

	AE_REF_DOCUMENT
	Yes
	Yes
	Yes
	Yes
	Yes

	AE_RELATIONSHIP (Relationship Table or Complete Refresh Mview with 32 SELECT queries)
	Yes
	Yes
	No
	No
	No

	AE_TYPE (Reference Table)
	Yes
	N/A
	N/A
	N/A
	N/A

	AE_UMA_RELATIONSHIP (Relationship Table or Complete Refresh Nested Mview with 5 SELECT queries that are referencing caDSR Mviews
	Yes
	
	No
	No
	No

	RELATIONSHIP_TYPE (Reference Table)
	Yes
	N/A
	N/A
	N/A
	N/A

	UMC_RELATIONSHIP (Relationship Table or Complete Refresh Nested Mview with 2 SELECT queries that are referencing caDSR Mviews
	Yes
	Yes
	No
	No
	No

	UML_MOD_ATTRIBUTE (Table or Complete Refresh Nested Mview with SELECT query that is referencing caDSR Mviews
	Yes
	Yes
	No
	No
	No

	UML_MOD_CLASS
	Yes
	Yes
	Yes
	Yes
	Yes

Table 2.2 -- Dictionary Report on MDR Warehouse tables

See Appendix B for the ETL diagrams of the three warehouse implementations.
3 Warehouse Database Performance
3.1 Warehouse Database Operations and their Effects on Performance
Refresh routines and search query operations constitute the largest and most resource intensive transactions in the warehouse. Hence the performance of the warehouse database depends upon the frequency and duration of data refreshes and the level of complexity and detail of the queries that are run against it.
There are three basic database operations performed during warehouse refreshes: insert, update, and delete (or truncate). Each operation has its own performance characteristics.

· INSERT— As part of the ETL process, new rows are inserted into the MDR Warehouse from the source caDSR database, at regular intervals. The number of disk I/O writes per second by the oracle redo log is the primary factor affecting performance of the insert operation. CPU and memory are secondary factors for insert performance.

· UPDATE— Some tables are refreshed via update statements and because Oracle uses parallel processing whenever it can, update operations can run three to four times faster in multi-core systems provided they have enough memory. Oracle parallel query is on by default. If updates seem to be taking a long time, a SQL Trace can be run to compare the CPU time with the total time. If total time is greater than CPU time, the problem may be insufficient memory allocated to Oracle, in which case performance can be improved by increasing the amount of memory available to Oracle.

· DELETE — The data in most tables is either deleted or truncated during refresh. This regular deletion can leave “holes” in tables and indexes and lead to fragmentation.
Considerations for Complete vs. Fast Refresh

The refresh procedures for the stand alone tables and the complete refresh materialized view schemas will be designed so as not to impact user access to the warehouse. These refreshes require a complete deletion of table data prior to loading new data. To limit impact to the users, these refreshes will have to be scheduled during preset downtime intervals or a redirection mechanism will have to be designed to provide users with table data for the duration of the refresh.

By contrast to complete refreshes, incremental or Fast refreshes occur on the LIVE system at frequent intervals. So any performance measurement on the implementation that performs incremental refreshes has to account for this refresh activity. The preferred incremental refresh implementation of the warehouse is for FAST refreshable ON COMMIT materialized views, i.e. as soon as each transactional change occurs, it is replicated into the MDR materialized views. This per transaction replication is an actual part of the COMMIT process. So to include this requirement into the testing, we had to simulate activities that would result in changes to the source tables, as would typically happen on the transactional system.

A number of test scenarios were created in JMETER to simulate typical DML activity for the following caDSR data change tools: Admin Tool and the Curation Tool.
In coordination with the caDSR QA, these caDSR test scenarios will be configured and tested concurrently with the MDR performance testing of the Mview Fast refresh implementation.

3.2 Test Environment Specs

A couple of database environments were used to configure and execute all the tests for the three warehouse implementations.

DEV Environment

Hardware
· Linux AMD x86_64
· 4CPU at 1.2 GHz

· 32GB of RAM

· 8GB Oracle Server configured memory

· 12GB swap
Software

· Operating system: Red Hat Enterprise Linux AS release 4
· Oracle10g Enterprise Edition Release 10.2.0.2.0 – 64 bit production with the partitioning and Data Mining Options

· 2Gb Oracle SGA Memory

Benchmark Setup

· All performance data is from a warehouse database loaded with the ETL converted metadata from the entire caDSR database (copied from the production system).
LOCAL Environment

Hardware
· System Manufacturer: Dell Inc.
· System Model: OptiPlex 745
· System Type: X86-based PC
· Processor: x86 Family 15 Model 6 Stepping 5 GenuineIntel ~2992 Mhz32GB of RAM

· Total Physical Memory: 2,048.00 MB12GB swap
· Total Virtual Memory: 2.00 GB
· Page File Space: 5.84 GB
Software

· Operating system: Microsoft Windows XP Professional Version 5.1.2600 Service Pack 2 Build 2600
· Oracle10g Enterprise Edition Release 10.2.0.1.0 – Production with the partitioning, OLAP and Data Mining Options

· 2Gb Oracle SGA Memory

Benchmark Setup

· All performance data is from a warehouse database loaded with the ETL converted metadata from the entire caDSR database (copied from the DEV environment above).

