[image: image2.jpg]

SDK4.5
TEST PLAN
Version 1.1
 11/28/2012
VERSION HISTORY

	Version #
	Implemented

By
	Revision

Date
	Approved

By
	Approval

Date
	Reason

	1.0
	Xiaoling Chen
	08/02/2012
	
	
	Initial Draft

	1.1
	Xiaoling Chen
	02/01/2012
	
	
	Add Semantic, CSM integration and

RESTful Wrapper

Table of Contents
51
Purpose and Scope

51.1
Purpose

51.2
Background

62
Resource Requirements

62.1
Testing Environment

62.2
Other Testing Components

62.3
Personnel Roles and Responsibilities

62.4
Staff Training

63
Assumptions, Constraints and Risks

63.1
Testing Assumptions

63.2
Testing Risks

74
Testing Approach

74.1
ESI testing efforts include document review, functional testing, regression testing and installation testing. The details can be found in the subsequent subsections. Methodology

84.2
Test Milestones

84.3
Test Data

94.4
Recording Results

94.5
Analyzing Results

95
Unit Testing

96
Functional Testing

96.1
Test Risks/ Issues

96.2
Items to Be Tested/Not Tested (Windows XP/Linux)

106.3
Test Approach(s)

116.4
Regulatory / Mandate Criteria

116.5
Test Pass / Fail Criteria

116.6
Test Entry / Exit Criteria

126.7
Test Deliverables

126.8
Test Suspension / Resumption Criteria

126.9
Test Environmental / Staffing / Training Needs

127
Load Testing

128
Volume Testing

139
Acceptance Testing

1310
Usability Testing

1311
Compatibility Testing

1312
Regression Testing

1312.1
Test Risks/ Issues

1312.2
Items to Be Tested/Not Tested

1312.3
Test Approach(s)

1312.4
Regulatory / Mandate Criteria

1312.5
Test Pass / Fail Criteria

1312.6
Test Entry / Exit Criteria

1312.7
Test Deliverables

1312.8
Test Suspension / Resumption Criteria

1412.9
Test Environmental / Staffing / Training Needs

1413
Stress Testing

1414
Vulnerability Assessment Testing

1415
Progress Reporting

1416
Appendix Summary

1 Purpose and Scope
1.1 Purpose

The Master Test Plan will address and provide guidance for ESI QA team’s activities to be performed in support of SDK4.5 release. It is designed to capture and convey the overall structure and objectives of the SDK4.5 release testing activities. The intended audience of this document is the project manager, project team and testing team.

This plan provides a basis for planning, performing, managing, monitoring and measuring the SDK4.5 release.
1.2 Background
The National Cancer Institute (NCI) Center for Biomedical Informatics and Information Technology (CBIIT) provides biomedical informatics support and integration capabilities to the cancer research community. CBIIT has created the caCORE Software Development Kit or caCORE SDK, a data management framework designed for researchers who need to be able to navigate through a large number of data sources. caCORE SDK is CBIIT’s platform for data management and semantic integration, built using formal techniques from the software engineering and computer science communities.
By providing a common data management framework, caCORE SDK helps streamline the informatics development throughout academic, government and private research labs and clinics. A caCORE SDK generated system is built on the principles of Model Driven Architecture (MDA) and specifically Model Driven Development (MDD) and n-tier

architecture and consistent API. Model Driven Architecture (MDA) and MDD is a software development practice that uses a structured modeling language to describe the requirements, objects, and interactions of a data system prior to its construction. The use of MDA and n-tier architecture, both standard software engineering practices, allows for easy access to data, particularly by other applications.
Users of the caCORE SDK benefit in numerous ways. The primary benefits of using the caCORE SDK includes:
· Consistent UML representation of the data – Users of the caCORE SDK are required to represent their data in UML format. As a user of the SDK, the user is likely to maintain their UML model throughout the life cycle of the application. The same UML model can be used to quickly learn about the organization of the data at various levels in the application.

· Rapid data service generation – The SDK can generate caBIG silver-level compatible APIs quickly from the UML model. Once the UML model and the database are ready, the data service can be generated in a matter of hours. Manually building the application from the ground up can take several months to achieve the same functionality.

· Uniform way to access data – SDK-generated systems provide uniform access to the data stores. Other applications developed using the caCORE SDK have similar mechanisms to retrieve the data. Thus common data representation allows multiple applications to share data.

· Query using information model – SDK-generated systems allow queries to be written in various ways including using Query-By-Example. Since the query is independent of the system’s implementation, changes in the runtime systems do not affect the client application.

