[image: image4.png]

CACORE SDK 4.5_CBM Test Report

caCORESDK 4.5 CBM
Test report

VERSION HISTORY

	Version #
	Implemented

By
	Revision

Date
	Approved

By
	Approval

Date
	Reason

	1.0
	Jim Zhou, Jie Dai
	7/19/2013
	
	
	Initial draft

	2.0
	Jim Zhou, Jie Dai
	7/29/2013
	
	
	Modified Report

Table of Contents
41.0
Introduction

41.1
Purpose

42.0
Test Summary

43.0
Test Assessment

44.0
TEST ENVIRONMENT

45.0
System Testing

45.1
The system testing has performed for CACORE SDK 4.5

45.1.1
Installation testing on windows

55.1.2
Domain Class Browser RESTful API Testing

55.1.3
Old RESTful API Testing

55.1.4 Bugs

65.1.5 Notes

6The following minor issues could be caused by incorrect CBM model or data. Discussion is needed between developers and GO.

66.0
Performance Testing

67.0
Variances

68.0 Recommendations

6APPENDIX A: Test Report Approval

7APPENDIX B: KEY TERMS

9APPENDIX C: Entrance and Exit Criteria Checklist for QA Tier

1.0
Introduction
1.1
Purpose

The purpose of the Summary Test Report is to provide the detailed test coverage
for caCORE SDK 4.5 and request approval to move from QA to Stage.
2.0
Test Summary
Project Name: caCORE SDK 4.5
System Name: caCORE SDK 4.5
3.0
Test Assessment

QA team has performed system testing against caCORE SDK 4.5 module and
caCORE SDK RESTFUL WRAPPER. The tests are functional test cases which
covered all requirements of the caCORE SDK 4.5 and caCORE SDK RESTFUL
WRAPPER. The test also covers all normal flows of the modules as well as
abnormal flow of the module.
4.0
TEST ENVIRONMENT

Operating System: Windows 7, Linux Red Hat 5.x

Database: MySQL 5.1.x

Client Interface: Internet Explorer 9.x, Mozilla Firefox 22.0

Application Server: JBoss 5.1.x

Other: Apache Ant 1.8.x, Java Platform 1.6.x
5.0
 TC "\"5.A. CMS Employees and Users of CMS IT Resources\"" \l 2 System Testing
5.1
The system testing has performed for CACORE SDK 4.5
	Total Test cases
	Executed Test Cases
	Passed Test cases
	Failed Test Cases
	Defects
	Comments

	29
	29
	29
	0
	0
	1 minor issue

The tables below summarize the results of caCORE SDK 4.5 testing:
5.1.1
Installation testing on windows

We ran 2 tests against Windows
	Test number
	Build and deploy properties
	Result

	Test_example_W_1
	Jboss,MySQL, Enable SDK Interface, Enable Mapping, XSD
	pass

5.1.2
Domain Class Browser RESTful API Testing

	Test number
	Domain Classes
	RESTFUL
create
	RESTFUL
self
	RESTFUL
update
	RESTFUL
delete

	Test_1
	gov.nih.nci.cacoresdk.domain.inheritance.abstrakt.PrivateTeacher
	pass
	pass
	pass
	pass

	Test_2
	gov.nih.nci.cacoresdk.domain.inheritance.abstrakt.Pupil
	pass
	pass
	pass
	pass

	Test_3
	gov.nih.nci.cacoresdk.domain.inheritance.childwithassociation.Bank
	pass
	pass
	pass
	pass

	Test_4
	gov.nih.nci.cacoresdk.domain.inheritance.childwithassociation.sametable.Designer
	pass
	pass
	pass
	pass

	Test_5
	gov.nih.nci.cacoresdk.domain.inheritance.implicit.Substrate
	pass
	pass
	pass
	pass

	Test_6
	gov.nih.nci.cacoresdk.domain.inheritance.multiplechild.Student
	pass
	pass
	pass
	pass