3.3 Determining a SQL Tuning set

For this performance testing, we had to determine a number of SQL queries that would be executed against the warehouse database. The requirements fulfilled by these queries had to mimic what would be considered “typical” analysis and reporting activities on the warehouse.
We decided to use the queries generated for the 20 Use Cases that were created to validate the design of the MDR warehouse. Table 1 below provides a descriptive list of these Use Cases and the caDSR tools that they emulate.
 Table 3.1 Requirement Use Case Mapping
	caDSR Tool
	Requirement
	Use Case(s)

	Use Case Name

	CDE Browser

	r1.1
	uc1
	Query for Data Element by Context and Classification Scheme

	CDE Browser
	r1.2
	uc2
	Query for Data Element by Context, Classification Scheme and Classification Scheme Item

	CDE Browser
	r1.3
	uc3

	Query for Data Element by Context, Protocol and Form

	CDE Browser
	r1.4
	uc4

	Query for Data Element by Form Template

	CDE Browser
	r1.5

	uc5

	Query for Data Element by Context and partial DE Name

	Form Builder

	r2.1
	uc6
	Query for Form by Context and Protocol

	Form Builder
	r2.2
	uc7

	Query for Form by Context and Classification Scheme

	Form Builder
	r2.3
	uc8

	Query for Form by Context, Classification scheme and Protocol

	Form Builder
	r2.4
	uc9
	Query for Form by Context and Form template (module)

	Form Builder
	r2.5
	uc10
	Query for Form by Context and partial Form Name

	Admin Tool -- Metadata Browser

	r3.1
	uc11

	Query for Metadata Data Element by Classification Scheme Item

	Admin Tool -- Metadata Browser
	r3.1
	uc12
	Query for Object Class by Classification Scheme

	Admin Tool -- Metadata Browser

	r3.3
	uc13

	Query for Conceptual Domain by Value Meaning

	Admin Tool -- Metadata Browser
	r3.4
	uc14

	Query for Property by Classification Scheme and Classification Scheme Item

	Admin Tool -- Metadata Browser
	r3.5

	uc20

	Query for Data Element Concept by Classification Scheme, Classification Scheme Item, Conceptual Domain and Property

	UML Browser

	r4.1
	uc16

	Query for UML class and attribute by Context

	UML Browser
	r4.2
	uc17

	Query for UML class and Attribute by Project and Package

	UML Browser
	r4.3
	uc18

	Query for UML class and Attribute by Context, Project and Package

	UML Browser
	r4.4
	uc19

	Query for UML class and Attribute by Context, Project, subproject and Package

	UML Browser
	r4.5
	uc20
	Query for UML Class and attribute by Context, Project, partial class name and partial attribute name

For additional details about the above Use cases, please go to the following document on the MDR Wiki page, Requirements and Use Cases for the MDR Warehouse.
The 20 queries derived from these Use cases will constitute the SQL Tuning Set (STS) for this testing.
3.4 Performance Tuning using the SQLAccess Advisor
Oracle Database 10g saw the introduction of the SQLAccess Advisor, which analyzes SQL workloads and recommends indexes and materialized views to improve SQL performance. At the appropriate time, you can have the SQLAccess Advisor capture either a set of SQL queries or the current contents of the SQL cache for analysis, in order to identify appropriate access structures for performance enhancement. The SQLAccess Advisor can recommend both bitmap indexes and B-tree indexes to optimize access to data.
A bitmap index offers a reduced response time for many types of ad hoc queries and reduces storage requirements, compared to other indexing techniques. It is also possible for SQLAccess Advisor to analyze only indexes, or only materialized views, or both of them.

The SQLAccess Advisor offers the following benefits:

· It can help in making a materialized view fast refreshable.

· It helps edit and change the materialized view so that general query rewrite is possible.
· Checks if objects have valid, usable statistics for proper optimization
· Attempts to rewrite queries for better performance and suggests rewriting
· Checks the access path to see if performance could be improved by adding additional structures such as indexes and materialized views
Tuning with the SQLAccess Advisor generally involves the following four steps:

· Determining an appropriate workload -- The SQLAccess Advisor recommends a set of materialized views and indexes based on a supplied workload input. The workload consists of one or more SQL statements, plus various statistics and attributes that fully describe each statement. This becomes the primary input and basis for analysis for the SQLAccess Advisor.
· Creating an advisor task -- Because the workload is independent, it must be linked to an advisor task using the dbms_advisor.add_sqlwkld_ref procedure.
· Configure the advisor task parameters -- Before analysis, the parameters or guidelines that control and influence tuning decisions need to be set. The guidelines range from various resource limits to choosing where new indexes and materialized views may be placed. Parameters are set in the SQLAccess task and the workload.
· Run the analysis for the task -- After creating the task, linking it to the workload, and setting the appropriate parameters, the analysis can be performed and recommendations can be generated using the dbms_advisor.execute_task procedure.
· Review and implement the recommendations -- The recommendations are stored in the SQLAccess Advisor Repository.
For each of the warehouse implementations, a user-defined advisor workload, made of the queries from the SQL Tuning Set (20 queries above) was designed and run for analysis and performance recommendations. On the local instance, the SQL Access Advisor runs were configured and executed using the Oracle Enterprise Manager (OEM) tool and the SYSTEM database account. On the Development environment, the Advisor run was performed using the DBMS_ADVISOR package.
All the OEM advisor outputs from the workload runs on the local machine can be found in CVS here.
3.4.1 Results for the ETL Table implementation

For the ETL table schema, an advisor run specifying “Both Indexes and Materialized Views” recommendations generated recommendations for creating a number of materialized views and materialized view logs to improve the performance of the queries. Advisor also provided the 20 rewritten SQL statements using the new Mview objects and gather statistics recommendations for the new Mviews.
Another Advisor run of the same tuning set with the “Indexes” only option, generated no recommendation and a “Performance Acceptable” result.