· Integration with caGrid – SDK-generated systems can be easily integrated with caGrid using the caGrid Introduce Toolkit. Developing caGrid-compatible data services without using caCORE SDK can result in error-prone and lengthy processes.

· Integrated Security with CSM – SDK generated system can be made secured with CSM. In addition to authentication and authorization configuration, CSM provides, class level, instance level, and attribute level security out of the box.
1.3 Scope
The Master Test Plan targets on testing Functional Requirements and Scope for the SDK4.5 release
2 Resource Requirements
2.1 Testing Environment

The Testing Environment is provided by the caCORE SDK Infrastructure team. All testing activities will be conducted in the QA environment.

2.2 Other Testing Components

None
2.3 Personnel Roles and Responsibilities
	Role/Function
	Personnel

	Project Manager
	

	QA Test Lead
	Ye Wu

	Quality Team Member
	Ye Wu, Xiaoling Chen

	Database Administrator
	

	Administrator
	

	Enterprise Architect
	

2.4 Staff Training

None
3 Assumptions, Constraints and Risks
3.1 Testing Assumptions

None
3.2 Testing Risks

	#
	Risk Event
	Risk Response – Owner

	1.
	Delay in release

Since Test case execution is planned to start after the application is deployed, for each iteration, and the execution window is short, any delays impact the schedule.
	Mitigate – Release Management
Discuss with stakeholders and to reduce the scope for the iteration if the delay cannot be absorbed within the current schedule.

	2.
	Scope creep that causes the addition of new functionality/requirements into the release.
	Mitigate – Release Management
Plan: Scope changes will be analyzed for the impact and change requests will be raised for changes to effort or schedule.

	3.
	Delays in defect turnaround time

As the execution windows foe each iteration are small (?), any substantial delays in fixing critical defects can jeopardize the completion of the test cycle and will potentially impact the schedule.
	Mitigate – Development, Release Management,

Prioritize defects and discuss on daily scrum call to escalate the effects and progress on each outstanding defect.

	4.
	Defects in Final Run of Functionality Test and Final Build/Deploy

As the Final Cycle is considered to be the end cycle of execution where any defects found in previous iterations will be resolved and the team expects to achieve 100% execution and 100% pass in this run, it can lead to an unplanned additional cycle causing delay in schedule and additional effort.
	Mitigate – Release Management, QA Test

Plan: The team would need the necessary support/agreement from Development and Release Management to fix all the defects and unit test on schedule reducing the probability of finding defects in the final run.

	5.
	Reference documentation for deriving requirements traceability matrices and test cases not baselined.
	Mitigate – Requirements, Development

The QA Test team would identify the test cases that do not have baselined use cases early in the test case planning phase

4 Testing Approach
ESI QA team will follow SDK4.5 standard test approach to test SDK4.5. The key is to assure the development effort conforms to the requirement documents that are accepted by the client and management team.

4.1 ESI testing efforts include document review, functional testing, regression testing and installation testing. The details can be found in the subsequent subsections. Methodology

There are four major milestones in each iteration of development cycles: Planning Phase, Design Phase, Development Phase, and Stabilization Phase. The Planning Phase culminates in the completion of the Planning Docs Milestone (Requirements plus Functional Spec). The Design Phase culminates in the completion of the Design Spec and Test Plan / Test Spec. The Development Phase culminates in the Code Complete Milestone. The Stabilization Phase culminates in the Release Milestone.

During the first two phases, testing plays a supporting role, providing ideas and limited testing of the planning and design documents. Throughout the final two stages, testing plays a key role in the project.
4.2 Test Milestones

Milestone 1 - Planning Phase

During the first phase of the Development Cycle, testing should focus upon the Requirements and Functional Specs. Testing reviews these documents for their comprehensibility, accuracy, and feasibility. Specific tasks that testing may carry out during this phase include:

· Assessing the impact of Requirements on testing.

· Providing metrics factors (preliminary schedule, estimated test case and bug counts, etc.)

· Identifying project infrastructure issues

· Identifying risks related to the testing and development process

Milestone 2 - Design Phase

During the second phase of the Development Cycle, testing is focused upon evaluating the design and is required to produce and distribute its draft Test Plan. To generate the Test Plan, Test Spec, and Test Cases, testing requires that the Requirements, Functional Spec, Design Documents, Business Rules, and Project Plan/Schedule be completed and a copy emailed to the test point person.

During this phase, testing may participate within the design reviews (with development) and have access to the Design Spec under construction. This will help QA team better prepare its Test Plan, Test Spec, and Test Cases. The Test Plan defines much of the detailed strategy and specific testing information that will be used for testing the application.

