NCICB

caMDR Warehouse

 Schema with FAST Refreshable Materialized views

07/22/2008

Prepared by: Ekagra Software Technologies, Ltd.

For: The National Cancer Institute, Center for Biomedical Informatics and Information Technology (NCICBIIT)
Table of contents
31.
Introduction

32.
AE Mview Conversion to FAST Refresh

32.1 Oracle FAST Refresh Basics

42.2 Administered Elements in a FAST Materialized View

52.3 The Manual approach

82.4 The Advisor approach

103.
Conclusion

12Appendix

12A.
Lessons Learned

15B.
Methodology Results using the Manual approach

19C.
Methodology Results using the Advisor approach

1. Introduction

The current data model of the MDR Warehouse can be implemented either as a stand-alone table schema with an ETL Load process, or as a combination of reference tables and Materialized views (Mviews) that are refreshed completely at preset intervals.

With the latter approach, the data in the materialized view is totally rebuilt from scratch each time that a refresh is performed

With the goal of keeping the warehouse in sync with the source system on a transactional basis, a request was made to modify the MDR warehouse Mview schema design by creating materialized view objects that could quickly replicate the changes in caDSR, using the Oracle “Fast” refresh approach.
2. AE Mview Conversion to FAST Refresh

2.1 Oracle FAST Refresh Basics

To have incremental or FAST refreshes for Mviews, the Oracle database system creates a materialized view log object that keeps a log of changes to each base Mview table (changes between refreshes, starting with the initial load). The Mview Log uses either the primary key or the rowid values of the modified rows to uniquely identify the changes. The actual FAST refreshes can be initiated ON DEMAND (by calling a separate procedure), ON COMMIT (as soon as each transactional change occurs) or at pre-scheduled intervals, specified when the Mview is created.
The change tracking on the base tables by primary key and rowid limits the type of query that is allowed on a FAST refreshable Mview. For example if the materialized view's defining query contains joins, then it cannot be FAST refreshed:
 If the WHERE clause of the query contains outer joins, then unique constraints must exist on the join columns of the inner join table.

 If there are no outer joins, you can have arbitrary selections and joins in the WHERE clause. However if there are outer joins the WHERE clause cannot have any selections.
 Rowids of all the tables in the FROM list must appear in the SELECT list of the query.

 Materialized view logs must exist with rowids for all the base tables in the FROM list of the query.

· Features such as outer joins, insert-only aggregate materialized view queries and remote tables are not supported for FAST Refresh in materialized views with UNION ALL.

2.2 Administered Elements in a FAST Materialized View
The main table in the warehouse model is the ADMINISTERED_ELEMENT (AE) table. This table contains attributes for the 14 element types in the warehouse. To populate it, the following transactional tables are read:

· The specific attribute table for each element (DATA_ELEMENT, OBJECT_CLASS, VALUE_DOMAIN, etc…)

· The ADMINISTERED_COMPONENT table, for the registry attributes of the elements

· The AC_REGISTRATION table, for the registration status type and display order of each element

· The AC_STATUS_LOV table, for the registration status of each element

· The REG_STATUS_LOV, for the workflow status of each element

· The CONTEXT table, for the context name for each element

· For some elements, specific attributes from related elements are directly included on the AE table (i.e. for Data Elements, the Data Element Concept name and the Value Domain attributes).
In the original design with a completely refreshable AE Mview, the query populating the AE Mview is a UNION ALL of 14 SELECT queries, one for each Administered Element type.
Converting the original AE Mview to a FAST refreshable Mview was the goal of our testing and analysis.
The overall conversion methodology consisted in the following:

1. Process the Original AE statement with only the REFRESH change. Troubleshoot any error encountered with no changes or minimal changes to the entire original statement, until no longer able to, because of an understandable (or clearly interpretable) error returned by Oracle.
2. If there is a negative return from step1, breakdown the query by grabbing the first two SELECT clauses from the Original and attempt to convert the resulting query into a FAST Mview. Here again troubleshoot any error encountered as much as possible by making the necessary query or environment changes to obtain a FAST refreshable materialized view. Only move to the next step if tuning is unsuccessful and the error generated clearly states that the query cannot generate a FAST refreshable materialized view.
3. Take each of the SELECT statements individually and process them in their original form, as Mviews with the FAST refresh. If the original query cannot be converted then remove all the join clauses (with related tables and columns) and process the query again. The outcome here should be predictably positive because this is a straight SELECT from the source table. Next re-add the join clauses one by one, and test each join change. If the result is positive, progressively add the other join clauses until the resulting query is one that is FAST refreshable. Remove any join clause (with related tables and columns), that make the query fail and the Mview NOT FAST refreshable. At the end, the goal is to have an Mview for each AE TYPE.

4. The final goal is to create an Mview FAST REFRESH statement that combines all the 14 AE type Mviews. Start with 2 AE Mviews and, if successful, progressively add the others until all 14 are in a single Mview FAST statement. If not successful with the first two, try various combinations of multiple views (2 or more at a time) to see if they can be combined in a FAST Mview and maybe be staggered even further.
There were two approaches used for tuning the queries during the conversion:

· A manual approach - studying Oracle’s limitations on FAST refresh and rewriting the queries manually to circumvent these restrictions

· The Advisor approach - processing each query through the DBMS_ADVISOR.TUNE_MVIEW and DBMS_MVIEW.EXPLAIN_MVIEW routines to determine if there is a possibility to create the Mview with the FAST refresh option.

2.3 The Manual approach
This approach relied on identifying FAST Mviews limitations in the AE queries and devising workaround solutions to circumvent them, while keeping the integrity of the data returned. After the failure to convert the original AE query to FAST refresh, the focus shifted to the individual SELECT queries. The original query failed because it included outer joins clauses in all the individual queries and this triggered an existing Oracle restriction which prohibits FAST Refreshes on Materialized Views with UNION operators in SELECT statements with outer JOIN clauses.
We also decided to create the Mview FAST refresh using the Primary Key (instead of the Rowid) approach because of the existing Primary Key Mview logs. Most of the Administered Element types had these Primary Key Mview logs in the source schema to refresh the UML Browser Mviews. A single Mview log on a base table can be used to FAST refresh multiple Mviews that query the base table.

