[image: image1.jpg]

DESK-CTRP Integration Module (DCIM) 1.3
TEST PLAN
Version 1.0
08/23/2013
 Tier: QA
VERSION HISTORY

	Version #
	Implemented

By
	Revision

Date
	Approved

By
	Approval

Date
	Reason

	1.0
	Rui Chen
	08/23/2013
	
	
	Initial Draft

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

Table of Contents

51
Purpose and Scope

51.1
Purpose

51.2
Background

51.3
Scope

52
Resource Requirements

52.1
Testing Environment

52.2
Other Testing Components

52.3
Personnel Roles and Responsibilities

62.4
Staff Training

63
Assumptions, Constraints and Risks

63.1
Testing Assumptions

63.2
Testing Risks

64
Testing Approach

74.1
Methodology

74.2
Test Milestones

84.3
Test Data

84.4
Recording Results

84.5
Analyzing Results

85
Unit Testing

86
Functional Testing

96.1
Test Risks/ Issues

96.2
Items to Be Tested/Not Tested

96.3
Test Approach(s)

96.4
Regulatory / Mandate Criteria

96.5
Test Pass / Fail Criteria

96.6
Test Entry / Exit Criteria

116.7
Test Deliverables

116.8
Test Suspension / Resumption Criteria

116.9
Test Environmental / Staffing / Training Needs

117
Load Testing

128
Volume Testing

129
Acceptance Testing

1210
Usability Testing

1211
Compatibility Testing

1212
Regression Testing

1212.1
Test Risks/ Issues

1212.2
Items to Be Tested/Not Tested

1212.3
Test Approach(s)

1212.4
Regulatory / Mandate Criteria

1212.5
Test Pass / Fail Criteria

1312.6
Test Entry / Exit Criteria

14Exit Criteria Checklist for QA Tier

1512.7
Test Deliverables

1512.8
Test Suspension / Resumption Criteria

1512.9
Test Environmental / Staffing / Training Needs

1513
Stress Testing

1514
Vulnerability Assessment Testing

1515
Pormance Testing

1516
Progress Reporting

1617
Appendix Summary

17APPENDIX A: TEST PLAN APPROVAL

18APPENDIX B: REFERENCES

19APPENDIX C: KEY TERMS

21APPENDIX D: TEST SUMMARY REPORT

22APPENDIX E: BUG REPORT / DEFECT LOG

1 Purpose and Scope
1.1 Purpose

This Test Plan will address and provide guidance for Essential Software Inc(ESI) QA team’s activities to be performed in support of the DESK-CTRP Integration Module (DCIM). It is designed to capture and convey the overall structure and objectives of the DESK-CTRP Integration Module (DCIM) testing activities. The intended audience of this document is the project manager, project team and testing team.

This plan provides a basis for planning, performing, managing, monitoring and measuring the DESK-CTRP Integration Module (DCIM).
1.2 Background
DESK-CTRP Integration Module (DCIM) is implemented to facilitate the submission of Division of Cancer Prevention DCP trials, amendments and updates from DCP Enterprise System Knowledgebase DESK to CTRP.

1.3 Scope
The Test Plan targets the testing of the DESK-CTRP Integration Module (DCIM) service.
2 Resource Requirements
2.1 Testing Environment

The Testing Environment is provided by the DCIM team. All testing activities will be conducted in the QA environment.
QA Server: ncias-q866-v.nci.nih.gov UNIX server, Jboss 5.1, JDK 1.6
DB server: Oracle Database 10g Enterprise Edition Release 10.2.0.5.0
Manually tested in Windows XP, IE 8, FF 21.

2.2 Other Testing Components

The testing components for DESK-CTRP Integration Module (DCIM) include validation service.
2.3 Personnel Roles and Responsibilities
	Role/Function
	Personnel

	Project Manager
	Charles Yaghmour

	QA Test Lead
	Ye Wu

	Quality Team Member
	Ye Wu, Rui Chen

	We will need government staff roles, descriptions here
	

2.4 Staff Training

There are no training planned nor scheduled for this release.

