[image: image4.jpg]

[image: image1.jpg]

 SHAPE * MERGEFORMAT

[image: image3.png]SAIC. | e

LexEVS 6.1, Term Browser 2.3, and Metathesaurus Browser 2.3 Integration Test Plan

__

Version 1.2
 08/13/2013
VERSION HISTORY

This plan will be tracked and distributed via the use of NCI Wiki. Version control and approval will be documented in the table below
	Version #
	Implemented

By
	Revision

Date
	Approved

By
	Approval

Date
	Reason

	1.0
	Tin Tran
	08/13/2013
	Preston Wood
	
	Initial Draft Test Plan for deploying LexEVS 6.1, Term Browser 2.3, and Metathesaursus Browser 2.3 into QA Tier.

	1.1
	Tin Tran
	08/19/2013
	Preston Wood
Sudha Chudamani
	
	Incorporated changes in response to Preston Wood’s feedback and comments.

	1.2
	Tin Tran
	08/19/2013
	Preston Wood

Sudha Chudamani
	
	Incorporated changes in response to Preston Wood’s feedback and comments.

Table of Contents

APPENDIX F: Requirement Traceability Matrix
61
Purpose and Scope

61.1
Purpose

61.2
Background

61.3
Scope

72
Resource Requirements

72.1
Testing Environment

72.2
Other Testing Components

82.3
Personnel Roles and Responsibilities

82.4
Staff Training

83
Assumptions, Constraints and Risks

83.1
Testing Assumptions

83.2
Testing Constraints

93.3
Testing Risks

94
Testing Approach and Methodology

104.1
Test Milestones

114.2
Test Data

114.3
Recording Results

114.4
Analyzing Results

114.5
Defect and Bug Resolution

125
Unit Testing

126
Functional Testing

126.1
Test Risks/ Issues

136.2
Items to Be Tested/Not Tested

186.3
Test Approach(s)

196.4
Regulatory / Mandate Criteria

196.5
Test Pass / Fail Criteria

196.6
Test Entry / Exit Criteria

216.7
Test Deliverables

226.8
Test Suspension / Resumption Criteria

237
Performance Testing

247.2
Items to Be Tested/Not Tested

247.3
Test Approach(s)

247.4
Regulatory / Mandate Criteria

247.5
Test Pass / Fail Criteria

247.6
Test Entry / Exit Criteria

247.7
Test Deliverables

257.8
Test Suspension / Resumption Criteria

258
Acceptance Testing

259
Usability Testing

2510
Conformance Testing

2511
Regression Testing

2611.1
Test Risks/ Issues

2611.2
Items to Be Tested/Not Tested

2711.3
Test Approach(s)

2711.4
Regulatory / Mandate Criteria

2711.5
Test Pass / Fail Criteria

2711.6
Test Entry / Exit Criteria

2711.7
Test Deliverables

2711.8
Test Suspension / Resumption Criteria

2812
Stress Testing

2813
Vulnerability Assessment Testing

2814
Progress Reporting

2915
Appendix Summary

30APPENDIX A: TEST PLAN APPROVAL

31APPENDIX B: REFERENCES

33APPENDIX C: KEY TERMS

35APPENDIX D: TEST SUMMARY REPORT

36APPENDIX E: BUG REPORT / DEFECT LOG

37APPENDIX F: Requirement Traceability Matrix

1 Purpose and Scope
1.1 Purpose

This document focuses on the planned testing of the functions proposed by the product stakeholders and target users for LexEVS 6.1, Term Browser 2.3, and Metathesaursus Browser 2.3. This test plan document addresses and provides guidance for SAIC-F QA team’s activities to be performed in support of the EVS (Enterprise Vocabulary Services) project. It is designed to capture and convey the overall structure and objectives of the EVS testing activities. The intended audience of this document is the project manager, project team and testing team.

1.2 Background
NCI Enterprise Vocabulary Services (EVS) has provided terminology content, tools, and services to accurately code, analyze and share cancer and biomedical research, clinical and public health information. EVS works with many partners to develop, license and publish terminology, jointly develop software tools, and support harmonization and shared standards. EVS provides the foundational layer for NCI's informatics infrastructure, and plays an important role in federal and international standards efforts. LexEVS 6.1 will provide the backend REST API framework for the front end Term Browser v2.3 and Metathesaurs Browser V2.3. This release of Term Browser V2.3 will separate the Name/Code options on the simple search to improve performance, provide enhancements to the search functionality, and update the value sets accessibility. Term Browser 2.3 will also provide bug fixes found in previous releases. There are no new functionality and features associated with the Metathesaurus Browser V2.3 release. Metathesaurus Browser V2.3 will provide bug fixes found in previous releases.
1.3 Scope
The scope of the testing effort for LexEVS 6.1, Term Browser 2.3, and Metathesaursus Browser 2.3 integration project will include the following:

LexEVS 6.1 REST API support, Validating of enhancements made to Term Browser 2.3 and Metathesaurus Browser 2.3 search functionality and performance enhancements to the search filter algorithm.
Items that are determined by the project team to be out of scope or defer to future releases are:

1. Stress testing and load testing against the LexEVS 6.1 REST API changes.

2. Usability testing of the Browser interfaces.

2 Resource Requirements
Testing effort will be performed in the NCI QA Tier by two SAIC-F QA test engineers. The testing will be on vm’s created and maintained by the NCI System Team. Testing will involve the use of HPQC, QTP, and SOAP UI Pro.

2.1 Testing Environment
The Testing Environment is provided by the NCI System team. All testing activities will be conducted in the QA environment.

	Item
	Description

	Client Interface
	· Internet Explorer 6.0 and above (For this release: Internet Explorer 9.0)
· Firefox 2.0.0 or higher (For this release: Mozilla Firefox 23.0.1)
· Safari 3.1.2 (Out of Scope)

	Application Server
	· JBoss 5.0.1

	Database Server
	· MySQL 5.0.51

	Operating System
	· Linux [Operating system independent]

	CTS2
	· CTS2 Development Framework is a development kit for rapidly creating CTS2 compliant applications.