Most of the individual SELECT queries in the AE Mview include a FROM clause with at least 6 tables, in the categories described in section 2.2. The tables are joined using mostly outer joins, so the queries are subjected to the FAST refresh limitations described in section 2.1.
To tune each of the 14 individual AE queries, it took several trials and combinations of joins from the original query to eventually obtain an Mview version that was FAST refreshable. The errors indicating that the Mview could not be refreshed using the FAST option were
ORA-12015: cannot create a fast refresh materialized view from a complex query
 Or

ORA-12052: cannot FAST refresh materialized view <Materialized View Name>
For each of the 14 queries the number of join clauses in the WHERE clause determined the number of test steps needed to obtain the FAST refresh version of the query.

See Appendix B for the step by step results to the testing methodology of the manual approach.

The AE Mview in its original form could not be preserved using this approach.

Instead, the result of the tuning conversion was the creation of 14 FAST refreshable Mviews for each AE type. Unfortunately, the structure of the Mviews included only the attributes specific to each AE type and the registry attributes. This is due to the FAST Mviews being SELECT statements to the corresponding source table for the AE type and the ADMINISTERED_COMPONENT table, with the join clause between the two included. The additional attributes provided by the following tables, present in the original AE Mview, had to be excluded from each AE type in order to obtain a FAST refreshable result:

· The AC_REGISTRATION table, for the registration status type of each element

· The AC_STATUS_LOV table, for the registration status of each element

· The REG_STATUS_LOV, for the workflow status of each element

· The CONTEXT table, for the context name for each element

· For some elements, specific attributes from related elements (i.e. for Data Elements, the Data Element Concept name and the Value Domain attributes).
Figure 2.3 illustrate the table structure change, from the original AE Mview to the AE Type Mview, in the case of the Classification Scheme type.

[image: image1]
Figure 2.3: AE Manual Fast Mview result (Classification Scheme AE type)

Another result of the manual approach was the unsuccessful outcome in combining any of the individual Mviews together using a UNION query. Each couple combination failed with the same error stating that the query was too complex.
2.4 The Advisor approach
Using the DBMS_ADVISOR.TUNE_MVIEW and DBMS_MVIEW.EXPLAIN_MVIEW routines, each FAST Mview statement was directly processed and the resulting tuning recommendations or messages, were researched and implemented, when appropriate.
Each statement was first processed through the advisor routine. The Explain Mview routine was used to obtain additional information on the Mview statement possibilities in instances when the advisor generated the following error:

QSM-03113: Cannot tune the MATERIALIZED VIEW statement

In most cases the Explain Mview provided valuable information to address the condition that prevented the Mview statement from being FAST refreshable.

See Appendix C for the step by step results to the testing methodology of the Advisor approach.

The run of the original AE Mview query through the Advisor generated an error indicating that the advisor could not make any recommendations to successfully FAST refresh the query. The original query had to be deconstructed and each SELECT statement was processed through the Advisor and the Explain Mview routine.
As with the manual approach, using the advisor recommendations and the output from the Explain Mview routine, we were able to successfully create all of the 14 individual AE Types FAST Mviews. However the resulting Mview table structure included not only the attributes specific to each type, but also all of the other AE original attributes (not included in the manual approach). We were able to keep all of the FROM tables and join clauses from the original queries. Included also in the new structures were additional columns for the ROWID values for all the tables in the FROM clause.
Figure 2.4 illustrates the table structure change from the original AE Mview to the AE Type Mview, in the case of the Classification Scheme type.

[image: image2]
Figure 2.4 AE Advisor Fast Mview result (Classification Scheme AE type)
Unfortunately, as with the manual approach, we were unsuccessful in processing dual combinations of the 14 individual FAST Mviews, using the UNION operator. Troubleshooting the advisor errors with the Explain Mview routine gave us the following errors:
QSM-02072: requirements not satisfied for fast refresh of nested mv
Cause: The capability in question is not supported because one or more of the requirements for this capability have not been satisfied.

Action: Examine the relevant nested materialized view documentation in the Warehouse Guide and address the problem.
After reading the oracle 10gR2 docs and the restrictions on Nested Mviews, we could not find a specific restriction on nested Mviews queries with the UNION operator. The most relevant statement to our situation was the following: “Some types of nested materialized views cannot be fast refreshed. Use EXPLAIN_MVIEW to identify those types of materialized views.” This basically seemed to imply that the EXPLAIN_MVIEW could be trusted to identify nested Mview queries that could not be FAST refreshable.
3. Conclusion
Appendix A includes the Lessons Learned from this conversion effort.
Using the conversion outcome derived from using the advisor and EXPLAIN_MVIEW routines, we can conclude that to convert the AE Mview to a FAST refreshable version, the warehouse AE table will need to be redesigned into14 FAST refreshable Primary key and Rowid Mviews for each of the administered element types (DATA_ELEMENT, OBJECT_CLASS, VALUE_DOMAIN, etc…)

These are the Mviews that need to be created to instantly replicate the AE changes from the transactional system to the warehouse. Each of the individual Mviews includes all the expanded attributes of the original AE Mview:

· The specific attributes for each element (LONG_NAME, DEFINITION, VERSION, etc… from the AE source table)

· the registry attributes of the elements (PUBLIC_ID)
· The registration status type and display order of each element (from the AC_REGISTRATION table)
· The registration status name of each element (from the AC_STATUS_LOV table)
· The workflow status of each element (from the REG_STATUS_LOV table)
· The context name for each element (from the CONTEXT table)
· For some elements, all the specific attributes from related elements are directly included on the AE table (i.e. for Data Elements, the Data Element Concept name and the Value Domain attributes).
In view of this outcome, the table below summarizes the options for implementing incremental refreshes in the MDR Warehouse.
Incremental Refresh Options for the MDR Warehouse

	
	
	Pros
	Cons

	Option 1
	· Create the 14 AE type fast Mviews as a set of “shadow” tables to instantly replicate the necessary tables from the transactional system.
· Then devise and create a triggering mechanism to track the changes in the shadow Mviews.