The OEM Advisor output file for the ETL Table schema with the “Both Indexes and Materialized Views” option can be found in the SQL Advisor directory referenced above under OEM_SQLACCESS_MDRW.htm.
The OEM Advisor output file for the ETL Table schema with the “Indexes” only option, is OEM_SQLACCESS_MDRW_IDX.htm
3.4.2 Results for the Mview Complete and Mview Fast implementations

For both materialized view implementations, Advisor found the “Performance Acceptable” and offered no recommendation.
The OEM Advisor output file for the Mview Complete schema can be found under OEM_SQLACCESS_MDRW_MVC1.htm.
The OEM Advisor output file for the Mview Fast schema can be found under OEM_SQLACCESS_MDRW_MVF1.htm.
4 Performance Testing Methodology
The following test configuration and procedures are used to evaluate the performance of each MDR Warehouse database implementation.
4.1 Testing Methodology

The MDR Warehouse database performance tests were configured in JMeter, to connect to the MDR warehouse database environments via JDBC sessions and running all of the queries in the STS at 30 second intervals.
Another JDBC request session was also created to perform a flush of the database SHARED_POOL between runs. This was done to mitigate the impact on query performance from the caching of the repeated STS queries. This Shared pool Flush request was only included on the local test runs (not on DEV) because SYSTEM privileges are needed to execute the command.
During the testing for the Fast refresh implementation, the STS queries were run concurrently with the activity from the DML statements simulating changes to the caDSR source tables.
NOTE: We were not able to obtain, from either the DBA Team or the caDSR support team, any statistics related to the frequency of curation changes in caDSR.
Table 4.1 below summarizes the components of each implementation test.
Table 4.1 – Performance Test Components

	
	ETL Tables Schema
	Mview with Complete Refresh Schema
	Mviews with Fast Refresh Schema

	Warehouse User running STS queries (Staggered at 30 second intervals)
	Yes
	Yes
	Yes

	caDSR User making DML changes (staggered at 60 second intervals between runs)
	No
	No
	Yes

	Refresh during testing
	No
	No
	Yes

	Share Pool Flush
	Local Test only
	Local Test only
	Local Test only

For each implementation, there was a baseline test with a single warehouse user running the STS queries staggered. Then, another test was performed with 10 concurrent warehouse users staggering the STS queries.

So for the 3 oracle implementations of the warehouse, the JMeter testing execution plan was as follows:

· For the ETL tables and Mview Complete refresh implementations, we tested single user runs of the 20 warehouse report queries, staggered randomly. Tests duration was 1 hour, with 30 second intervals between runs. Then we performed another test with 10 warehouse users concurrently running the staggered queries.
· Same with for the FAST refresh implementation, but with the added activity from a single caDSR user making DML changes to the caDSR schema (staggered at 1 minute intervals), thus triggering incremental refreshes while the reporting queries are run.

The duration of each test was 1 hour, with 30 second intervals between query runs.
The response time was measured and averaged, for all of the SQL queries at the end of each testing run. Of particular interest is any delay or increase in response time that would indicate any blocking, resource contention, or deadlocks that might occur when multiple queries run concurrently.
All the JMeter test files can be found here.
4.2 Performance Monitoring using AWR and ADDM
Oracle AWR (Advanced Workload Repository) and ADDM (Automated Database Diagnostic Monitor) which are available since Oracle 10g are useful features for database performance tuning and troubleshooting.

By default for every database, Oracle automatically generates snapshots of the performance data once every hour and stores the statistics in the workload repository. ADDM uses these snapshot statistics for reporting and analysis, to diagnose a number of different database-related problems:
· Memory-related issues such as shared pool latch contention, log buffer issues, or database buffer cache related problems

· CPU bottlenecks

· Disk I/O performance issues

· Database configuration problems

· Space-related issues, such as tablespaces running out of space

· Application and SQL tuning issues such as excessive parsing and excessive locking
The ADDM report contains useful information such as:

· Wait Events Statistics

· SQL Statistics

· Instance Activity Statistics

· IO Stats

· Buffer Pool Statistics

· Advisory Statistics

· Wait Statistics

· Undo Statistics

· Latch Statistics

· Segment Statistics

· Dictionary Cache Statistics

· Library Cache Statistics

· Memory Statistics

· Streams Statistics

· Resource Limit Statistics

· init.ora Parameters

Oracle Enterprise Manager (OEM) can be used to view the ADDM findings.

For each of the warehouse implementations, database performance statistics were captured during the test run with 10 concurrent users on the local instance. The resulting ADDM runs were configured and executed using OEM and the SYSTEM database account. On the Development environment, ADDM could not be run because it requires DBA privileges.

The ADDM reports for the three implementations can be found in CVS here.
4.3 Testing Results

The Testing result terms are defined as follows:
· # Samples: provide the number of JDBC requests that were completed for the entire duration of the test.
· Average: Average response time for all the JDBC Requests (in milliseconds).

· Min: Shortest JDBC Request (in milliseconds).

· Max: Longest JDBC Request (in milliseconds).
· Standard Deviation: Standard Deviation Value for response time of all the JDBC Requests (in milliseconds).
· Error %: Percentage of JDBC requests with errors
· Throughput: Number of requests / Total time to issue the requests (requests per second)
· KB/sec: size of the JDBC Requests per second (in Bytes/sec)

· Average Bytes: Average size of the JDBC Requests in bytes
The complete JMeter Summary report tables for each implementation run can be found here.
The table below included the total results computed for each run (last row on the Summary Report).
Local Environment
	1 User run

	Implementation
	# Samples
	Average
	Min
	Max
	Std. Dev.
	Error %
	Throughput
	KB/sec
	Avg. Bytes

	ETL Table Schema
	36499
	97
	2
	1194
	164.083
	0
	10.13862
	1118.199
	112938.1

	Mview Complete Refresh
	28565
	124
	3
	41385
	312.066
	0
	7.936497
	875.3134
	112936.6

	Mview Fast Refresh
	33224
	107
	3
	1383
	172.3254
	0
	9.229312
	1006.533
	111675.7

	10 Users run

	ETL Table Schema
	62646
	269
	1
	63191
	732.855
	0
	17.42181
	1920.514
	112881.9

	Mview Complete Refresh
	50036
	393
	1
	60678
	1067.876
	0
	13.93074
	1535.529
	112871.3

	Mview Fast Refresh
	29619
	120
	3
	129435
	844.2769
	0
	8.243128
	899.209
	111704

Based on the results obtained in the Local environment and comparing averages, standard deviations and throughputs, we notice that overall, the Mview with FAST refresh implementation generated better results in response time and throughput considering the added activity from the transactional system..