	[Other]
	· Java Platform 1.5.0_14

2.2 Other Testing Components

Performance, security, and Section 508 related testing will also be conducted.
2.3 Personnel Roles and Responsibilities
	Role/Function
	Personnel

	EVS Associate Director
	Larry Wright

	Associate Director EVS Infrastructure
	Gilberto Fragoso

	Product Manager(s)
	Sherri De Coronado, Margaret Haber, Craig Stancl

	Project Manager
	Jason Lucas

	Quality Assurance Lead
	Tin Tran

	Quality Assurance Team Member
	Shamim Ahmed

	Database Administrator
	Tracy Safran

	Developer(s)
	Kim Ong, Kevin Peterson

	Network Administrator(s)
	Rob Wynne, Norvel Johnson

2.4 Staff Training

Training on SOAP UI Pro and QTP will be critical for improving the effectiveness of QA testing efforts. There is no training planned nor scheduled for this release.
3 Assumptions, Constraints and Risks
3.1 Testing Assumptions
Terminologies EVS makes available are described in metadata stored in LexEVS and partly published through the EVS browsers. Testing against datasets via these terminologies are dependent on the relationship mappings established.
3.2 Testing Constraints
LexEVS 6.1 is based on the draft standard Common Terminology Services Release 2 (CTS 2) specification. CTS 2 specifies a set of services that standardize the functional requirements of a terminology server.
3.3 Testing Risks

	#
	Risks
	Mitigation

	1.
	Delay in tag release to QA. Since Test case execution is planned to start after the application is installed on the QA Tier, for each iteration, any delay in scheduled delivery of the tag to QA would have an impact on the project schedule and the amount of time needed to execute all the planned test cases.
	Discuss with stakeholders and to reduce the scope for the iteration if the delay cannot be absorbed within the current schedule.

	2.
	LexEVS is a highly complex application server. The QA team is greatly dependent on clear and concise documentation to create test cases that would cover all the REST API calls.
	Work closely with the Development team to gain working knowledge of the application as well as raise questions to gain more detail technical specifications.

	3.
	Scope creep that causes the addition of new functionality/requirements into the release.
	Scope changes will be analyzed for the impact and change requests will be raised for changes to effort or schedule.

	4.
	Due to the close dependency of the LexEVS REST API and the Term Browsers search functionality, any miscommunication in requirements and code changes between the Mayo Team and the Term Browser Development team would result in test cases not accurately testing the integration points between the two applications.
	Identify discrepancies and vague requirements early in the development life cycle. Raise the issue to both development groups and clear up any miscommunication. A common and unified requirements tracking system would definitely mitigate this risk.

	5.
	Reference documentation for deriving requirements traceability matrices and test cases not base-lined.
	The QA Test team would identify the test cases that do not have base-lined use cases early in the test case planning phase

	6.
	Incomplete documentation and lack of proper use cases from development would cause insufficient test case creation and coverage.
	Elevate risk earlier in the development cycle. Get project manager and product managers to promote, complete, and provide clear documentation.

4 Testing Approach and Methodology
Once the deployment of LexEVS 6.1, Term Browser 2.3, and Metathesaursus Browser 2.3 via Anthill Pro has been successfully completed, the testing approach is as follows:

1. Conduct an initial automated smoke test to validate core functionality is operational.
2. Execute manual as well as automated functional and regression test cases to identify any defect cluster with respect to LexEVS and Term Browser Core components. From these test cases, QA can identify the area of REST API to be focused on. If an area of defect clustering is apparent from the analysis of the regression testing, manual testing will be performed against the core components of the application in question to promote the design of new test cases and expose any defect not covered by the regression test cases.
3. Based on information collected from step 2, QA will proceed in testing the LexEVS REST API via SOAP UI Pro tool.
4. Manual validation testing will be executed to verify specific bug fixes done on the Term Browser and Metathesaurus Browser.

5. Performance testing data will be collected for areas where performance improvements have been made and compared with a prior release deployed to the Stage Tier.

4.1 Test Milestones
There are four major milestones in each iteration of the development cycle: Planning Phase, Design Phase, Development Phase, and Stabilization Phase. The Planning Phase culminates in the completion of the Planning Docs Milestone (Requirements plus Functional Spec). The Design Phase culminates in the completion of the Design Spec and Test Plan / Test Spec. The Development Phase culminates in the Code Complete Milestone. The Stabilization Phase culminates in the Release Milestone.

During the first two phases, testing plays a supporting role, providing ideas and limited testing of the planning and design documents. Throughout the final two stages, testing plays a key role in the project.
	Milestone (s)
	Target End Date
	QA Activities

	Milestone One

(Development)
	· LexEVS: 7/17/13
· Term Browser 7/17/13
· Metathesaurus Browser 7/17/13
	· Requirements analysis

· Assessing the impact of Requirements on testing
· Identifying risks related to the testing and development process
· Identifying project infrastructure issues
· Start Test Plan creation

	Milestone Two

(Exit Dev to QA)
	· LexEVS: 8/12/13

· Term Browser 8/14/13

· Metathesaurus Browser 8/14/13
	· Finalize Test Plan Creation

· Collect all Requirements, Functional Spec, Design Documents, Business Rules, and Project Plan/Schedule.
· Fulfill all entrance criteria requirements.

	Milestone Three

(Exit QA to Stage)
	· LexEVS: 9/12/13

· Term Browser 9/13/13

· Metathesaurus Browser 9/13/13
	· Execute test cases and report issues (bugs).

· Generate new test cases.
· Reporting weekly test results.

· Fulfill all exit criteria requirements.

	Milestone Four

(Exit Stage to Production)
	· LexEVS: 9/27/13

· Term Browser 9/27/13

· Metathesaurus Browser 9/27/13
	· Smoke testing of the release candidate.

· Final validation of fixed\resolved issues.
· Fulfill all exit criteria requirements.

4.2 Test Data
Data for NCI hosted terminologies will be maintained and updated by the Systems Team and coordinated by Tracy Safran.