5.1.3
Old RESTful API Testing

	Test number
	Domain Classes
	Procedure
	Result

	Test_7
	gov.nih.nci.cacoresdk.domain.inheritance.abstrakt.PrivateTeacher
	http://localhost:29080/example/GetXML?query=gov.nih.nci.cacoresdk.domain.inheritance.abstrakt.PrivateTeacher
	pass

	Test_8
	gov.nih.nci.cacoresdk.domain.inheritance.childwithassociation.Cash
	http://localhost:29080/example/GetXML?query=gov.nih.nci.cacoresdk.domain.inheritance.childwithassociation.Cash
	pass

	Test_9
	gov.nih.nci.cacoresdk.domain.inheritance.implicit.AngelFish
	http://localhost:29080/example/GetXML?query=gov.nih.nci.cacoresdk.domain.inheritance.implicit.AngelFish
	pass

	Test_10
	gov.nih.nci.cacoresdk.domain.manytomany.bidirectional.Project
	http://localhost:29080/example/GetXML?query=gov.nih.nci.cacoresdk.domain.manytomany.bidirectional.Project&gov.nih.nci.cacoresdk.domain.manytomany.bidirectional.Project
	pass

5.1.4 Bugs

No bugs found
5.1.5 Notes

The following minor issue could be caused by incorrect CBM model or data. Discussion is needed between developers and GO.
	Minor issues#
	Error Message
	Description

	Test 1-6
Restful delete/update
	See “ ” on the screen
	Click any directory, create a file, then update/delete it, user can see “ ” word on screen

6.0
 TC "\"5.A. CMS Employees and Users of CMS IT Resources\"" \l 2 Performance Testing
Performance testing is out of scope for this release of CACORE SDK 4.5.
7.0
Variances

No variance was observed between the testing that was planned and the testing that actually occurred.
The test environment was set up by the system team is identical to the actual operational environment.
8.0 Recommendations
Based on the QA tier test results, QA team recommends that caCORE SDK 4.5 move from QA tier to Stage tier.
APPENDIX A: Test Report Approval

The undersigned acknowledge they have reviewed the caCORE SDK 4.5 Test Report and agree with the approach it presents. Changes to this Test Report will be coordinated with and approved by the undersigned or their designated representatives.

	Signature:
	
	Date:
	

	Print Name:
	
	
	

	Title:
	
	
	

	Role:
	Project Manager
	
	

APPENDIX B: KEY TERMS
The following table provides definitions for terms relevant to this document.

	Term
	Definition

	Unit testing
	Unit testing is a method by which individual units of source code are tested to determine if they are fit for use. A unit is the smallest testable part of an application. In procedural programming a unit may be an individual function or procedure. Unit tests are created by programmers or occasionally by white box testers.

	Functional testing
	Functional or System testing of software or hardware is testing conducted on a complete, integrated system to evaluate the system's compliance with its specified requirements. System testing falls within the scope of black box testing, and as such, should require no knowledge of the inner design of the code or logic.

	Load testing
	Load testing is the process of putting demand on a system or device and measuring its response. Load testing is performed to determine a system’s behavior under both normal and anticipated peak load conditions. It helps to identify the maximum operating capacity of an application as well as any bottlenecks and determine which element is causing degradation. When the load placed on the system is raised beyond normal usage patterns, in order to test the system's response at unusually high or peak loads, it is known as stress testing. The load is usually so great that error conditions are the expected result, although no clear boundary exists when an activity ceases to be a load test and becomes a stress test.

	Volume testing
	Volume Testing belongs to the group of non-functional tests, which are often misunderstood and/or used interchangeably. Volume testing refers to testing a software application with a certain amount of data. This amount can, in generic terms, be the database size or it could also be the size of an interface file that is the subject of volume testing. For example, if you want to volume test your application with a specific database size, you will expand your database to that size and then test the application's performance on it. Another example could be when there is a requirement for your application to interact with an interface file (could be any file such as .dat, .xml); this interaction could be reading and/or writing on to/from the file. You will create a sample file of the size you want and then test the application's functionality with that file in order to test the performance.