· Finally, using an incremental ETL process, move the data into the warehouse schema.
	· Incremental Refresh implemented on reporting tables
	· Developement Effort required to create the triggering mechanism,
· Overhead on transactional system in maintaining the change log for the Mviews

· Maintenance of the “shadow” Mview objects

	Option2
	· Create a triggering mechanism directly on the transactional tables to track changes.
· Then, using an incremental ETL process, move the data into the warehouse schema.
	· Incremental Refresh implemented on reporting tables,
· Solution is open source compatible
	· Development Effort required to create the triggering mechanism
· Overhead on transactional system in maintaining the change log for the tables

	Option 3
	· Create the 14 FAST refreshable Mviews
	· FAST Refresh implemented

· Query Performance and Analysis improved for Use cases querying unique AE types

	· Query Performance and Analysis concerns for Use cases combining multiple AE types

Looking at the benefits of Option 3 with using the 14 Fast Refresh Mviews for Use cases targeting Unique AE types (CDE Browser), we recommend combining this solution with a complete refresh copy of the original AE Mview. The combined table with all the AE types will be used to fulfill the requirements of interfaces that might need to query multiple AE types.
Appendix

A. Lessons Learned
The analysis and testing of the Mviews, in the process of converting them from Complete to FAST Refresh, presented some unforeseen challenges:

· Not able to execute a PL/SQL function call in the Mview SELECT clause, when creating the Mview for FAST refresh. The admincomponent_crud.cmr_guid is the function used to generate unique identifier values for the primary key field on the AE table. Although the function call worked fine when creating the complete Mview, errors pointing to the function call, were generated when the same query was changed to the FAST refresh option.
When directly running the CREATE Mview FASTREFRESH, the error was as follows, with the asterix right below the function call:
SELECT admincomponent_crud.cmr_guid AS ae_id, 'CSI' AS ae_type_code,

 *

ERROR at line 45:

ORA-12015: cannot create a FAST refresh materialized view from a complex query
When running the same statement through DBMS_ADVISOR.TUNE_MVIEW, the error was:

ERROR at line 1:

ORA-13600: error encountered in Advisor

QSM-03113: Cannot tune the MATERIALIZED VIEW statement

QSM-02083: mv references PL/SQL function that maintains state

ORA-06512: at "SYS.DBMS_SYS_ERROR", line 86

ORA-06512: at "SYS.PRVT_ACCESS_ADVISOR", line 202

ORA-06512: at "SYS.PRVT_TUNE_MVIEW", line 1232

ORA-06512: at "SYS.DBMS_ADVISOR", line 754

ORA-06512: at line 2
Here’s the error code interpretation from the Oracle documentation:

QSM-02083: mv references PL/SQL function that maintains state

 Cause: The capability in question is not supported when the materialized view references a PL/SQL function that maintains state and which may not return the same value every time it is invoked against the same set of rows.

 Action: Re-phrase the query to avoid such a PL/SQL function. Or modify the PL/SQL function to avoid state maintenance and change its declaration accordingly.
 Removing the GUID function call resolved these specific errors.

· When creating a straightforward FAST Mview (SELECT on a single source table) with an Mview log present in the source table, an interesting error was often encountered. For example, when creating the AE FAST Mview for the Conceptual Domain type:

FROM sbr.conceptual_domains cd

 *

ERROR at line 34:

ORA-12018: following error encountered during code generation for

"MDRW_MVF"."ADMINISTERED_ELEMENT_FM_CD"

ORA-00942: table or view does not exist
Even though the source table exists and the Mview owner has SELECT privileges to it. There were many references to this error in Metalink, and Notes 92350.1 and 1016935.102, each had a workaround for this buggy behavior which apparently first appeared in 8.1.5 and was supposed to have been resolved in 8.1.6 and subsequent versions:
1. Either you must grant select privileges on the mview log (mlog$_<table_name>) to the schema which owns the mview.
2. Or the workaround for this situation is to create the snapshot with the refresh COMPLETE mode and then alter the refresh mode to FAST using the 'alter materialized view' command.
 Usually the second option worked the best.

· There is a significant difference between how Oracle processes UNION vs UNION ALL operators in the Mview queries. UNION ALL seems to be preferred in Mview processing.

· When using the DBMS_ADVISOR.TUNE_MVIEW routine, the following errors was often generated:
 ERROR at line 1:

ORA-13600: error encountered in Advisor

QSM-03113: Cannot tune the MATERIALIZED VIEW statement

QSM-02083: mv references PL/SQL function that maintains state

ORA-06512: at "SYS.DBMS_SYS_ERROR", line 86

ORA-06512: at "SYS.PRVT_ACCESS_ADVISOR", line 202

ORA-06512: at "SYS.PRVT_TUNE_MVIEW", line 1232

ORA-06512: at "SYS.DBMS_ADVISOR", line 754

ORA-06512: at line 2
Metalink listed 3 bugs (6873020, 6126078 and 5872579) with the exact same error codes, with the first 2 bugs, on the exact same platform as ours. Only BUG 6873020 had a workaround, which was to remove the DISTINCT construct from the Mview query. It did not apply to any of the AE queries because we do not have DISTINCT anywhere.
This message was not very helpful and using the DBMS_MVIEW.EXPLAIN_MVIEW routine gave better insights as to why the statement was not FAST refreshable.
However the advisor does generate a clear error when it effectively cannot tune an Mview into a FAST refresh one.

ORA-13600: error encountered in Advisor

QSM-03117: Cannot tune the materialized view to be FAST refreshable

· Overall tuning the Mview with the advisor routine was quite efficient and generated some unforeseen recommendations such as creating combinations primary key and rowid Mview logs and the disabling of Query Rewrite to make Mviews FAST refreshable.
· The DBMS_MVIEW.EXPLAIN_MVIEW was invaluable in resolving more complex Mview queries and in providing more detail than the advisor.