Milestone 3 - Developing Phase

During the third phase of the development cycle, testing begins to execute its primary role by identifying issues (bugs). At the beginning of this phase, testing will be spending most of its time generating test cases. As this phase progresses, however, testing will receive release candidates (builds) of increasing functionality to test. By the time the development phase closes, then, testing will be primarily executing test cases.

Milestone 4 - Stabilization Phase

During the fourth and final stage of the Development Cycle, ESI QA team performs most of the work (relative to other groups). Here is where testing resource loading is at its peak. Upon entering this phase, the application has been internally tested module by module.
4.3 Test Data

CaCORE SDK development team will provide SDK 4.5 application for testing.

4.4 Recording Results

All test plans and test cases will be created and maintained Google document and NCI L drive.
4.5 Analyzing Results

The analysis of the testing results will be led by development team. ESI QA team will provide necessary assistance in identifying the issue.
5 Unit Testing
Unit testing will be conducted by development team. ESI QA team will make sure adequate level of unit testing is performed by development team.

6 Functional Testing
Functional testing is conducted to ensure the system behaves according to the functional requirements. Use cases and user stories are developed to validate that all functions outlined in the requirements are present in the system and work as intended. This testing will not be performed by the people who built the system.

6.1 Test Risks/ Issues

Risks associated with functional testing are provided in Section 3 above. The appropriate mitigation strategies and contingency plans are included in that section.

6.2 Items to Be Tested/Not Tested (Windows XP/Linux)
	Item to Test
	Test Description
	Test Date

	Functional Requirements
	
	

	REST-1
	SDK should generate JAX-RS standard based RESTful

web services from a SDK supported UML model
	2012

	REST-2
	SDK should generate JAX-RS standard based

deployable RESTful web services into JBoss and

Tomcat (NCI CBIIT 2011 "Future" Tech stack)
	 2012

	REST-3
	SDK generated RESTful web services should support

GET, PUT, POST and DELETE methods
	2012

	REST-4
	SDK should generate each domain object as a RESTful

resource
	2012

	REST-5
	SDK code generation should support configurable way

to include or exclude RESTful resource generation from

a given domain model
	 2012

	REST-6
	SDK generated RESTful web application should use

BASIC Authentication and CSM to authenticate a user
	2012

	REST-7
	SDK generated RESTful web application should use

CSM authorization for class level, instance level and

attribute level security
	 2012

	REST-8
	SDK should provide way configure settings for security

during code generation and deployment time
	 2013

	REST-9
	SDK should generate JAX-RS standard based

deployable RESTful web services into JBoss and

Tomcat (NCI CBIIT 2011 "Future" Tech stack)
	 2013

	REST-10
	SDK generated application should include a generated

WADL document with details about its RESTful

resources, methods and representations
	2013

	REST-11
	SDK generated application should provide service

listings and JAXRS endpoints
	2013

	REST-12
	SDK reference implementation should deploy SDK

generated RESTful resources and make them

available
	2013

	REST-13
	SDK reference implementation should use generated

RESTful resources to GET, PUT, POST and DELETE
	2013

	REST-14
	SDK reference implementation should use security

features of generated RESTful resources
	2013

	Merge changes from SDK 4.2.3
	
	

	MERGE-1
	Support for Non-Marker Interfaces and Class

operations
	2013

	MERGE-2
	Support Bi-Directional Self associations
	2013

	MERGE-3
	Not-null attributes in generated Hibernate mapping

files
	2013

	MERGE-4
	Support for 3rd party JARs
	2013

	MERGE-5
	Enhance the build process so that users will be able to

place all third-party jars within a given directory, and

the build process will take care of copying them to the

compilation and war staging directories so no manual

intervention will be required
	2013

	Non-Functional Requirements
	
	

	NONF-1
	SDK 4.5 should be in compliance with 2011 "future"

NCI CBIIT Technology Stack
	2013

	NONF-2
	SDK generated web application should be Section 508

compliance
	2013

	NONF-3
	Error or validation messages displayed by SDK should

be user friendly
	2013

6.3 Test Approach(s)

The overall testing approach during the functional test phase is to execute test cases defined for the functional components of the SDK4.5application. There may be derived sub-tests within each test case, as more use cases, child use cases and scenarios are baselined.

6.4 Regulatory / Mandate Criteria
There are no known regulations or mandates that the system must be tested against.
6.5 Test Pass / Fail Criteria
 Test case Pass and Fail criteria are based upon a comparison of expected and actual results.
6.6 Test Entry / Exit Criteria

The following entrance criteria must be met before each QA test iteration may start.