4.3 Recording Results
All test cases will be created and maintained through NCI CBIIT’s HPQC.

4.4 Analyzing Results
The analysis of the testing results will be led by development team. SAIC-F’s QA team will provide necessary assistance in identifying the issue.

4.5 Defect and Bug Resolution
Defects will be recorded, reviewed, and resolved in JIRA for LexEVS. Defects will be recorded, reviewed, and resolved in GForge for Term Browser 2.3 and Metathesaurus Browser 2.3.

5 Unit Testing
Unit testing will be conducted by development team. SAIC-F’s QA team will make sure adequate level of unit testing is performed by development team by running a quick smoke test after deploying the tag to QA Tier or by requiring from the development team a unit test report or statement of unit testing done and the results obtained from the unit test.
6 Functional Testing
Functional testing is conducted to ensure the system behaves according to the functional requirements. Functional testing will be performed using test cases created in HPQC and involves the comparison of actual and expected outputs.
For the functional testing of the Term Browser the test cases are grouped into the following interface areas and their subsets:
· Mappings Tab

· Terminologies Tab (Advanced Search and Simple Search)

· Value Sets Tab

For the functional testing of the Metathesaurus Browser the test cases are grouped into the following interface areas and their subsets:

· Advanced Search
· Simple Search

· General (Export to VSC, Results page settings, Adding and Removing to CART)
6.1 Test Risks/ Issues
	#
	Risks
	Mitigation

	1.
	Slight changes in the front-end GUI for Term Browser and Metathesaurus browser prompts for a re-scripting of a large number of automation scripts.
	Prepare for changes ahead of time and develop automation scripts that can be easily retooled when changes to the GUI occurs.

	2.
	High dependency on precise test data for automation script. If the data is missing or the data has changed, the script fails.
	Close interaction with the Data Base administration (Tracy Safran) to know ahead of time what data will be changed and what data will be missing.

	3.
	High probability of redundancy in test case workflow.
	Perform entire test case suite review to remove redundancy.

	5.
	Not enough time to perform all possible permutation of filter settings for simple and advanced term search.
	Break down and prioritize simple and advanced search combination. Work with Development and Product Manager to identify the most common use scenario so that search filter combinations can be prioritized.

6.2 Items to Be Tested/Not Tested
The items to be tested cover LexEVS 6.1 REST API support, performance enhancements to both Term Browser 2.3 and Metathesaurus Browser 2.3 and additional search features to Term Browser 2.3. Several bugs were also addressed and will be tested under this release.

The Items Not tested are Stress testing and Load testing against the LexEVS 6.1 REST API changes and the Usability testing of the Browser interfaces. These will be addressed in the future releases.
	Items
	Description
	In Scope
	Out of Scope

	GFORGE# 32685
	Separate code from name in the simple search.
	x
	

	GFORGE# 32711
	Synchronize code and exactMatch radio button.
	x
	

	GFORGE# 32730
	Relabel roles and associations.
	x
	

	GFORGE# 32731
	Search NCIt only by default.
	x
	

	GFORGE# 32737
	Change charset from iso-8859-1 to UTF-8.
	x
	

	GFORGE# 32746
	Provide access to NCBO Bioportal ontology visualization widget
	x
	

	GFORGE# 32772
	Improve value set accessibility
	x
	

	GFORGE# 32779
	Enhancement to Contains Search Functionality
	x
	

	GFORGE# 32816
	Migrate to LexEVSAPI 6.1.
	x
	

	GFORGE# 32811
	Tagging of value sets
	x
	

	GFORGE# 32824
	Migrate to LexEVS API 6.1
	x
	

	GFORGE# 32738
	Change charset from iso-8859-1 to UTF-8.
	x
	

	LEXEVS-539
	CTS2 REST CodeSystemVersionCatalogEntry
	x
	

	LEXEVS-540
	CTS2 REST EntityDescription
	x
	

	LEXEVS-541
	CTS2 REST Association
	x
	

	LEXEVS-542
	CTS2 REST ValueSetDefinition
	x
	

	LEXEVS-543
	CTS2 REST ResolvedValueSet
	x
	

	LEXEVS-544
	CTS2 REST MapCatalogEntry
	x
	

	LEXEVS-545
	CTS2 REST MapVersionCatalogEntry
	x
	

	LEXEVS-546
	CTS2 REST MapEntry
	x
	

	LEXEVS-547
	LexEVS Enhancement for CTS2 - Entity Query Across Code System
	x
	

	LEXEVS-548
	LexEVS Performance Enhancement - Implement a persistance mechanism for resolved Value Sets
	x
	

	LEXEVS-549
	LexEVS Performance Enhancement - Performace Improvement of Hierarchy Traversal
	x
	

	LEXEVS-550
	LexEVS Performance Enhancement - Search Performance (Contains)
	x
	

	LEXEVS-551
	LexEVS Loader Enhancement - MedDRA Loader
	x
	

	LEXEVS-552
	LexEVS Loader Enhancement - OWL2 Loader
	x
	

	LEXEVS-553
	LexEVS Loader Enhancement - HL7 MIF Loader
	x
	

	LEXEVS-505
	Case-insensitive concept code search support.
	
	x

	LEXEVS-239
	OBO loaded data with roots that delcare disjointness do not display in hierarchy
	
	x

	LEXEVS-236
	OBO optional synonym type name
	
	x

	LEXEVS-370
	Export the content of ResolvedValueSetDefinition to StringBuffer in LexGrid XML format
	
	x

	LEXEVS-372
	Extensions should be able to add properties to existing concepts
	
	x

	LEXEVS-369
	Add a label or description member variable to EntityDescription.
	
	x

	LEXEVS-367
	Support retrieval of ValueSetDefinition by multiple coding schemes.
	
	x

	LEXEVS-366
	Modify output parameter of the getCodingSchemesInValueSetDefinition method in LexEVSValueSetDefinitionServices.
	
	x

	LEXEVS-368
	Support retrieval of ValueSetDefinition by multiple concept domains.
	
	x

	LEXEVS-365
	Resolve nested value set definition through distributed Value Set API.
	