B. Methodology Results using the Manual approach

All the scripts and outputs for this approach can be found in CVS using the following link, Mviews_tuning and going under the Manual Tuning directory.

	Manual Mview Tuning

	Tuning Steps
	Query/script Executed
	Result

	step1: The target Mview is the ADMINISTERED_ELEMENT (AE) Mview. The original AE CREATE Mview statement, as it exists on the Mview with the complete refresh option, is executed but with a change to the FASToption .
	step1_cr_load_admin_element_mv_fast.sql,
	CREATE MATERIALIZED VIEW administered_element_fast
*
ERROR at line 1:
ORA-12015: cannot create a FAST refresh materialized view from a complex query
Researched on Metalink and the web, looking for the characteristics that make this query complex. Oracle 10gR2 docs mentions UNION ALL limitations with outer joins.

	step2: Changed the query in step 1 to replace all the UNION operators to UNION ALL
	step2_cr_load_admin_element_mv_fast.sql,
	CREATE MATERIALIZED VIEW administered_element_fast
*
ERROR at line 1:
ORA-12015: cannot create a FAST refresh materialized view from a complex query

	Step3: Decided to create a new version of the FAST Mview, with only the first two SELECT statements from the Mview, the ones that load AE types Classification schemes (CS) and Classification Scheme Items (CSI).
	step3_cr_load_admin_element_mv_fast.sql,
	SELECT admincomponent_crud.cmr_guid AS ae_id, 'CSI' AS ae_type_code,
 *
ERROR at line 45:
ORA-12015: cannot create a FAST refresh materialized view from a complex query
Although the error is the same as in steps 1and 2, the cursor is now pointing to a different area on the create Mview statement. It's pointing to the GUID function

	Step4: Decided to change the Mview query by removing the GUID function call and replacing it with the values from the IDSEQ unique identifier from the source tables.
	step4_cr_load_admin_element_mv_fast.sql,
	SELECT csi.csi_idseq AS ae_id, 'CSI' AS ae_type_code,
 *
ERROR at line 45:
ORA-12052: cannot FAST refresh materialized view MDRW_MVC.ADMINISTERED_ELEMENT_FAST
The error points to the string entry on the second column

	Step5: changed the Mview query by removing the string values for the AE_TYPE_CODE column
	step5_cr_load_admin_element_mv_fast.sql,
	 FROM sbr.class_scheme_items csi
 *
ERROR at line 69:
ORA-12015: cannot create a FAST refresh materialized view from a complex query
Now the error points to the FROM clause and on the CSI table column

	Step6: Decided to create a new version of the FAST Mview, with only one of the SELECT statements from the Mview in step5, the one that loads the AE types Classification Scheme Items(CSI). This a new type created in MDR so the query is simple with a single table in the FROM clause.
	step6_cr_load_admin_element_mv_fast.sql,
	FAST Materialized view created

	Step7: created a new FAST Mview with only the other SELECT statement from the Mview in step5, the one that loads the AE types Classification Scheme(CS). This is an existing type created in caDSR so the query is typical to the other existing types with multiple tables in the FROM clause and several outer joins.
	step7_cr_load_admin_element_mv_fast.sql,
	 FROM sbr.classification_schemes cs,
 *
ERROR at line 33:
ORA-12052: cannot FAST refresh materialized view MDRW_MVC.ADMINISTERED_ELEMENT_FAST

	Step8: Decided to change the CS query in step7 by removing all the joins clauses along with related tables and columns. So only the CS remain in the FROM clause.
	step8_cr_load_admin_element_mv_fast.sql,
	FAST Materialized view created

	Step9: Changed the CS query in step8 by adding one of the joins clauses, the one with table Administered Components (AC), along with related tables and columns. So only the CS and AC tables remain in the FROM clause. Created a Primary key Mview Log on the AC table.
	step9_cr_load_admin_element_mv_fast.sql,
	FAST Materialized view created

	Step10: Changed the CS query in step9 by adding one of the outer join clauses (table ACR sbr.ac_registrations) , along with the related tables and columns. Tables in FROM clause are CS, AC and ACR tables. Created a Primary key Mview Log on the ACR table.
	step10_cr_load_admin_element_mv_fast.sql,
	FROM sbr.classification_schemes cs,
 *
ERROR at line 39:
ORA-12052: cannot FAST refresh materialized view
MDRW_MVC.ADMINISTERED_ELEMENT_F_CS

	Step11: Decided to change the CS query in step 9 by adding a different outer join clause (table ASL sbr.as_status_lov) and the related tables and columns. Tables in FROM clause are CS, AC and ASL tables. Created a Primary key Mview Log on the ASL table.
	step11_cr_load_admin_element_mv_fast.sql,
	FROM sbr.classification_schemes cs,
 *
ERROR at line 39:
ORA-12052: cannot FAST refresh materialized view
MDRW_MVC.ADMINISTERED_ELEMENT_F_CS1

	Step12: Decided to change the CS query in step9 by adding a different outer join clause (table CO sbr.ac_contexts) and the related tables and columns. Tables in FROM clause are CS, AC and CO tables. Created a Primary key Mview Log on the CO table.
	step12_cr_load_admin_element_mv_fast.sql,
	FROM sbr.classification_schemes cs,
 *
ERROR at line 39:
ORA-12052: cannot FAST refresh materialized view
MDRW_MVC.ADMINISTERED_ELEMENT_F_CS1

	Step 13: Based on the positive results in steps 6 and 9, created a new Mview query that combines the queries from the 2 FAST Mviews for the CS and CSI types. Created a new Mview query with a Union of two SELECT statements from the two CS and CSI FAST Mviews queries.
	step13_cr_load_admin_element_mv_fast.sql,
	FROM sbr.class_scheme_items csi
 *
ERROR at line 81:
ORA-12015: cannot create a FAST refresh materialized view from a complex query

	Step 14: Created a new Mview query that directly combines the data from the 2 FAST Mviews for the CS and CSI types, created in steps 6 and 9.
	step14_cr_load_admin_element_mv_fast.sql,
	FROM MDRW_MVC.ADMINISTERED_ELEMENT_F_CSI B
 *
ERROR at line 38:
ORA-12015: cannot create a FAST refresh materialized view from a complex query

	step15: Decided to run the exact same statement from Step 14, but with the COMPLETE REFRESH clause to make sure that the difference was between FAST and COMPLETE, and not the actual query
	step15_cr_load_admin_element_mv_fast.sql,
	Materialized view created.