	Entrance Criteria
	Owner
	Baseline Date
	Projected Date
	Actual Date
	Status
	Impact

	1. Unit test cases 100% executed, 95% passed
	Development
	Mm/dd/yyyy
	Mm/dd/yyyy
	Mm/dd/yyyy
	
	Delay in execution schedule / additional test effort required

	2. No open ‘High’ severity defects that can impact test case execution during each iteration
	Development
	Mm/dd/yyyy
	Mm/dd/yyyy
	Mm/dd/yyyy
	
	Delay in execution schedule / additional test effort due to re-test of open defects

	3. Test cases baselined
	QA
	Mm/dd/yyyy
	Mm/dd/yyyy
	Mm/dd/yyyy
	
	Incomplete planning can lead to additional work

	4. Test environment is available for test case execution
	Development, QA
	Mm/dd/yyyy
	Mm/dd/yyyy
	Mm/dd/yyyy
	
	Delay in execution schedule

The following exit criteria must be met before each QA test iteration may be completed.

	Exit Criteria
	Owner
	Baseline Date
	Projected Date
	Actual Date
	Status
	Impact

	1. Test cases 100% executed, 97% passed
	QA
	Mm/dd/yyyy
	Mm/dd/yyyy
	Mm/dd/yyyy
	
	Cannot certify functionality

	2. No open ‘High’ severity defects
	Release Management, Development, QA
	Mm/dd/yyyy
	Mm/dd/yyyy
	Mm/dd/yyyy
	
	Cannot certify functionality

	3. Open Defects with risks/workarounds documented and accepted by key stakeholder groups
	Release Management
	Mm/dd/yyyy
	Mm/dd/yyyy
	Mm/dd/yyyy
	
	Cannot certify functionality

6.7 Test Deliverables

Testing will provide specific deliverables during the project. These deliverables fall into three basic categories: Documents, Test Cases / Bug Write-ups, and Reports. Here is a diagram indicating the dependencies of the various deliverables:

 SHAPE * MERGEFORMAT

6.8 Test Suspension / Resumption Criteria

The criteria that may be used to suspend all or portions of functional testing would largely be related to instability of the testing environment and include: hardware or software failure, the presence of a virus or related malware identified to exist on devices used for testing such as servers and PCs. The criteria to be used to resume testing would be that any condition that lead to a hardware, software or systems failure has been mitigated and appropriate authorities have determined that condition is no longer present. In addition, a subset of functional tests will be run as a mechanism to ensure the test environment and application under test are stable to resume the functional testing effort
6.9 Test Environmental / Staffing / Training Needs

There are no known environmental, staffing or training needs for this test effort. If any should arise the specific need will be communicated to the project manager to evaluate and initiate a strategy to address the need.
7 Load Testing

Load testing is not in scope for this initial delivery.
8 Volume Testing

Volume testing is not in scope for this initial delivery.

9 Acceptance Testing

Acceptance testing is not in scope of this initial delivery.
10 Usability Testing

Usability testing is not in scope for this initial delivery.

11 Compatibility Testing

Compatibility testing is not in scope for this initial delivery.
12 Regression Testing

Regression testing retests previously tested system components to ensure that any reported defects have been corrected and that no new quality issues have been introduced. This testing will not be performed by the people who built the system.
12.1 Test Risks/ Issues

Risks associated with regression testing are provided in Section 3 above. The appropriate mitigation strategies and contingency plans are included in that section.
12.2 Items to Be Tested/Not Tested
The information is provided in Section 3 above

12.3 Test Approach(s)

The overall testing approach during the regression test phase is to re-test previously executed test cases defined for the functional components of the SDK4.5 5.0application. More specifically, any previously executed test cases that had high severity defects would be a focus of regression testing, in addition to a subset of test cases that correspond to other functional components to ensure the functionality has not regressed.

12.4 Regulatory / Mandate Criteria

 There are no known regulations or mandates that the system must be tested against.

12.5 Test Pass / Fail Criteria

 Test case Pass and Fail criteria are based upon a comparison of expected and actual results.
12.6 Test Entry / Exit Criteria

The information is provided in Section 6 above
12.7 Test Deliverables

The information is provided in Section 6 above
12.8 Test Suspension / Resumption Criteria

The information is provided in Section 6 above
12.9 Test Environmental / Staffing / Training Needs

 The information is provided in Section 6 above
13 Stress Testing

Stress testing is not in scope for this initial delivery.