	x

	LEXEVS-363
	Extend MappingExtension functionalities to support restrictions.
	
	x

	LEXEVS-354
	Load source qualifiers for generic properties in NCI-META RRF loader
	
	x

	LEXEVS-350
	Examine use of LexBIG entity status
	
	x

	LEXEVS-531
	Build scripts do not have path for dataqa
	
	x

	LEXEVS-255
	Linux gui does not work
	
	x

	LEXEVS-233
	SNOMED Role Groups not loading from RRF files
	
	x

	LEXEVS-227
	Lucene Max Clause Count exceeded on broad NCI MetaThesaurus RegExp Restrictions
	
	x

	LEXEVS-371
	Make it easy to do retrieval of only active concepts in a terminology through the/ a service
	
	x

	LEXEVS-362
	Owl/rdf exporter limitation
	
	x

	LEXEVS-345
	Convert codes in entity description of anonymous class to names.
	
	x

	LEXEVS-512
	LexEVSValueSetDefinitionServices.getCodedNodeSetForValueSetDefinition method can be extremely slow.
	
	x

	LEXEVS-508
	Mapping concepts don't always have a suitable target
	
	x

	LEXEVS-507
	Inefficient query when trying to filter Metathesaurus by Source.
	
	x

	LEXEVS-496
	LexEVS api calls do not populate directionalName in the association
	
	x

	LEXEVS-515
	Caching of value sets don't always work
	
	x

	LEXEVS-518
	Trying to load ICD10 results in error
	
	x

	LEXEVS-516
	LexEVSValueSetDefinitionServices getValueSetDefinitionEntitiesForTerm fails on inactive coding schemes.
	
	x

	LEXEVS-519
	Inconsistant package naming
	
	x

	LEXEVS-461
	Necessity to rebuild indexes after load
	
	x

	LEXEVS-538
	Loader should support unicode
	
	x

	LEXEVS-521
	Transition table hangs in UMLS loader on large vocabs
	
	x

	LEXEVS-244
	Unqueryable classes are registered by the grid service
	
	x

	LEXEVS-232
	The codedNodeGraph is not displaying the top nodes correctly
	
	x

	LEXEVS-235
	PDQ load shows multiple LT : TRD properties in browser
	
	x

	LEXEVS-234
	RRF Snomed Loader not interpreting SNOMED status codes correctly
	
	x

	LEXEVS-230
	The contains algorithm fails on search strings starting with a single character word such as 'a'.
	
	x

	LEXEVS-442
	NCIt Loader preferences file with defaults
	
	x

	LEXEVS-361
	Unregister coding scheme supplement through the LexBIG GUI application.
	
	x

	LEXEVS-360
	Add a Boolean-Valued member variable applyToSubconcepts to EntityReference.
	
	x

	LEXEVS-359
	Need an effective way of counting the size of a CNG.
	
	x

	LEXEVS-356
	GUI should reflect administrative nomenclature
	
	x

	LEXEVS-358
	Authoring Tool / Graphical User Interface (GUI)
	
	x

	LEXEVS-353
	Need an option to exclude the focused node itself from ResolvedConceptReferenceList when resolving a CNG.
	
	x

	LEXEVS-352
	Better validation on restrictions
	
	x

	LEXEVS-347
	Control the setting of isActive via Loader preferences
	
	x

	LEXEVS-348
	Ability to query for inferred data - implement ability to reason
	
	x

	LEXEVS-344
	Enhance LexBIG query API to fetch AssociationData objects.
	
	x

	LEXEVS-269
	Demonstrate cross ontology relationships
	
	x

	LEXEVS-264
	Validation of UTF-8 subset
	
	x

	LEXEVS-250
	Duplicate alias "_value" when quering LexEVSDataService
	
	x

	LEXEVS-510
	Documentation location in the installer
	
	x

	LEXEVS-511
	UMLS meta loader script is in the wrong format
	
	x

	LEXEVS-509
	Sorting in Mapping tab in Term Browser can lead to 500 errors
	
	x

	LEXEVS-500
	Load Progress indicators
	
	x

	LEXEVS-517
	LexEVSAuthoringServiceImpl 'getEntity' restricts to types of 'concept'
	
	x

	LEXEVS-469
	Attempted load of a MRMAP mapping failed with inscrutable error
	
	x

	LEXEVS-482
	Ability to load metadata and mapping in one operation
	
	x

	LEXEVS-481
	Ability to load metadata and coding scheme in one operation
	
	x

	LEXEVS-475
	Enhancement to versioning of Mapping loads
	
	x

	LEXEVS-480
	Better support for "Metathesaurus" data structures (e.g. accessing source hierarchies in NCI-META)
	
	x

	LEXEVS-478
	Clean up GUI - functionality should match documentaion/presentation
	
	x

	LEXEVS-476
	Ability to load MRMAP without a MRSAT entry
	
	x

	LEXEVS-474
	Ability to add metadata to value set definitions
	
	x

	LEXEVS-473
	Concept Sorting in Mappings when using local API
	
	x

	LEXEVS-446
	UMLS loader should give an error if the SAB is not specified
	
	x

	LEXEVS-454
	OWL Export exhibits memory leak.
	
	x

	LEXEVS-493
	Search SNOMEDCT for '<' using the contains algorithm returns no matches.
	
	x

	LEXEVS-464
	The NCI OWL loader is loading the "type" property inconsistently
	
	x

	LEXEVS-463
	The NCI OWL loader is loading Metadata properties inconsistently.
	
	x

	LEXEVS-462
	NCI OWL loader for LexBIG 6.0 is creating extraneous "label" property qualifiers
	
	x

	LEXEVS-460
	Enable use of ALT keys in LexEVS Developer GUIs
	
	x

	LEXEVS-459
	Batch Loader for LexEVS Value Set
	
	x

	LEXEVS-529
	ValueSetDefinition getDefinitionEntryCount() returns incorrect number
	
	x

	LEXEVS-537
	JIRA task - Unable to assign issues to QA person, and not Ready For QA status
	
	x

	LEXEVS-536
	The ResolvedConceptReferencesIterator numberRemaining method can be quite inaccurate.
	