	Ran steps 6, thru 12 for each of the other 12 SELECT statements for the different AE Types, until I was able to obtain a query version with positive FAST Refresh recommendations (see individual AE Type directories for advisor step scripts, output and results):
Conceptual Domain (CD)
Classification Scheme (CS)
Classification Scheme Item (CSI)
Object Class (OC)
Data Element (DE)
Data Element Concept (DEC)
Value Meaning (VM)
Value Domain (VD)
Permissible Value (PV)
Context (CT)
Protocol (PC)
Forms (QC)
Property
Representation

After creating all the individual AE Type Mviews, ran tests for various combinations scenarios, (similar to the one performed in steps 13, 14 and 15) to group the individually created FAST Mviews (see Query Combination directory for scripts and results):

	Classification Scheme and Classification Scheme Item (CS_CSI)
Form and Representation (QC_REP)
Data Element and Context (DE_CO)
Data Element and Data Element Concept (DE_DEC)
Value Domain and Classification Scheme Item (VD_CSI)
Value Meaning and Object Class (VM_OC)
Context and Permissible Value (CO_PV)
Classification Scheme and Data Element Concept (CS_DEC)
Value Domain and Context (VD_CO)
Conceptual Domain and Permissible Value (CD_PV)

C. Methodology Results using the Advisor approach

All the scripts and outputs for this approach can be found in CVS using the following link, Mviews_tuning and going under the Advisor Tuning directory.

	Mview Tuning Using the Advisor

	Tuning Steps
	Query/script Executed
	Result

	step1: The target Mview is the ADMINISTERED_ELEMENT (AE) Mview. The original AE Mview query, as it exists on the Mview with the complete refresh (with the 14 SELECT statements), is processed using the Advisor package. A view, ADMINISTERED_ELEMENT_V is created (based on the exact AE Mview query) to circumvent Pl/Sql buffer errors on the long CREATE MATERIALIZED view call to the Advisor package. The Mview query that is processed by the Advisor is a straight SELECT from the created view. The initial Advisor call is for a COMPLETE REFRESH version of the Mview to query for tuning recommendations
	cr_load_admin_element_v.sql, step1_advisor_run.sql
	QSM-03116: The materialized view is already optimal and cannot be tuned any further

	step2: The next Advisor call is for a FASTREFRESH version of the same Mview to query processed in step1
	 step2_advisor_run.sql
	ORA-13600: error encountered in Advisor
QSM-03113: Cannot tune the MATERIALIZED VIEW statement
QSM-02083: mv references PL/SQL function that maintains state Oracle documentation result for QSM-02083
 Cause: The capability in question is not supported when the materialized view references a PL/SQL function that maintains state and which may not return the same value every time it is invoked against the same set of rows.
 Action: Re-phrase the query to avoid such a PL/SQL function. Or modify the PL/SQL function to avoid state maintenance and change its declaration accordingly.

	step2a: Run statement in step 2 through DBMS_MVIEW.EXPLAIN_MVIEW, to try to troubleshoot the error in step2
	 step2a_advisor_run.sql
	Output from DBMS_MVIEW.EXPLAIN_MVIEW:
REFRESH_FAST N

mv references PL/SQL function that maintains state

	step3: Run the same CREATE Mview statement outside the advisor to see if a similar error will be generated
	step3_manual_create_run.sql
	ORA-12015: cannot create a FAST refresh materialized view from a complex query Different error than in step2 and output from DBMS_MVIEW.EXPLAIN_MVIEW

	Step4: Back to the Mview version in step2, need to circumvent the Pl/SQL function error. Decide to change the Mview query by removing the GUID function call and replacing it with the values from the IDSEQ unique identifier from the source tables. Creates a new view version of the AE original query with these changes, view called ADMINISTERED_ELEMENT_V2. The Mview query that is processed by the Advisor is again a straight SELECT from the newly created view. The Advisor call is for a FASTREFRESH version of the Mview.
	cr_load_admin_element_v2.sql, step4_advisor_run.sql
	ORA-13600: error encountered in Advisor
QSM-03113: Cannot tune the MATERIALIZED VIEW statement Researched the errors on Metalink
-- Found BUGs 6873020, 6126078 and 5872579 with the exact same error codes, with the first 2 on the exact same platform as ours. Only BUG 6873020 had a workaround, which was to remove the DISTINCT construct from the Mview query. It did not apply because we do not have DISTINCT anywhere on the AE query.

	Step4a: Run statement in step 4 through DBMS_MVIEW.EXPLAIN_MVIEW, to try to troubleshoot the error in step 4
	 Step4a_advisor_run.sql
	Output from DBMS_MVIEW.EXPLAIN_MVIEW:

REFRESH_FAST N

the detail table does not have a materialized view log

	step5: Ran the exact same statement but with the COMPLETE REFRESH
	 step5_advisor_run.sql
	QSM-03116: The materialized view is already optimal and cannot be tuned any
further

	Step6: Back to the Mview version in step4. In order to determine which Mview log was missing, decided to create a new version of the FAST Mview, with only the first two SELECT statements from the Mview, the ones that load AE types Classification schemes (CS) and Classification Scheme Items (CSI). Created a new view version of the AE original query with these changes, view called ADMINISTERED_ELEMENT_V3. The Mview query that is processed by the Advisor is again a straight SELECT from the newly created view. The Advisor call is for a FASTREFRESH version of the Mview.
	cr_load_admin_element_v3.sql, step6_advisor_run.sql
	Error from the Advisor:

QSM-03113: Cannot tune the MATERIALIZED VIEW statement

	Step6a: Run statement in step 6 through DBMS_MVIEW.EXPLAIN_MVIEW, to try to troubleshoot the error in step 6
	 Step6a_advisor_run.sql
	Output from DBMS_MVIEW.EXPLAIN_MVIEW:

REFRESH_FAST N

the detail table does not have a materialized view log
Mview logs exist in tables CSI and CS.