3 Assumptions, Constraints and Risks
3.1 Testing Assumptions

N/A
3.2 Testing Risks

	#
	Risk Event
	Risk Response – Owner

	1.
	Delay in release

For each Iteration, since Test case execution is planned to start after the application is deployed to QAand the execution window is short, any delays may impact the project schedule.
	Mitigate – Release Management
Discuss with stakeholders and to reduce the scope for the iteration if the delay cannot be absorbed within the current schedule.

	2.
	Scope creep that causes the addition of new functionality/requirements into the release.
	Mitigate – Release Management
Plan: Scope changes will be analyzed for the impact and change requests will be raised for changes to effort or schedule.

	3.
	Delays in defect turnaround time

As the execution window for each iteration is short, any substantial delays in fixing critical defects can jeopardize the completion of the test cycle and will potentially impact the schedule.
	Mitigate – Development, Release Management,

Prioritize defects and discuss on daily scrum call to escalate the effects and progress on each outstanding defect.

	4.
	Reference documentation for deriving requirements traceability matrices and test cases not base lined.
	Mitigate – Requirements, Development

The QA Test team would identify the test cases that do not have baselined use cases early in the test case planning phase

4 Testing Approach
ESI’s QA team will follow industry standard test approach to test DESK-CTRP Integration Module (DCIM). The key is to assure the development effort conforms to the DCIM requirement documents that are accepted by the DCP client and DCIM management team.
ESI’s testing efforts include document review, functional testing, regression testing and installation testing. The details can be found in the subsequent subsections.

More specifically, for DCIM 1.3 release, all new features/improvement/defect fixes tests and regression tests will be executed on QA tier.
4.1 Test Milestones

The DCIM 1.3 QA test milestones

	Milestone description
	

	Product
	DCIM

	RC1 Date move to QA
	7/30/2013

	RC2 Date move to QA
	8/12/2013

	RC3 (Final RC) Date move to QA
	8/14/2013

	QA Server URL
	ncias-q866-v.nci.nih.gov

5 Unit Testing
Unit testing will be conducted by development team. ESI’s QA team will make sure adequate level of unit testing is performed by development team.

6 Functional Testing
Functional testing is conducted to ensure the system behaves according to the functional requirements. Use cases and user stories are developed to validate that all functions outlined in the requirements are present in the system and work as intended. This testing will not be performed by the people who built the system (development team)
In short , all JIRA items / requirements outlined in the release notes as “New features” or “System Improvements” or “Bug Fixes” will be validated in this phase of testing
6.1 Items to Be Tested

	
	

	Test Cases
	Test Description

	DCIM-73
	Add caGrid username to Options Page

	DCIM-74
	Add the ability to display multiple grants for a single study

	DCIM-75
	Add ability to extract multiple grants information for a single study from DESK

	DCIM-76
	Add ability to extract multiple study documents of type 'OTHER' from DESK

	DCIM-77
	Add the ability to display multiple documents of type 'OTHER' for a single study

	DCIM-78
	Create a read-only user role

	DCIM-79
	 Add CTRP Submission Date to DCP Accrual page

	DCIM-82
	 Update the application to address Appscan issues identified while scanning DCIM 1.2 on Stage

7 Load Testing

Load testing is not in scope for this initial delivery.

8 Volume Testing

Volume testing is not in scope for this initial delivery.

9 Regression Testing

Regression testing will be executed in this release.
For this release, on QA tier, a full regression testing will be executed.

9.1 Items to Be Tested/Not Tested
10 Stress Testing

Stress testing is not in scope for this initial delivery.
11 Vulnerability Assessment Testing

App Scan will be performed by security team.
12 Pormance Testing

Performance testing is not in scope for this initial delivery.

13 Test entry/Exit criteria

QA Entrance and Exit Criteria checklist will be used. Only if the defined criteria are met, the application will be approved to move to the next tier.
14 Defects tracking and reporting

JIRA is used for DCIM defect tracking.

15 Test Deliverables

Once QA tier testing is completed, a test report will be generated and submitted to the CBIIT QA Management team for approval. The following documents will be sent along with the test report.

1. Test cases and test results
2. Resolved and Unresolved Defects list

3. Requirements Traceability

4. 508 compliance report

5. Release notes

6. Application Security Scan report

16 Appendix Summary
The appendix contains information on the test plan approval, references, and terminology.
APPENDIX A: TEST PLAN APPROVAL
The undersigned acknowledge that they have reviewed the DESK-CTRP Integration Module (DCIM) Test Plan and agree with the information presented within this document. Changes to this Test Plan will be coordinated with, and approved by, the undersigned, or their designated representatives.