14 Vulnerability Assessment Testing

Vulnerability assessment testing that identifies, quantifies, and prioritizes system vulnerabilities, will be performed by the NCI Systems Team. QA will coordinate with the Systems Team as needed to ensure this testing is performed.

15 Progress Reporting
The Test Lead will be responsible for writing and disseminating the following reports to CSM project management team.

Monthly Status Reports

A monthly status report will be provided by the Test Lead to project personnel. This report will summarize monthly testing activities, issues, risks, bug counts, test case coverage, and other relevant metrics.

Phase Completion Reports

When each phase of testing is completed, the Test Lead will distribute a Phase Completion Report to the CSM Product manager, Development Lead, and the NCI CBIIT Program Manager for review and sign-off.

The document must contain the following metrics:

· Total Test Cases, Number Executed, Number Passes / Fails, Number Yet to Execute

· Number of Bugs Found to Date, Number Resolved, and Number still Open

· Breakdown of Bugs by Severity / Priority Matrix

· Discussion of Unresolved Risks

· Discussion of Schedule Progress (are we where we are supposed to be?)

Test Final Report - Sign-Off

A Final Test Report will be issued by the Test Lead. It will certify as to the extent to which testing has actually completed (test case coverage report suggested), and an assessment of the product’s readiness for Release to Staging.

16 Appendix Summary
The appendix contains information on the test plan approval, references, and terminology.
APPENDIX A: TEST PLAN APPROVAL
The undersigned acknowledge that they have reviewed the SDK Test Plan and agree with the information presented within this document. Changes to this Test Plan will be coordinated with, and approved by, the undersigned, or their designated representatives.

	Signature:
	
	Date:
	

	Print Name:
	
	
	

	
	
	
	

	Title:
	
	
	

	Role:
	Project Manager
	
	

APPENDIX B: REFERENCES

The following table summarizes the documents referenced in this document.

	Document Name
	Description
	Location

	SDK4.5Scope Document
	The purpose of this document is to collect, analyze, and define high-level needs and features of the National Cancer Institute Center for Biomedical Informatics and Information Technology (NCI CBIIT) SDK4.5 Release
	https://wiki.nci.nih.gov/login.action?os_destination=https%3A%2F%2Fwiki.nci.nih.gov%2Fdisplay%2FcaCORE%2FcaCORE%2BSDK%2B4.5%2BScope%2BDocument

	0M-UPT DK 4.I CBIIT) caCORE SDKontrol

SDK4.5requirement documents
	Detailed requirement document for SDK4.5
	https://wiki.nci.nih.gov/login.action?os_destination=https%3A%2F%2Fwiki.nci.nih.gov%2Fdisplay%2FcaCORE%2FSDK%2B4.5%2BRequirements

	QA Test cases
	
	https://docs.google.com/
CBIIT/NCI L drive

APPENDIX C: KEY TERMS

The following table provides definitions and explanations for terms and acronyms relevant to the content presented within this document.

	Term
	Definition

	Unit testing
	Unit testing is a method by which individual units of source code are tested to determine if they are fit for use. A unit is the smallest testable part of an application. In procedural programming a unit may be an individual function or procedure. Unit tests are created by programmers or occasionally by white box testers.

	Functional testing
	Functional or System testing of software or hardware is testing conducted on a complete, integrated system to evaluate the system's compliance with its specified requirements. System testing falls within the scope of black box testing, and as such, should require no knowledge of the inner design of the code or logic.

	Conformance testing
	Conformance testing or type testing is testing to determine whether a product or system meets some specified standard that has been developed for efficiency or interoperability.

To aid in this, many test procedures and test setups have been developed, either by the standard's maintainers or external organizations, specifically for testing conformance to standards.

	Regression testing
	Regression testing is any type of software testing that seeks to uncover software errors by partially retesting a modified program. The intent of regression testing is to provide a general assurance that no additional errors were introduced in the process of fixing other problems. Regression testing is commonly used to test the system efficiently by systematically selecting the appropriate minimum suite of tests needed to adequately cover the affected change. Common methods of regression testing include rerunning previously run tests and checking whether previously fixed faults have re-emerged.

Require-

ments [PM]

Project Plan

[PM]

Functional

Spec [PM]

Test Plan

Test Spec.

/ Outline

Detailed

Design

[Dev]

Test

Cases

Bugs

Bug

Results

Test Case Coverage

Reports

Bug Reports

Monthly

Status

Reports

Test Case

Results

[Insert appropriate disclaimer(s)]

[image: image2.jpg]