	Step7: Decided to create a new version of the FAST Mview, with only one of the SELECT statements from the Mview in step6, the one that loads the AE types Classification Scheme Items(CSI). This a new type created in MDR so the query is simple with a single table in the FROM clause. The Mview query that is processed by the Advisor is the straight CREATE Mview statement with the FASTREFRESH option.
	step7_advisor_run.sql
	QSM-03116: The materialized view is already optimal and cannot be tuned any further So as predicted the Advisor confirms that a FASTREFRESH is possible

	Step7a: Ran the Create Mview statement in step7 directly to create the CSI Mview.
	step7a_advisor_run.sql
	Materialized created

	Step8: created a new FAST Mview, with only the other SELECT statement from the Mview in step6, the one that loads the AE types Classification Scheme (CS). This is an existing type created in caDSR so the query is typical to the other existing types with multiple tables in the FROM clause and several outer joins. The Mview query that is processed by the Advisor is the straight CREATE Mview statement with the FASTREFRESH option.
	step8_advisor_run.sql
	Same errors as in step4 QSM-03113: Cannot tune the MATERIALIZED VIEW statement

	Step8a: Run statement in step 8 through DBMS_MVIEW.EXPLAIN_MVIEW, to try to troubleshoot the error in step 8
	 Step8a_advisor_run.sql
	Output from DBMS_MVIEW.EXPLAIN_MVIEW:

REFRESH_FAST N

the SELECT list does not have the rowids of all the detail tables

the detail table does not have a materialized view log

the detail table does not have a materialized view log

the detail table does not have a materialized view log

	Step9: To determine which Mview log is missing, decided to change the CS query in step8 by removing all the joins along with related tables and columns. So only the CS table remain in the FROM clause. The Mview query that is processed by the Advisor is the straight CREATE Mview statement with the FAST REFRESH option.
	step9_advisor_run.sql
	QSM-03116: The materialized view is already optimal and cannot be tuned any further
So as predicted the Advisor confirms that a FASTREFRESH is possible

	Step10: Decided to change the CS query in step8 by adding one of the join clauses, sbr.Administered_Components ACalong with related tables and columns. So only the CS and Administered Components (AC) remain in the FROM clause. The Mview query that is processed by the Advisor is the straight CREATE Mview statement with the FASTREFRESH option.
	step10_advisor_run.sql
	FASTrefresh Possible (see Step10_advisor_output.xls)

ADVISOR Recomendations
CREATE MATERIALIZED VIEW LOG ON "SBR"."ADMINISTERED_COMPONENTS" WITH ROWID
ALTER MATERIALIZED VIEW LOG FORCE ON "SBR"."ADMINISTERED_COMPONENTS" ADD ROWID
ALTER MATERIALIZED VIEW LOG FORCE ON "SBR"."CLASSIFICATION_SCHEMES" ADD ROWID
CREATE MATERIALIZED VIEW MDRW_MVC.ADMINISTERED_ELEMENT_F REFRESH FASTWITH ROWID etc...

	Step10a: Created the Materialized logs recommended by the Advisor and added the recommended ROWID clauses for tables CS and AC to the SELECT list of the create Mview statement. Ran the Create Mview statement directly to create the CS Mview.
	step10a_advisor_run.sql
	Materialized created

	Step11: Decided to change the CS query in step 10a by adding one of the outer join clauses (table ACR sbr.ac_registrations) and the related tables and columns. Tables in FROM clause are CS, AC and ACR tables. The Mview query that is processed by the Advisor is the straight CREATE Mview statement with the FASTREFRESH option.
	step11_advisor_run.sql
	Same errors as in step4 QSM-03113: Cannot tune the MATERIALIZED VIEW statement

	Step11a: Run statement in step 11 through DBMS_MVIEW.EXPLAIN_MVIEW, to try to troubleshoot the error in step 11
	 Step11a_advisor_run.sql
	Output from DBMS_MVIEW.EXPLAIN_MVIEW:

REFRESH_FAST N

the SELECT list does not have the rowids of all the detail tables

the detail table does not have a materialized view log

	Step11b: Created a ROWID Mview Log on table sbr.ac_registration and added to the SELECT list, rowid columns for the CS, AC and ACR tables. Run statement through DBMS_MVIEW.EXPLAIN_MVIEW.
	 Step11b_advisor_run.sql
	Output from DBMS_MVIEW.EXPLAIN_MVIEW:

REFRESH_FAST Y

FAST Refresh Possible

	Step12: Decided to change the CS query in step 11b by adding another one of the outer join clauses (table CO sbr.contexts) and the related tables and columns. Tables in FROM clause are CS, AC, ACR and CO tables. The Mview query that is processed by the Advisor is the straight CREATE Mview statement with the FASTREFRESH option.
	step12_advisor_run.sql
	Same errors as in step4 QSM-03113: Cannot tune the MATERIALIZED VIEW statement

	Step12a: Run statement in step 12 through DBMS_MVIEW.EXPLAIN_MVIEW, to try to troubleshoot the error in step 12
	 Step12a_advisor_run.sql
	Output from DBMS_MVIEW.EXPLAIN_MVIEW:

REFRESH_FAST N

the SELECT list does not have the rowids of all the detail tables

the detail table does not have a materialized view log

	Step12b: Created a ROWID Mview Log on table sbr.contexts and added to the SELECT list, rowid columns for the CO table. Run statement through DBMS_MVIEW.EXPLAIN_MVIEW.
	 Step12b_advisor_run.sql
	Output from DBMS_MVIEW.EXPLAIN_MVIEW:

REFRESH_FAST Y

FAST Refresh Possible

	Step13: Decided to change the CS query in step 12b by adding another one of the outer join clauses (table sbr.ac_status_lov asl) and the related tables and columns. Tables in FROM clause are CS, AC, ACR, CO and ASL tables. The Mview query that is processed by the Advisor is the straight CREATE Mview statement with the FASTREFRESH option.
	step13_advisor_run.sql
	Same errors as in step4 QSM-03113: Cannot tune the MATERIALIZED VIEW statement

	Step13a: Run statement in step 12 through DBMS_MVIEW.EXPLAIN_MVIEW, to try to troubleshoot the error in step 13
	 Step13a_advisor_run.sql
	Output from DBMS_MVIEW.EXPLAIN_MVIEW:

REFRESH_FAST N

the SELECT list does not have the rowids of all the detail tables

the detail table does not have a materialized view log

	Step13b: Created a ROWID Mview Log on table sbr.ac_status_lov and added to the SELECT list, rowid columns for the ASL table. Run statement through DBMS_MVIEW.EXPLAIN_MVIEW.
	 Step13b_advisor_run.sql
	Output from DBMS_MVIEW.EXPLAIN_MVIEW:

REFRESH_FAST Y

FAST Refresh Possible

	Step14: Decided to change the CS query in step 13b by adding another one of the outer join clauses (table sbr.reg_status_lov rsl) and the related tables and columns. Tables in FROM clause are CS, AC, ACR, CO, ASL and RSL tables. The Mview query that is processed by the Advisor is the straight CREATE Mview statement with the FAST REFRESH option.
	step14_advisor_run.sql
	Same errors as in step4 QSM-03113: Cannot tune the MATERIALIZED VIEW statement

	Step14a: Run statement in step 14 through DBMS_MVIEW.EXPLAIN_MVIEW, to try to troubleshoot the error in step 14
	 Step14a_advisor_run.sql
	Output from DBMS_MVIEW.EXPLAIN_MVIEW:

REFRESH_FAST N

the SELECT list does not have the rowids of all the detail tables

the detail table does not have a materialized view log

	Step14b: Created a ROWID Mview Log on table sbr.reg_status_lov and added to the SELECT list, rowid columns for the RSL table. Run statement through DBMS_MVIEW.EXPLAIN_MVIEW.
	 Step14b_advisor_run.sql
	Output from DBMS_MVIEW.EXPLAIN_MVIEW:

REFRESH_FAST Y

FAST Refresh Possible

	Step 15: Ran the statement in step 14b directly on the command line
	step15_advisor_run.sql
	Materialized created

	Step 16: Based on the positive results in steps 7a and 15, combined the 2 FAST Mviews for the CS and CSI types. Created a new Mview query with a Union of two SELECT statements querying the CS and CSI FAST Mviews. Created rowid Mview logs on the CS and CSI Fast Mviews. Created ROWID Mview logs for the CS and CSI Fast Mviews Processed this new Mview query in the Advisor as a straight CREATE Mview statement with the FAST REFRESH option.
	step16_advisor_run.sql
	QSM-03113: Cannot tune the MATERIALIZED VIEW statement

	Step16a: Run statement in step 16 through DBMS_MVIEW.EXPLAIN_MVIEW, to try to troubleshoot the error in step 16
	 Step16a_advisor_run.sql
	Output from DBMS_MVIEW.EXPLAIN_MVIEW:

REFRESH_FAST N

tables must be identical across the UNION operator

	step17: Decided to process in advisor, the exact same statement but with the COMPLETE REFRESH clause to make sure that the difference was between FAST and COMPLETE, and not the actual query
	step17_advisor_run.sql
	QSM-03116: The materialized view is already optimal and cannot be tuned any further

	Step18: To statement in step 16, changed the UNION operator to UNION ALL
	step18_advisor_run.sql
	QSM-03113: Cannot tune the MATERIALIZED VIEW statement

	Step18a: Run statement in step 18 through DBMS_MVIEW.EXPLAIN_MVIEW, to try to troubleshoot the error in step 18
	 Step18a_advisor_run.sql
	Output from DBMS_MVIEW.EXPLAIN_MVIEW:

REFRESH_FAST N
the materialized view does not have a UNION ALL marker column
the SELECT list does not have the rowids of all the detail tables

some query block in UNION ALL MV is not fast refreshable
set operator in a context not supported for fast refresh

	Step18b: added markers and rowid columns to statement in step18a and processed again through EXPLAIN_MVIEW
	 Step18b_advisor_run.sql
	Output from DBMS_MVIEW.EXPLAIN_MVIEW:

REFRESH_FAST N
requirements not satisfied for fast refresh of nested mv

	Step 19: Ran the statement in step18b outside of advisor
	step19_advisor_run.sql
	ERROR at line 23:

ORA-12053: this is not a valid nested materialized view

	Ran steps 7, thru 15 for each of the other 12 SELECT statements for the different AE Types, until I was able to obtain a query version capable of FAST Refresh (see individual AE Type directories for advisor step scripts, output and results):
Conceptual Domain (CD)
Classification Scheme (CS)
Classification Scheme Item (CSI)
Object Class (OC)
Data Element (DE)
Data Element Concept (DEC)
Value Meaning (VM)
Value Domain (VD)
Permissible Value (PV)
Context (CT)
Protocol (PC)
Forms (QC)
Property
Representation