	x

	LEXEVS-535
	Term Browser "View In Hierarchy" function fails for ICD10 root nodes
	
	x

	LEXEVS-534
	Reduce error volume for hibernate issues
	
	x

	LEXEVS-525
	Metathesaurus does not load completely
	
	x

	LEXEVS-528
	Suppressable CUIs in RRF loader
	
	x

	LEXEVS-223
	Anonymous class hierarchy with unions not showing up correctly.
	
	x

	LEXEVS-341
	REST API Features
	
	x

	LEXEVS-339
	MedDRA loading into LexEVS
	
	x

	LEXEVS-497
	Documentation Issue
	
	x

	LEXEVS-502
	Spelling error in loader
	
	x

6.3 Test Approach(s)
The overall testing approach during the functional test phase is to execute test cases defined for the functional components of the LexEVS 6.1 REST API, the Term Browser, and the,Metathesaurs Browser application. There may be derived sub-tests within each test case, as more use cases, child use cases and scenarios are base-lined. Our first approach is to execute all of our automation test cases to touch upon all core functionality of the Term Browser and Metathesaurus Browser. We will then proceed to manually validate bug fixes noted as Fixed\Resolved in JIRA for the respective tag released.

6.4 Regulatory / Mandate Criteria
There are no known regulations or mandates that the system must be tested against.

6.5 Test Pass / Fail Criteria
Test case Pass and Fail criteria are based upon a comparison of expected and actual results.
6.6 Test Entry / Exit Criteria
	QA Entrance Criteria Checklist

	
	
	
	

	
	
	
	
	
	

	Date Delivered
	1. Term Browser V2.3 (7/29/2013)

2. Metathesaurus Browser (8/15/2013)

3. LexEVS 6.1 (8/8/2013)
	
	
	
	

	Tag
	1. Term Browser V2.3: Tag 2013-07-29.1-v2.3
2. Metathesaurus Browser:
3. LexEVS 6.1 : Tag v6.1.rc1
	
	
	
	

	QA POC (Receiver)
	 Tin Tran
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	#
	Checklist Item
	Actor
	Any Tag (excluding RC)
	Release Candidate
	Delivered?
Yes/No

	
	Demo/walk through of the Product - Dev
	Dev
	
	Yes
	Yes

	1
	Tag of source code
	Dev
	Yes
	Yes
	Yes

	2
	List of defects fixed
	Dev
	Yes
	Yes
	Yes

	3
	List of features/requirements implemented or changed
	Dev
	Yes
	Yes
	Yes

	4
	List of known issues
	Dev
	Yes
	Yes
	Yes

	5
	Test Case and execution report for DEV tier (includes modification date for test cases, date of execution, and results) --Unit test
	Dev
	Yes
	Yes
	Yes

	6
	Unit Test Report - # Pass/Fail, % coverage
	Dev
	Yes
	Yes
	Yes

	7
	QA tier is ready for use (provisioned, matches tech stack)
	Systems/Dev
	Yes
	Yes
	Yes

	8
	Deployment documentation (if CBIIT hosted)
	Dev
	Yes
	Yes
	Yes

	9
	Installation guide (from scratch install) - only if installed outside CBIIT
	Dev
	Yes
	Yes
	N/A

	10
	Test Cases for this tag have been reviewed by requirements analyst or equivalent
	QA/Dev/NCI
	Yes
	Yes
(By Larry Wright)
	Yes

	11
	QA Test Plan reviewed and signed-off.
	NCI
	Yes
	Yes
(By JJ Pan)
	TBD

	QA Exit Criteria Checklist

	
	
	

	
	
	
	
	

	Date Delivered
	
	
	
	

	Tag
	
	
	
	

	QA POC
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	#
	Checklist Item
	Actor
	Release Candidate
	Documents Attached?
Yes/No

	1
	Tag of source code
	Dev
	
	

	2
	List of defects fixed - Report
	QA
	
	

	3
	List of features/requirements implemented or changed - Report
	QA
	
	

	4
	List of known issues - Report
	QA
	
	

	5
	Test Cases and execution report for QA tier (includes modification date for test cases, date of execution, and results)
	QA
	
	

	6
	Deployment documentation (if CBIIT hosted) - Reviewed
	QA
	
	

	7
	Installation guide (from scratch install) - only if installed outside CBIIT - Review/Report
	QA
	
	

	8
	Test cases, and a list of test cases related to exercising functions that could be affected by security vulnerabilities, are given to SR for AppScan.
	QA
	
	

	9
	Application scan passed - Report
	Systems/Dev
	
	

	10
	508 Compliance passed - Report
	Systems/Dev
	
	

	11
	Other compliance passed (if applicable)
	Systems/Dev
	
	

	12
	Summary Report reviewed and signed-off
	NCI
	
	

6.7 Test Deliverables
Testing will provide specific deliverables during the project. These deliverables fall into three basic categories: Documents, Test Cases / Bug Write-ups, and Reports.
	Documents
	Documents: Related documents (if any) will be added as attachments in HPQC Requirements module of each project.
HPQC: https://nciqc.nci.nih.gov/qcbin/start_a.htm

	Test Cases and Bug Write-Ups
	Test Cases will be created in HPQC Test Plan Module or if outside of HPQC format will be added as attachments in the Requirements module. Bug Write-Ups will be created in JIRA and GForge.
HPQC: https://nciqc.nci.nih.gov/qcbin/start_a.htm
JIRA: https://tracker.nci.nih.gov/browse/LEXEVS
GForge:
· https://gforge.nci.nih.gov/projects/ncit/
· https://gforge.nci.nih.gov/projects/ncim/

	Reports
	Test Plan and Test Reports will be added as Attachments in the HPQC Requirements module and will also be posted to QA Wiki Project page.