DEV Environment

	1 User run

	Implementation
	# Samples
	Average
	Min
	Max
	Std. Dev.
	Error %
	Throughput
	KB/sec
	Avg. Bytes

	ETL Table Schema
	43641
	81
	2
	1464
	193.4665
	0
	12.12255
	1403.926
	118590.6

	Mview Complete Refresh
	42686
	83
	2
	24292
	229.3321
	0
	11.85662
	1372.908
	118571.6

	Mview Fast Refresh
	39395
	90
	2
	2719
	195.8062
	0
	10.9439
	1252.802
	117222.3

	10 Users run

	ETL Table Schema
	92396
	211
	2
	18804
	536.9454
	0
	8.201422
	949.6594
	118571

	Mview Complete Refresh
	102597
	174
	2
	10277
	447.0513
	0
	28.49037
	3298.399
	118551

	Mview Fast Refresh
	102930
	184
	2
	9807
	434.8977
	0
	28.59013
	3272.167
	117197.7

Based on the results obtained in the Dev environment and comparing averages, standard deviations and throughputs, we notice that overall, the Mview with complete refresh implementation generated better results in throughput and query response time.
5 Conclusion
The results of the performance testing seem to point to both Mview implementations, as the optimal database schemas for the warehouse.
In evaluating the feasibility of either materialized view implementation, it is important to note the merits and disadvantages of each, as summarized in the table below.

	
	Mview Complete Refresh
	Mview Fast Refresh
	Risk Mitigation Strategy

	Query Rewrite
	Yes
	Yes
	Impact on source system will have to be assessed

	ON COMMIT Refresh
	No
	Yes
	Impact on source system will have to be assessed

	Warehouse Data Access During Refresh
	No
	Yes
	For Mview Complete, perform refreshes during downtime or redirect warehouse tables

There are some definite concerns with the Mview implementation with Fast refresh, because of the performance impact on transaction commits for source tables that are instantly replicated top the warehouse. Also the query Rewrite feature, although enabled for both Mview implementations, was not evaluated in this testing to assess its performance impact on the transactional system. Full regression testing of the caDSR applications will have to be performed if the Query Rewrite option is maintained on the MDR warehouse Mviews.
Although the Fast implementation offers some great benefits for the warehouse environment, it tightly couples the warehouse to the source schema and further testing is needed to make sure that this does not result in performance degradation for caDSR.

The Complete refresh implementation offers the flexibility of programming refreshes independently from the transactional activity on the source system, although maintaining data availability during refreshes has to be carefully planned.
6 Best Practices for Optimal Database Performance
The testing should identify and validate a number of best practices that can help to ensure the best performance from the MDR Warehouse database.

6.1 Gathering Statistics

Oracle very efficiently uses a cost based optimizer. To take advantage of the optimizer, creation and updating of statistics should be enabled and scheduled regularly, especially after major data changes and refreshes. These statistics allow the database to optimize queries based on observed patterns of access, thus greatly improving performance. Automatic statistic creation and updates can also be enabled. The overhead cost of enabling this feature is very minimal compared with the potential benefits.
6.2 SQL Tuning

All SQL statements (in the ETL, Materialized views and search queries) should be verified to be optimal and their resource usage understood.
6.3 Data Block Contention
Be prepared to manage block contention by setting storage options of database objects. Tables and indexes that experience high INSERT/UPDATE/DELETE rates should be created with either automatic segment space management or multiple freelists and an increased setting of INITRANS.
6.4 Parallel Processing in Oracle
Oracle allows you to configure the number of threads that it can use to process a single statement. For the

SQL transactions that update and truncate data to run most efficiently, it is recommended to set a degree of parallelism for the reference objects. This allows Oracle to use the number of threads that it has available to be most efficient in executing the transaction.

6.5 Correctly Sizing Memory Allocated to Oracle
In general, databases run best when they are configured with enough memory to cache necessary data and reduce, if not eliminate, the need to read data from the physical disk. The best method for determining if the server’s memory is configured correctly is to monitor the buffer cache hit ratio counter. Oracle recommends that its value be 90% or above.
Appendix A -- Requirements and initial goals of the MDR warehouse
Stemming from the difficulty in extracting information from the current caDSR complex transactional database, the need to reach a new level of performance and ease of access led to the design of the new and simplified MDR model, which is based on the data warehouse technology.

The following are the initial requirements that guided the design of the MDR warehouse:

1. The system must facilitate searches for any of the caDSR administered element based on any or all of the common attributes of the administered elements

2. The system must allow searches based on any of the specific attributes specific to each type of administered element

3. The system must facilitate searches for any administered element related to any other administered element (one degree of separation)

4. The system must facilitate searches of any administered item by concept codes, classification items, object classes, properties or any other attribute that may be mapped to a concept code.

5. The system must facilitate searches by related concepts up to 2 levels of separation (e.g. grandparents, grandchildren, peers of peers in addition to parent, child and peer).