	Acceptance testing
	Acceptance testing by the system provider is often distinguished from acceptance testing by the customer (the user or client) prior to accepting transfer of ownership. In such environments, acceptance testing performed by the customer is known as user acceptance testing (UAT). This is also known as end-user testing, site (acceptance) testing, or field (acceptance) testing.

A smoke test is used as an acceptance test prior to introducing a build to the main testing process.

	 Usability testing
	Usability testing is a technique used to evaluate a product by testing it on users. This can be seen as an irreplaceable usability practice, since it gives direct input on how real users use the system.[1] This is in contrast with usability inspection methods where experts use different methods to evaluate a user interface without involving users.

	Compatibility testing
	Compatibility testing, part of software non-functional tests, is testing conducted on the application to evaluate the application's compatibility with the computing environment. Computing environment may contain some or all of the below mentioned elements: Browser compatibility (Firefox, Netscape, Internet Explorer, Safari, etc.)

	Conformance testing
	Conformance testing or type testing is testing to determine whether a product or system meets some specified standard that has been developed for efficiency or interoperability.

To aid in this, many test procedures and test setups have been developed, either by the standard's maintainers or external organizations, specifically for testing conformance to standards.

	Regression testing
	Regression testing is any type of software testing that seeks to uncover software errors by partially retesting a modified program. The intent of regression testing is to provide a general assurance that no additional errors were introduced in the process of fixing other problems. Regression testing is commonly used to test the system efficiently by systematically selecting the appropriate minimum suite of tests needed to adequately cover the affected change. Common methods of regression testing include rerunning previously run tests and checking whether previously fixed faults have re-emerged.

	Stress testing
	Stress testing refers to tests that put a greater emphasis on robustness, availability, and error handling under a heavy load, rather than on what would be considered correct behavior under normal circumstances. In particular, the goals of such tests may be to ensure the software does not crash in conditions of insufficient computational resources (such as memory or disk space), unusually high concurrency, or denial of service attacks.

APPENDIX C: Entrance and Exit Criteria Checklist for QA Tier

	#
	Checklist Item
	Actor
	Any Tag (excluding RC)
	Release Candidate
	Delivered? Yes/No
	QA Accepted Yes/No

	1
	Tag of source code
	Dev
	Yes
	Yes
	Yes
	Yes

	2
	List of defects fixed - Report
	Dev
	Yes
	Yes
	Yes
	Yes

	3
	List of features/requirements implemented or changed - Report
	Dev
	Yes
	Yes
	Yes
	Yes

	4
	List of known issues - Report
	Dev
	Yes
	Yes
	Yes
	Yes

	5
	Test Cases and execution report for QA tier (includes modification date for test cases, date of execution, and results)
	Dev
	Yes
	Yes
	Yes
	Yes

	6
	Unit Test Report - # Pass/Fail, % coverage
	Dev
	Yes
	Yes
	Yes
	Yes

	7
	QA tier is ready for use (Provisioned, matches tech stack)
	Systems/Dev
	Yes
	Yes
	Yes
	Yes

	8
	Deployment document (if CBIIT hosted)
	Dev
	Yes
	Yes
	System Team owned
	System Team owned

	9
	Installation guide (from scratch install) – only if installed outside CBIIT
	Dev
	Yes
	Yes
	Yes
	Yes

	10
	Test cases for this tag have been reviewed by requirements analyst of equivalent
	QA/Dev/NCI
	Yes
	Yes
	Yes
	Yes

	11
	QA Test Plan reviewed and signed-off
	NCI
	Yes
	Yes
	Yes
	Yes

[image: image1][image: image2][image: image3]
CACORE SDK 4.5 Test Report
PAGE
CACORE SDK 4.5 Test Report

Page 5 of 9