	After creating all the individual AE Type Mviews, ran tests for various combinations scenarios, (similar to the one performed in steps 16 and 19) to group the individually created FASTMviews (see Query Combination directory for scripts and results):
Classification Scheme and Classification Scheme Item (CS_CSI)
Form and Representation (QC_REP)
Data Element and Context (DE_CO)
Data Element and Data Element Concept (DE_DEC)
Value Domain and Classification Scheme Item (VD_CSI)
Value Meaning and Object Class (VM_OC)
Context and Permissible Value (CO_PV)
Classification Scheme and Data Element Concept (CS_DEC)
Value Domain and Context (VD_CO)
Conceptual Domain and Permissible Value (CD_PV)

[image: image3.wmf]

ADMIN_ELEMENT

AE_ID

AE_TYPE_CODE (FK)

LONG_NAME

PREFERRED_NAME

PREFERRED_DEFINITION

DEFINITION_SOURCE

VERSION

ORIGIN

CHANGE_NOTE

CREATED_BY

DATE_CREATED

MODIFIED_BY

DATE_MODIFIED

LATEST_VERSION_IND (IE2)

DELETED_IND (IE3)

BEGIN_DATE

END_DATE

PUBLIC_ID

ORIGINAL_AE_IDSEQ (IE1)

ORIGINAL_AE_ID

ASL_NAME (IE4)

OWNED_BY_CONTEXT

USED_BY_CONTEXT

WORKFLOW_STATUS

ASL_DISPLAY_ORDER

REGISTRATION_STATUS (IE5)

RSL_DISPLAY_ORDER

ORIGINAL_VD_IDSEQ

DE_LONG_NAME

DE_PUBLIC_ID

VD_NAME

VD_TYPE_FLAG

VD_DTL_NAME

VD_UOML_NAME

VD_FORML_NAME

VD_CHAR_SET_NAME

DEC_NAME

ORIGINAL_DEC_IDSEQ

OC_NAME

ORIGINAL_OC_IDSEQ

PROP_NAME

ORIGINAL_PROP_IDSEQ

CD_NAME

ORIGINAL_CD_IDSEQ

CONTEXT_NAME (IE6)

ORIGINAL_CONTE_IDSEQ

PROTOCOL_LONG_NAME

DE_QUESTION

QTL_NAME (IE7)

QCDL_NAME (IE8)

ADMIN_ELEMENT_CS

AE_ID

AE_TYPE_CODE

LONG_NAME

PREFERRED_NAME

PREFERRED_DEFINITION

DEFINITION_SOURCE

VERSION

ORIGIN

CHANGE_NOTE

CREATED_BY

DATE_CREATED

MODIFIED_BY

DATE_MODIFIED

LATEST_VERSION_IND (IE2)

DELETED_IND (IE3)

BEGIN_DATE

END_DATE

PUBLIC_ID

ORIGINAL_AE_IDSEQ (IE1)

ORIGINAL_AE_ID

ASL_NAME (IE4)

[image: image4.wmf]

ADMIN_ELEMENT

AE_ID

AE_TYPE_CODE (FK)

LONG_NAME

PREFERRED_NAME

PREFERRED_DEFINITION

DEFINITION_SOURCE

VERSION

ORIGIN

CHANGE_NOTE

CREATED_BY

DATE_CREATED

MODIFIED_BY

DATE_MODIFIED

LATEST_VERSION_IND (IE2)

DELETED_IND (IE3)

BEGIN_DATE

END_DATE

PUBLIC_ID

ORIGINAL_AE_IDSEQ (IE1)

ORIGINAL_AE_ID

ASL_NAME (IE4)

OWNED_BY_CONTEXT

USED_BY_CONTEXT

WORKFLOW_STATUS

ASL_DISPLAY_ORDER

REGISTRATION_STATUS (IE5)

RSL_DISPLAY_ORDER

ORIGINAL_VD_IDSEQ

DE_LONG_NAME

DE_PUBLIC_ID

VD_NAME

VD_TYPE_FLAG

VD_DTL_NAME

VD_UOML_NAME

VD_FORML_NAME

VD_CHAR_SET_NAME

DEC_NAME

ORIGINAL_DEC_IDSEQ

OC_NAME

ORIGINAL_OC_IDSEQ

PROP_NAME

ORIGINAL_PROP_IDSEQ

CD_NAME

ORIGINAL_CD_IDSEQ

CONTEXT_NAME (IE6)

ORIGINAL_CONTE_IDSEQ

PROTOCOL_LONG_NAME

DE_QUESTION

QTL_NAME (IE7)

QCDL_NAME (IE8)

ADMIN_ELEMENT_CS

AE_ID

AE_TYPE_CODE

LONG_NAME

PREFERRED_NAME

PREFERRED_DEFINITION

DEFINITION_SOURCE

VERSION

ORIGIN

CHANGE_NOTE

CREATED_BY

DATE_CREATED

MODIFIED_BY

DATE_MODIFIED

LATEST_VERSION_IND (IE2)

DELETED_IND (IE3)

BEGIN_DATE

END_DATE

PUBLIC_ID

ORIGINAL_AE_IDSEQ (IE1)

ORIGINAL_AE_ID

ASL_NAME (IE4)

OWNED_BY_CONTEXT

USED_BY_CONTEXT

WORKFLOW_STATUS

ASL_DISPLAY_ORDER

REGISTRATION_STATUS (IE5)

RSL_DISPLAY_ORDER

ORIGINAL_VD_IDSEQ

DE_LONG_NAME

DE_PUBLIC_ID

VD_NAME

VD_TYPE_FLAG

VD_DTL_NAME

VD_UOML_NAME

VD_FORML_NAME

VD_CHAR_SET_NAME

DEC_NAME

ORIGINAL_DEC_IDSEQ

OC_NAME

ORIGINAL_OC_IDSEQ

PROP_NAME

ORIGINAL_PROP_IDSEQ

CD_NAME

ORIGINAL_CD_IDSEQ

CONTEXT_NAME (IE6)

ORIGINAL_CONTE_IDSEQ

PROTOCOL_LONG_NAME

DE_QUESTION

QTL_NAME (IE7)

QCDL_NAME (IE8)

CS_ROWID

AC_ROWID

CO_ROWID

ACR_ROWID

ASL_ROWID

RSL_ROWID