6. A single concept data set will be loaded with guaranteed unique concept codes. The concept data set will allow for a network of relationships consisting of parents, children and peers for each concept code.

7. The system must facilitate searches based on the text of names, definitions, descriptions and related documents of any of the administered elements.

8. The system must allow additional fact tables to be added for objects that may not be administered elements in the transactional system.

9. The system initial query requirements are based on the existing CDE Browser and the SIW interfaces. At the minimum the database design must support efficient queries similar to the ones enabled by these tools.

Additional operational constraints for the initial development are:

· The system will only accept data that meets the validation and completeness rules of the warehouse.

· The data will be loaded only through an ETL process with no ad-hoc updates to the core data structures. This is a periodic bulk load event, not transaction by transaction.

· There are no correction mechanisms for data in the warehouse and no changes to historical data after the original load

· Ad hoc projects that may change the data in the warehouse will use copies of the core datamart and will not change the content of the data loaded.

· No tools are developed as part of the initial project, only sample queries and ETL Load scripts. Views may be developed to facilitate queries or support the development of tools.

· Initial prototype may be limited to a few of the administered element types in the current caDSR.

· The design should rely only on open source standards and not include proprietary constructs from a specific database management system or commercial tool.
Appendix B – ETL Diagrams for MDR Warehouse
[image: image1.emf]

caMDR Warehouse Entity Relationship Diagram

 ETL Table Implementation

ADMINISTERED_ELEMENT

AE_ID: VARCHAR2(36) NOT NULL

AE_TYPE_CODE: VARCHAR2(36) NULL (FK)

LONG_NAME: VARCHAR2(255) NULL

PREFERRED_NAME: VARCHAR2(255) NULL

PREFERRED_DEFINITION: VARCHAR2(2000) NULL

DEFINITION_SOURCE: VARCHAR2(2000) NULL

CREATED_BY: VARCHAR2(30) NULL

DATE_CREATED: DATE NULL

MODIFIED_BY: VARCHAR2(30) NULL

DATE_MODIFIED: DATE NULL

ORIGIN: VARCHAR2(240) NULL

VERSION: NUMBER NULL

PUBLIC_ID: NUMBER NULL

LATEST_VERSION_IND: VARCHAR2(3) NULL (IE2)

DELETED_IND: VARCHAR2(3) NULL (IE3)

BEGIN_DATE: DATE NULL

END_DATE: DATE NULL

ORIGINAL_AE_IDSEQ: VARCHAR2(36) NULL (IE1)

ORIGINAL_AE_ID: NUMBER NULL

OWNED_BY_CONTEXT: VARCHAR2(30) NULL

USED_BY_CONTEXT: VARCHAR2(30) NULL

ASL_NAME: VARCHAR2(20) NULL (IE4)

WORKFLOW_STATUS: VARCHAR2(20) NULL

ASL_DISPLAY_ORDER: NUMBER NULL

REGISTRATION_STATUS: VARCHAR2(50) NULL (IE5)

RSL_DISPLAY_ORDER: NUMBER NULL

ORIGINAL_VD_IDSEQ: VARCHAR2(36) NULL

DE_LONG_NAME: VARCHAR2(255) NULL

DE_PUBLIC_ID: NUMBER NULL

DE_QUESTION: VARCHAR2(2000) NULL

VD_NAME: VARCHAR2(255) NULL

VD_TYPE_FLAG: VARCHAR2(1) NULL

VD_DTL_NAME: VARCHAR2(20) NULL

VD_UOML_NAME: VARCHAR2(20) NULL

VD_FORML_NAME: VARCHAR2(20) NULL

VD_CHAR_SET_NAME: VARCHAR2(20) NULL

DEC_NAME: VARCHAR2(255) NULL

ORIGINAL_DEC_IDSEQ: VARCHAR2(36) NULL

OC_NAME: VARCHAR2(255) NULL

ORIGINAL_OC_IDSEQ: VARCHAR2(36) NULL

PROP_NAME: VARCHAR2(255) NULL

ORIGINAL_PROP_IDSEQ: VARCHAR2(36) NULL

CD_NAME: VARCHAR2(255) NULL

ORIGINAL_CD_IDSEQ: VARCHAR2(36) NULL

CONTEXT_NAME: VARCHAR2(30) NULL (IE6)

ORIGINAL_CONTE_IDSEQ: VARCHAR2(36) NULL

PROTOCOL_LONG_NAME: VARCHAR2(255) NULL

CHANGE_NOTE: VARCHAR2(2000) NULL

QTL_NAME: VARCHAR2(30) NULL (IE7)

QCDL_NAME: VARCHAR2(30) NULL (IE8)

AE_RELATIONSHIP

AE_REL_ID: VARCHAR2(36) NOT NULL

REL_TYPE_CODE: VARCHAR2(36) NULL (FK)

SOURCE_AE_ID: VARCHAR2(36) NULL (FK)

TARGET_AE_ID: VARCHAR2(36) NULL (FK)

CREATED_BY: VARCHAR2(30) NULL

DATE_CREATED: DATE NULL

MODIFIED_BY: VARCHAR2(30) NULL

DATE_MODIFIED: DATE NULL

DESCRIPTION: VARCHAR2(2000) NULL (IE1)

LABEL: VARCHAR2(255) NULL

DISPLAY_ORDER: NUMBER NULL

AE_TYPE

AE_TYPE_CODE: VARCHAR2(36) NOT NULL

AE_TYPE_NAME: VARCHAR2(255) NULL

AE_TYPE_DESC: VARCHAR2(2000) NULL

AE_UMA_RELATIONSHIP

AE_UMA_REL_ID: VARCHAR2(36) NOT NULL

REL_TYPE_CODE: VARCHAR2(36) NULL (FK)