HPQC: https://nciqc.nci.nih.gov/qcbin/start_a.htm
Wiki:

· https://wiki.nci.nih.gov/display/CBIITQA/EVS+-+LexEVS+QA
· https://wiki.nci.nih.gov/display/CBIITQA/EVS+-+NCI+Metathesaurus+QA;

· https://wiki.nci.nih.gov/display/CBIITQA/EVS+-+NCI+Term+Browser+QA

6.8 Test Suspension / Resumption Criteria
The criteria that may be used to suspend all or portions of functional testing would largely be related to instability of the testing environment and include: hardware or software failure, the presence of a virus or related malware identified to exist on devices used for testing such as servers and PCs. The criteria to be used to resume testing would be that any condition that lead to a hardware, software or systems failure has been mitigated and appropriate authorities have determined that condition is no longer present. In addition, a subset of functional tests will be run as a mechanism to ensure the test environment and application under test are stable to resume the functional testing effort. In the event that suspension were to occur and before resuming functional testing, QA will make use of our automated test scripts for Term Browser and Metathesaurus Browser to determine whether to resume testing.
7 Performance Testing
Performance testing for this release is to determine the performance improvement expected from the new changes to the LexEVS REST API with respect to the name and code filter search and the restructuring of the query syntax used for the search filter “Contains”. Performance response time will also be collected via the time capture tool in QTP as well as via a stopwatch for the rendering of the hierarchy terminology trees for concepts with a high number of incoming relations. The performance test approach for this release is to measure the response time of the terminology searches done in the past against the old framework and without the new query syntax and compare those performance times with times collected in the new release with the performance enhancement changes. Performance time comparison will be done for the rendering of hierarchy terminology trees for concepts such as “Human” and “Neoplasm” from the previous release deployed to in the Stage Tier with the proposed released in the QA Tier.
7.1 Test Risks/ Issues
	#
	Risks
	Mitigation

	1.
	Differences in the environmental setup and hardware specification between the QA Tier, Stage Tier, and Production would produce performance numbers that are not exact and indicative of what the end user would expect in a live environment.
	Raise this as a risk to management for review. Get System and Network team involved to remedy the differences in the environments.

	2.
	The data volume in the QA environment is not an exact mirror of the data volume in production, thereby producing some deviation in performance number captured when doing terminology and resolved value sets searches.
	Highlight this risk to Project team and determine best course of action from GPM.

	3.
	Baseline numbers and benchmark numbers have not been captured in the past.
	Start collecting performance numbers to be used as baseline for future release.

7.2 Items to Be Tested/Not Tested
Performance testing will be performed against the following areas in the Term Browser and Metathesaurus Browser:

· Resolved Value Sets searches.

· Hierarchy Traversal (Focusing concepts that had display slow performance in the past such as Neoplasm and Human that are known to have a high number of incoming relations and have extensive hierarchical trees).
· Simple Search Queries using the Search Filter “Contains”
7.3 Test Approach(s)
Our test approach involves the collection of performance data in the Stage environment first for performance test cases and then collect data again for the same test cases in the QA environment. We will then compare the performance deltas between Stage and QA environments.
7.4 Regulatory / Mandate Criteria
There are no known regulations or mandates that the system must be tested against.

7.5 Test Pass / Fail Criteria
Pass and fail criteria will be based on the comparison of performance numbers between search response time captured from present Stage environment with the test release candidate in the QA Tier. Improvement in performance number will be considered a pass criteria while a degradation in performance numbers will be a considered as a fail.
7.6 Test Entry / Exit Criteria
See Section 6.6.
7.7 Test Deliverables
See section 6.7.

7.8 Test Suspension / Resumption Criteria
The criteria that may be used to suspend all or portions of performance testing would largely be related to instability of the testing environment and include: hardware or software failure, the presence of a virus or related malware identified to exist on devices used for testing such as servers and PCs. The criteria to be used to resume testing would be that any condition that lead to a hardware, software or systems failure has been mitigated and appropriate authorities have determined that condition is no longer present. In addition, a subset of performance tests will be run as a mechanism to ensure the test environment and application under test are stable to resume the performance testing effort. In the event that suspension is to occur and before resuming performance testing, QA will make use of our automated test scripts for Term Browser and Metathesaurus Browser to determine whether to resume testing.
8 Acceptance Testing
Acceptance testing will be conducted by the Project management team. SAIC-F’s QA team will facilitate the actual testing activities.
9 Usability Testing
Usability testing is not in scope for this initial delivery.
10 Conformance Testing
Section 508 scan will be performed against the Term Browser 2.3 and Metathesaurs Browser 2.3 front-end interface.

11 Regression Testing
Regression testing retests previously tested system components to ensure that any reported defects have been corrected and that no new quality issues have been introduced. This testing will not be performed by the people who built the system.

11.1 Test Risks/ Issues
	#
	Risks
	Mitigation

	1.
	Relying on the same set of regression tests robs the test effort of coverage and leaves bugs uncovered.
	Run a test case audit\review to eliminate redundancy and create more test cases for better coverage.

	2.
	Maintenance of automated regression test suites can be costly.
	Review automation test case suite on a regular bases to eliminate obsolete test cases. Design better automation test case templates that are easy to maintain and retool.

	3.
	Some boundary conditions would be missed since some of the regression tests depend on the same set or data values as the expected results.
	Review boundary conditions with database administrator and update test cases accordingly.

11.2 Items to Be Tested/Not Tested
Regression testing will focus on the following core areas of the Term Browser and Metathesaurs Browsers to ensure that major core functionality has not been broken due to code fixes injected into the browsers.
1. Term Browser:

· All Terminologies Searches

· Simple Search and Advance Searches

· All Links

· Value Sets (Simple Search in Terminology View and Standard View)

· Mappings (Simple search against mapping datasets)
2. Metathesaurus Browser:
· Simple and Advance Metathesaurus search.

· NCIt Hierarchy Traversal

· Sources

11.3 Test Approach(s)
The overall testing approach during the regression test phase is to re-test previously executed test cases defined for the functional components of the Term Browser 2.3 and Metathesaurus Browser 2.3 applications. More specifically, any previously executed test cases that had high severity defects would be a focus of regression testing, in addition to a subset of test cases that correspond to other functional components to ensure the functionality has not regressed. Since we have automated the regression tests cases for the Term Browser and Metathesaurus Browser, the regression test approach here is “retest-all” features and functionality to expose any broken components as a result of progressive fixes to the applications. After the first full round of regression testing is completely, from analyzing the test results we can then selectively identified a subset of test cases that covers the software components that are affected by modifications\fixes and make update to the test suite and test cases.
11.4 Regulatory / Mandate Criteria
There are no known regulations or mandates that the system must be tested against.