AE_ID: VARCHAR2(36) NULL (FK)

UMA_ID: VARCHAR2(36) NULL (FK)

CREATED_BY: VARCHAR2(30) NULL

DATE_CREATED: DATE NULL

MODIFIED_BY: VARCHAR2(30) NULL

DATE_MODIFIED: DATE NULL

RELATIONSHIP_TYPE

REL_TYPE_CODE: VARCHAR2(36) NOT NULL

REL_TYPE_NAME: VARCHAR2(255) NULL

REL_TYPE_DESC: VARCHAR2(2000) NULL

CREATED_BY: VARCHAR2(30) NULL

DATE_CREATED: DATE NULL

MODIFIED_BY: VARCHAR2(30) NULL

DATE_MODIFIED: DATE NULL

COMMENTS: VARCHAR2(2000) NULL

UMC_RELATIONSHIP

UMC_REL_ID: VARCHAR2(36) NOT NULL

REL_TYPE_CODE: VARCHAR2(36) NULL (FK)

SOURCE_UMC_ID: VARCHAR2(36) NULL (FK)

TARGET_UMC_ID: VARCHAR2(36) NULL (FK)

SOURCE_ROLE: VARCHAR2(255) NULL

TARGET_ROLE: VARCHAR2(255) NULL

SOURCE_LOW_MULTIPLICITY: NUMBER NULL

TARGET_LOW_MULTIPLICITY: NUMBER NULL

SOURCE_HIGH_MULTIPLICITY: NUMBER NULL

TARGET_HIGH_MULTIPLICITY: NUMBER NULL

ISBIDIRECTIONAL: NUMBER NULL

DESCRIPTION: VARCHAR2(2000) NULL

UML_MOD_ATTRIBUTE

UMA_ID: VARCHAR2(36) NOT NULL

UMC_ID: VARCHAR2(36) NULL (FK)

NAME: VARCHAR2(255) NULL

FULLY_QUALIFIED_NAME: VARCHAR2(2000) NULL

DESCRIPTION: VARCHAR2(2000) NULL

ORIGINAL_UMA_IDSEQ: VARCHAR2(36) NULL (IE1)

UMA_TYPE_VD_DATATYPE: VARCHAR2(20) NULL

UMA_TYPE_VD_LONG_NAME: VARCHAR2(255) NULL

UMA_VERSION: NUMBER NULL

UMA_CONTEXT_NAME: VARCHAR2(36) NULL (IE6)

DE_NAME: VARCHAR2(255) NULL

DE_PUBLIC_ID: NUMBER NULL

PKG_NAME: VARCHAR2(255) NULL (IE2)

PKG_DESCRIPTION: VARCHAR2(255) NULL

PROJ_SHORT_NAME: VARCHAR2(255) NULL

PROJ_LONG_NAME: VARCHAR2(255) NULL (IE3)

PROJ_DESCRIPTION: VARCHAR2(2000) NULL

PROJ_VERSION: NUMBER NULL (IE5)

PROJ_ASL_NAME: VARCHAR2(36) NULL

SUB_PROJ_NAME: VARCHAR2(255) NULL (IE4)

UML_MOD_CLASS

UMC_ID: VARCHAR2(36) NOT NULL

NAME: VARCHAR2(255) NULL

FULLY_QUALIFIED_NAME: VARCHAR2(2000) NULL

DESCRIPTION: VARCHAR2(2000) NULL

OC_VERSION: NUMBER NULL

OC_CONTEXT_NAME: VARCHAR2(36) NULL (IE6)

ORIGINAL_UMC_IDSEQ: VARCHAR2(36) NULL (IE1)

PKG_NAME: VARCHAR2(255) NULL (IE2)

PKG_DESCRIPTION: VARCHAR2(255) NULL

PROJ_SHORT_NAME: VARCHAR2(30) NULL

PROJ_LONG_NAME: VARCHAR2(255) NULL (IE3)

PROJ_DESCRIPTION: VARCHAR2(2000) NULL

PROJ_VERSION: NUMBER NULL (IE4)

PROJ_ASL_NAME: VARCHAR2(36) NULL

SUB_PROJECT_NAME: VARCHAR2(255) NULL (IE5)

AE_REF_DOCUMENT

AE_REF_DOC_ID: VARCHAR2(36) NOT NULL

AE_ID: VARCHAR2(36) NULL (FK)

DCTL_NAME: VARCHAR2(60) NULL (IE1)

NAME: VARCHAR2(255) NULL (IE3)

DOC_TEXT: VARCHAR2(4000) NULL (IE2)

AE_DESIGNATION

AE_DESIG_ID: VARCHAR2(36) NOT NULL

AE_ID: VARCHAR2(36) NULL (FK)

DETL_NAME: VARCHAR2(36) NULL (IE1)

NAME: VARCHAR2(255) NULL (IE2)

AE_DEFINITION

AE_DEFIN_ID: VARCHAR2(36) NOT NULL

AE_ID: VARCHAR2(36) NULL (FK)

DEFL_NAME: VARCHAR2(50) NULL (IE1)

DEFINITION: VARCHAR2(2000) NULL (IE2)

R_AE_TYPE_CODE

R_REL_TYPE_CODE1

R_SOURCE_AE_ID

R_TARGET_AE_ID

R_REL_TYPE_CODE2

R_AE_IDSEQ2

R_UMA_IDSEQ1

R_REL_TYPE_CODE3

R_SOURCE_UMC_IDSEQ

R_TARGET_UMC_IDSEQ

R_UMC_IDSEQ

R_AE_REF_DOC

R_AE_DESIGNATION

R_AE_DEFINITION

[image: image2.emf]

caMDR Warehouse Entity Relationship Diagram

Implementation for Materialized Views with

Complete Refresh

ADMINISTERED_ELEMENT

AE_ID: ROWID NOT NULL

AE_TYPE_CODE: VARCHAR2(36) NULL

LONG_NAME: VARCHAR2(255) NULL

PREFERRED_NAME: VARCHAR2(255) NULL

PREFERRED_DEFINITION: VARCHAR2(2000) NULL

DEFINITION_SOURCE: VARCHAR2(2000) NULL

CREATED_BY: VARCHAR2(30) NULL

DATE_CREATED: DATE NULL

MODIFIED_BY: VARCHAR2(30) NULL

DATE_MODIFIED: DATE NULL

ORIGIN: VARCHAR2(240) NULL

VERSION: NUMBER NULL

PUBLIC_ID: NUMBER NULL

LATEST_VERSION_IND: VARCHAR2(3) NULL (IE2)

DELETED_IND: VARCHAR2(3) NULL (IE3)

BEGIN_DATE: DATE NULL

END_DATE: DATE NULL

ORIGINAL_AE_IDSEQ: VARCHAR2(36) NULL (IE1)

ORIGINAL_AE_ID: NUMBER NULL

OWNED_BY_CONTEXT: VARCHAR2(30) NULL

USED_BY_CONTEXT: VARCHAR2(30) NULL

ASL_NAME: VARCHAR2(20) NULL (IE4)

WORKFLOW_STATUS: VARCHAR2(20) NULL

ASL_DISPLAY_ORDER: NUMBER NULL

REGISTRATION_STATUS: VARCHAR2(50) NULL (IE5)

RSL_DISPLAY_ORDER: NUMBER NULL

ORIGINAL_VD_IDSEQ: VARCHAR2(36) NULL

DE_LONG_NAME: VARCHAR2(255) NULL

DE_PUBLIC_ID: NUMBER NULL

DE_QUESTION: VARCHAR2(2000) NULL

VD_NAME: VARCHAR2(255) NULL

VD_TYPE_FLAG: VARCHAR2(1) NULL

VD_DTL_NAME: VARCHAR2(20) NULL

VD_UOML_NAME: VARCHAR2(20) NULL

VD_FORML_NAME: VARCHAR2(20) NULL

VD_CHAR_SET_NAME: VARCHAR2(20) NULL

DEC_NAME: VARCHAR2(255) NULL

ORIGINAL_DEC_IDSEQ: VARCHAR2(36) NULL

OC_NAME: VARCHAR2(255) NULL

ORIGINAL_OC_IDSEQ: VARCHAR2(36) NULL

PROP_NAME: VARCHAR2(255) NULL

ORIGINAL_PROP_IDSEQ: VARCHAR2(36) NULL

CD_NAME: VARCHAR2(255) NULL

ORIGINAL_CD_IDSEQ: VARCHAR2(36) NULL

CONTEXT_NAME: VARCHAR2(30) NULL (IE6)

ORIGINAL_CONTE_IDSEQ: VARCHAR2(36) NULL

PROTOCOL_LONG_NAME: VARCHAR2(255) NULL

CHANGE_NOTE: VARCHAR2(2000) NULL

QTL_NAME: VARCHAR2(30) NULL (IE7)

QCDL_NAME: VARCHAR2(30) NULL (IE8)

AE_RELATIONSHIP

AE_REL_ID: VARCHAR2(36) NOT NULL

REL_TYPE_CODE: VARCHAR2(36) NULL (FK)

SOURCE_AE_ID: ROWID NULL (FK)

TARGET_AE_ID: ROWID NULL (FK)

CREATED_BY: VARCHAR2(30) NULL

DATE_CREATED: DATE NULL

MODIFIED_BY: VARCHAR2(30) NULL

DATE_MODIFIED: DATE NULL

DESCRIPTION: VARCHAR2(2000) NULL (IE1)

LABEL: VARCHAR2(255) NULL

DISPLAY_ORDER: NUMBER NULL

AE_TYPE

AE_TYPE_CODE: VARCHAR2(36) NOT NULL

AE_TYPE_NAME: VARCHAR2(255) NULL

AE_TYPE_DESC: VARCHAR2(2000) NULL

AE_ID: ROWID NULL (FK)

AE_UMA_RELATIONSHIP

AE_UMA_REL_ID: VARCHAR2(36) NOT NULL

REL_TYPE_CODE: VARCHAR2(36) NULL (FK)

AE_ID: ROWID NULL (FK)

UMA_ID: VARCHAR2(36) NULL (FK)

CREATED_BY: VARCHAR2(30) NULL

DATE_CREATED: DATE NULL

MODIFIED_BY: VARCHAR2(30) NULL

DATE_MODIFIED: DATE NULL

RELATIONSHIP_TYPE

REL_TYPE_CODE: VARCHAR2(36) NOT NULL

REL_TYPE_NAME: VARCHAR2(255) NULL

REL_TYPE_DESC: VARCHAR2(2000) NULL

CREATED_BY: VARCHAR2(30) NULL

DATE_CREATED: DATE NULL

MODIFIED_BY: VARCHAR2(30) NULL

DATE_MODIFIED: DATE NULL

COMMENTS: VARCHAR2(2000) NULL

UMC_RELATIONSHIP

UMC_REL_ID: VARCHAR2(36) NOT NULL

REL_TYPE_CODE: VARCHAR2(36) NULL (FK)

SOURCE_UMC_ID: ROWID NULL (FK)

TARGET_UMC_ID: ROWID NULL (FK)