11.5 Test Pass / Fail Criteria
Test case Pass and Fail criteria are based upon a comparison of expected and actual results.

11.6 Test Entry / Exit Criteria
See Section 6.6.
11.7 Test Deliverables
See section 6.7.
11.8 Test Suspension / Resumption Criteria
The criteria that may be used to suspend all or portions of regression testing would largely be related to instability of the testing environment and include: hardware or software failure, the presence of a virus or related malware identified to exist on devices used for testing such as servers and PCs. The criteria to be used to resume testing would be that any condition that lead to a hardware, software or systems failure has been mitigated and appropriate authorities have determined that condition is no longer present. In addition, a subset of regression tests will be run as a mechanism to ensure the test environment and application under test are stable to resume the regression testing effort. In the event that suspension is to occur and before resuming regression testing, QA will make use of our automated test scripts for Term Browser and Metathesaurus Browser to determine whether to resume testing.
12 Stress Testing
Stress testing is not in scope for this delivery.

13 Vulnerability Assessment Testing
Vulnerability assessment testing via AppScan that identifies, quantifies, and prioritizes system vulnerabilities, will be performed by the NCI Systems Team. QA will coordinate with the Systems Team as needed to ensure this testing is performed. Prior to executing an AppScan, QA will provide the Systems Team with a targeted list of test cases to perform so that all application pages are covered in the security scan.
14 Progress Reporting
The Test Lead will be responsible for writing and disseminating the following reports to EVS management team.

Weekly Status Reports

A weekly status report will be provided by the Test Lead to project personnel. This report will summarize monthly testing activities, issues, risks, bug counts, test case coverage, and other relevant metrics.

Test Final Report - Sign-Off

A Final Test Report will be issued by the Test Lead. It will certify as to the extent to which testing has actually completed (test case coverage report suggested), and an assessment of the product’s readiness for Release to Staging.

15 Appendix Summary
APPENDIX A: TEST PLAN APPROVAL
The undersigned acknowledge that they have reviewed the LexEVS 6.1, Term Browser 2.3, and Metathesaurs 2.3 Integration Test Plan and agree with the information presented within this document. Changes to this Test Plan will be coordinated with, and approved by, the undersigned, or their designated representatives.

	Signature:
	
	Date:
	

	Print Name:
	
	
	

	
	
	
	

	Title:
	
	
	

	Role:
	Project Manager
	
	

APPENDIX B: REFERENCES

The following table summarizes the documents referenced in this document.

	Document Name
	Description
	Location

	LexEVS 6.1 Scope Document
	The purpose of this document is to collect, analyze, and define high-level needs and features of the National Cancer Institute Center for LexEVS Release 6.1. This document focuses on the functions proposed by the product stakeholders and target users in order to make it a better product. The use-case and supplementary specifications document will detail how the framework will fulfill these needs.
	https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.1+Scope+Document

	LexEVS 6.1 Requirements Mapping Document
	The purpose of this document is to document the Requirements Mapping for the National Cancer Institute Center for Biomedical Informatics and Information Technology (NCI CBIIT) caCORE LexEVS Release 6.1.
	https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.1+Requirements+Mapping+Document

	LexEVS 6.1 Use Case Document
	The purpose of this document is to document the Use Cases for the National Cancer Institute Center for Biomedical Informatics and Information Technology (NCI CBIIT) caCORE LexEVS Release 6.1.
	https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.1+Use+Case+Document

	LexEVS 6.1 Design Document
	The purpose of this document is to collect, analyze, and define high-level needs for and designed features of the National Cancer Institute Center for Biomedical Informatics and Information Technology (NCI CBIIT) caCORE LexEVS Release 6.1. The focus is on the functionalities proposed by the stakeholders and target users to make a better product.
	https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.1+Design+Document

	NCI Term Browser 2.3 Scope Document
	The purpose of this document is to collect, analyze, and define high-level needs and features of the National Cancer Institute Center for Biomedical Informatics and Information Technology (NCI CBIIT) NCI Term Browser Release 2.3. This document focuses on the functionality proposed by the product stakeholders and target users in order to make it a better product.
	https://wiki.nci.nih.gov/display/EVS/NCI+Term+Browser+2.3+Scope+Document

	NCI Term Browser
	The NCI Term Browser provides user-friendly access to all biomedical terminologies hosted by EVS including the NCI Metathesaurus (NCIm), which itself offers 76 terminologies cross-mapped to capture shared meanings.
	https://wiki.nci.nih.gov/display/EVS/NCI+Term+Browser

	NCI Metathesaurus Browser 2.3 Scope Document
	The purpose of this document is to collect, analyze, and define high-level needs and features of the National Cancer Institute Center for Biomedical Informatics and Information Technology (NCI CBIIT) NCImetathesaurus Browser Release [2.3]. This document focuses on the functionalities proposed by the product stakeholders and target users in order to make it a better product.
	https://wiki.nci.nih.gov/display/EVS/NCI+Metathesaurus+Browser+2.3+Scope+Document

APPENDIX C: KEY TERMS

The following table provides definitions and explanations for terms and acronyms relevant to the content presented within this document.
	Term
	Definition

	Unit testing
	Unit testing is a method by which individual units of source code are tested to determine if they are fit for use. A unit is the smallest testable part of an application. In procedural programming a unit may be an individual function or procedure. Unit tests are created by programmers or occasionally by white box testers.

	Functional testing
	Functional or System testing of software or hardware is testing conducted on a complete, integrated system to evaluate the system's compliance with its specified requirements. System testing falls within the scope of black box testing, and as such, should require no knowledge of the inner design of the code or logic.