SOURCE_ROLE: VARCHAR2(255) NULL

TARGET_ROLE: VARCHAR2(255) NULL

SOURCE_LOW_MULTIPLICITY: NUMBER NULL

TARGET_LOW_MULTIPLICITY: NUMBER NULL

SOURCE_HIGH_MULTIPLICITY: NUMBER NULL

TARGET_HIGH_MULTIPLICITY: NUMBER NULL

ISBIDIRECTIONAL: NUMBER NULL

DESCRIPTION: VARCHAR2(2000) NULL

UML_MOD_ATTRIBUTE

UMA_ID: VARCHAR2(36) NOT NULL

UMC_ID: ROWID NULL (FK)

NAME: VARCHAR2(255) NULL

FULLY_QUALIFIED_NAME: VARCHAR2(2000) NULL

DESCRIPTION: VARCHAR2(2000) NULL

ORIGINAL_UMA_IDSEQ: VARCHAR2(36) NULL (IE1)

UMA_TYPE_VD_DATATYPE: VARCHAR2(20) NULL

UMA_TYPE_VD_LONG_NAME: VARCHAR2(255) NULL

UMA_VERSION: NUMBER NULL

UMA_CONTEXT_NAME: VARCHAR2(36) NULL (IE6)

DE_NAME: VARCHAR2(255) NULL

DE_PUBLIC_ID: NUMBER NULL

PKG_NAME: VARCHAR2(255) NULL (IE2)

PKG_DESCRIPTION: VARCHAR2(255) NULL

PROJ_SHORT_NAME: VARCHAR2(255) NULL

PROJ_LONG_NAME: VARCHAR2(255) NULL (IE3)

PROJ_DESCRIPTION: VARCHAR2(2000) NULL

PROJ_VERSION: NUMBER NULL (IE5)

PROJ_ASL_NAME: VARCHAR2(36) NULL

SUB_PROJ_NAME: VARCHAR2(255) NULL (IE4)

UML_MOD_CLASS

UMC_ID: ROWID NOT NULL

NAME: VARCHAR2(255) NULL

FULLY_QUALIFIED_NAME: VARCHAR2(2000) NULL

DESCRIPTION: VARCHAR2(2000) NULL

OC_VERSION: NUMBER NULL

OC_CONTEXT_NAME: VARCHAR2(36) NULL (IE6)

ORIGINAL_UMC_IDSEQ: VARCHAR2(36) NULL (IE1)

PKG_NAME: VARCHAR2(255) NULL (IE2)

PKG_DESCRIPTION: VARCHAR2(255) NULL

PROJ_SHORT_NAME: VARCHAR2(30) NULL

PROJ_LONG_NAME: VARCHAR2(255) NULL (IE3)

PROJ_DESCRIPTION: VARCHAR2(2000) NULL

PROJ_VERSION: NUMBER NULL (IE4)

PROJ_ASL_NAME: VARCHAR2(36) NULL

SUB_PROJECT_NAME: VARCHAR2(255) NULL (IE5)

AE_REF_DOCUMENT

AE_REF_DOC_ID: ROWID NOT NULL

DCTL_NAME: VARCHAR2(60) NULL (IE1)

NAME: VARCHAR2(255) NULL (IE3)

DOC_TEXT: VARCHAR2(4000) NULL (IE2)

AE_ID: ROWID NULL (FK)

AE_DESIGNATION

AE_DESIG_ID: ROWID NOT NULL

DETL_NAME: VARCHAR2(36) NULL (IE1)

NAME: VARCHAR2(255) NULL (IE2)

AE_ID: ROWID NULL (FK)

AE_DEFINITION

AE_DEFIN_ID: ROWID NOT NULL

DEFL_NAME: VARCHAR2(50) NULL (IE1)

DEFINITION: VARCHAR2(2000) NULL (IE2)

AE_ID: ROWID NULL (FK)

R_SOURCE_AE_ID

R_TARGET_AE_ID

R_AE_IDSEQ2

R_REL_TYPE_CODE1

R_REL_TYPE_CODE2

R_UMA_IDSEQ1

R_REL_TYPE_CODE3

R_SOURCE_UMC_IDSEQ

R_TARGET_UMC_IDSEQ

R_UMC_IDSEQ

R_AE_DESIGNATION

R_AE_DEFINITION

R_AE_REF_DOC

R_AE_TYPE_CODE

[image: image3.emf]

caMDR Warehouse Entity Relationship Diagram

Implementation for Materialized Views with Fast

Refresh

ADMINISTERED_ELEMENT_DE

AE_RELATIONSHIP

AE_TYPE

AE_UMA_RELATIONSHIP

RELATIONSHIP_TYPE

UMC_RELATIONSHIP

UML_MOD_ATTRIBUTE

UML_MOD_CLASS

AE_REF_DOCUMENT

AE_DESIGNATION

AE_DEFINITION

ADMINISTERED_ELEMENT_CD

ADMINISTERED_ELEMENT_CO

ADMINISTERED_ELEMENT_CS

ADMINISTERED_ELEMENT_CSI

ADMINISTERED_ELEMENT_DEC

ADMINISTERED_ELEMENT_OC

ADMINISTERED_ELEMENT_PC

ADMINISTERED_ELEMENT_PROP

ADMINISTERED_ELEMENT_PV

ADMINISTERED_ELEMENT_QC

ADMINISTERED_ELEMENT_REP

ADMINISTERED_ELEMENT_VD

ADMINISTERED_ELEMENT_VM

R_UMA_IDSEQ1

R_SOURCE_UMC_IDSEQ

R_TARGET_UMC_IDSEQ

R_UMC_IDSEQ

R_22

R_23

R_24

PAGE
2