	Load testing
	Load testing is the process of putting demand on a system or device and measuring its response. Load testing is performed to determine a system’s behavior under both normal and anticipated peak load conditions. It helps to identify the maximum operating capacity of an application as well as any bottlenecks and determine which element is causing degradation. When the load placed on the system is raised beyond normal usage patterns, in order to test the system's response at unusually high or peak loads, it is known as stress testing. The load is usually so great that error conditions are the expected result, although no clear boundary exists when an activity ceases to be a load test and becomes a stress test.

	Volume testing
	Volume Testing belongs to the group of non-functional tests, which are often misunderstood and/or used interchangeably. Volume testing refers to testing a software application with a certain amount of data. This amount can, in generic terms, be the database size or it could also be the size of an interface file that is the subject of volume testing. For example, if you want to volume test your application with a specific database size, you will expand your database to that size and then test the application's performance on it. Another example could be when there is a requirement for your application to interact with an interface file (could be any file such as .dat, .xml); this interaction could be reading and/or writing on to/from the file. You will create a sample file of the size you want and then test the application's functionality with that file in order to test the performance.

	Acceptance testing
	Acceptance testing by the system provider is often distinguished from acceptance testing by the customer (the user or client) prior to accepting transfer of ownership. In such environments, acceptance testing performed by the customer is known as user acceptance testing (UAT). This is also known as end-user testing, site (acceptance) testing, or field (acceptance) testing.

A smoke test is used as an acceptance test prior to introducing a build to the main testing process.

	 Usability testing
	Usability testing is a technique used to evaluate a product by testing it on users. This can be seen as an irreplaceable usability practice, since it gives direct input on how real users use the system.[1] This is in contrast with usability inspection methods where experts use different methods to evaluate a user interface without involving users.

	Compatibility testing
	Compatibility testing, part of software non-functional tests, is testing conducted on the application to evaluate the application's compatibility with the computing environment. Computing environment may contain some or all of the below mentioned elements: Browser compatibility (Firefox, Netscape, Internet Explorer, Safari, etc.)

	Conformance testing
	Conformance testing or type testing is testing to determine whether a product or system meets some specified standard that has been developed for efficiency or interoperability.

To aid in this, many test procedures and test setups have been developed, either by the standard's maintainers or external organizations, specifically for testing conformance to standards.

	Regression testing
	Regression testing is any type of software testing that seeks to uncover software errors by partially retesting a modified program. The intent of regression testing is to provide a general assurance that no additional errors were introduced in the process of fixing other problems. Regression testing is commonly used to test the system efficiently by systematically selecting the appropriate minimum suite of tests needed to adequately cover the affected change. Common methods of regression testing include rerunning previously run tests and checking whether previously fixed faults have re-emerged.

	Stress testing
	Stress testing refers to tests that put a greater emphasis on robustness, availability, and error handling under a heavy load, rather than on what would be considered correct behavior under normal circumstances. In particular, the goals of such tests may be to ensure the software does not crash in conditions of insufficient computational resources (such as memory or disk space), unusually high concurrency, or denial of service attacks.

APPENDIX D: TEST SUMMARY REPORT

	Project Name
	

	Test Manager/Lead
	

	Reference Number

	Test Case ID
	Description of Test Objectives
	Results:

Pass/Fail

	<Identify when the test will occur. >
	<Reference the test case id name>
	<Briefly describe the purpose/function of the test>
	

	
	
	
	

	
	
	
	

APPENDIX E: BUG REPORT / DEFECT LOG

	Project Name
	
	
	Severity
	
	Priority

	Test Lead
	
	
	1
	Urgent
	
	1
	Critical

	Tester Completing Form
	
	
	2
	High
	
	2
	High

	
	
	
	3
	Medium
	
	3
	Moderate

	
	
	
	4
	Low
	
	4
	Low

	ID#
	Source
	Bug/Defect Description
	Severity
	Priority
	Resolution Strategy
	Associated Change Request
	Date Resolved

	
	<Identify the source of the problem by using the reference number from the Test Case Summary Report>
	< Describe the bug/defect. Include error message generated, when it occurred, after activity X was performed, etc. >
	<Refer to Severity/ Priority Chart>
	<Refer to Severity/ Priority Chart>
	< Identify what steps need to be taken, and by whom, to resolve the identified problem. >
	<If applicable, enter in a change request number associated with correcting this bug/ defect. >
	< Enter the date when the issue was resolved. >

	Bug 1
	
	
	
	
	
	
	

	Bug 2
	
	
	
	
	
	
	

	Bug 3
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

APPENDIX F: Requirement Traceability Matrix
	Matrix
	Location

	Requirement Traceability Matrix for Term Browser 2.3
	\\ncifs-p089.nci.nih.gov\group\NCICB\QA\QA Workspace\EVS NCI Term Browser\NCIt_Term Browser\Term Browser 2.3\Requirement Traceability Matrix

	Requirement Traceability Matrix for Metathesaursus 2.3
	\\ncifs-p089.nci.nih.gov\group\NCICB\QA\QA Workspace\EVS NCI Term Browser\NCImetathesaurus\Metathesaurus Browser 2.3\Requirement Traceability Matrix

	Requirement Traceability Matrix for LexEVS 6.1
	\\ncifs-p089.nci.nih.gov\group\NCICB\QA\QA Workspace\LexEVS\LexEVS 6.1\Requirement Traceability Matrix

� Reference Number is used to quickly identify when a particular test will be executed within the testing cycle. It is suggested that a decimal be used as outlined in the table below:

Position�
�
Explanation�
�
X.�
=�
Identifies which group the tests will be run. 1= First test group (Unit/ Functional tests); 2= 2nd test group (Initial Integration); 3= 3rd test group (Additional Integration); 4= Regression or Negative Testing; etc. �
�
x. X�
=�
The order the test case/ script/ scenario will be executed within the overall test group.�
�
x.x.X�
=�
Indicates the “run number”, how many time this test has been or will be executed�
�

[Insert appropriate disclaimer(s)]

[image: image1.jpg][image: image2][image: image3.png][image: image4.jpg][image: image5.png]#‘CBIIT