	Signature:
	
	Date:
	

	Print Name:
	
	
	

	
	
	
	

	Title:
	
	
	

	Role:
	Project Manager
	
	

APPENDIX B: REFERENCES

The following table summarizes the documents referenced in this document.

	Document Name
	Description
	Location

	DCIM 1.3 Requirement matrix
	DCIM_1.3_requirements_traceability_matrix.xls
	\\ncifs-p089.nci.nih.gov\group\NCICB\QA\QA Workspace\DCIM\Project Artifacts\DCIM_1.3\DCIM_requirements_traceability_matrix_1.3.xls

	DCIM 1.3 Release Notes
	 DCIM 1.3 Release Notes
	https://wiki.nci.nih.gov/display/DCIM/DCIM+User%27s+Guide

	DCIM User Guide
	DCIM User Guide
	DCIM User Guide

	CTRP User Guide
	CTRP User Guide
	https://wiki.nci.nih.gov/display/CTRPdoc/CTRP+User%27s+Guides+v3.9

	
	
	

· The above documentation may need permission to view
APPENDIX C: KEY TERMS

The following table provides definitions and explanations for terms and acronyms relevant to the content presented within this document.

	Term
	Definition

	Unit testing
	Unit testing is a method by which individual units of source code are tested to determine if they are fit for use. A unit is the smallest testable part of an application. In procedural programming a unit may be an individual function or procedure. Unit tests are created by programmers or occasionally by white box testers.

	Functional testing
	Functional or System testing of software or hardware is testing conducted on a complete, integrated system to evaluate the system's compliance with its specified requirements. System testing falls within the scope of black box testing, and as such, should require no knowledge of the inner design of the code or logic.

	Load testing
	Load testing is the process of putting demand on a system or device and measuring its response. Load testing is performed to determine a system’s behavior under both normal and anticipated peak load conditions. It helps to identify the maximum operating capacity of an application as well as any bottlenecks and determine which element is causing degradation. When the load placed on the system is raised beyond normal usage patterns, in order to test the system's response at unusually high or peak loads, it is known as stress testing. The load is usually so great that error conditions are the expected result, although no clear boundary exists when an activity ceases to be a load test and becomes a stress test.

	Volume testing
	Volume Testing belongs to the group of non-functional tests, which are often misunderstood and/or used interchangeably. Volume testing refers to testing a software application with a certain amount of data. This amount can, in generic terms, be the database size or it could also be the size of an interface file that is the subject of volume testing. For example, if you want to volume test your application with a specific database size, you will expand your database to that size and then test the application's performance on it. Another example could be when there is a requirement for your application to interact with an interface file (could be any file such as .dat, .xml); this interaction could be reading and/or writing on to/from the file. You will create a sample file of the size you want and then test the application's functionality with that file in order to test the performance.

	Acceptance testing
	Acceptance testing by the system provider is often distinguished from acceptance testing by the customer (the user or client) prior to accepting transfer of ownership. In such environments, acceptance testing performed by the customer is known as user acceptance testing (UAT). This is also known as end-user testing, site (acceptance) testing, or field (acceptance) testing.

A smoke test is used as an acceptance test prior to introducing a build to the main testing process.

	 Usability testing
	Usability testing is a technique used to evaluate a product by testing it on users. This can be seen as an irreplaceable usability practice, since it gives direct input on how real users use the system.[1] This is in contrast with usability inspection methods where experts use different methods to evaluate a user interface without involving users.

	Compatibility testing
	Compatibility testing, part of software non-functional tests, is testing conducted on the application to evaluate the application's compatibility with the computing environment. Computing environment may contain some or all of the below mentioned elements: Browser compatibility (Firefox, Netscape, Internet Explorer, Safari, etc.)

	Conformance testing
	Conformance testing or type testing is testing to determine whether a product or system meets some specified standard that has been developed for efficiency or interoperability.

To aid in this, many test procedures and test setups have been developed, either by the standard's maintainers or external organizations, specifically for testing conformance to standards.

	Regression testing
	Regression testing is any type of software testing that seeks to uncover software errors by partially retesting a modified program. The intent of regression testing is to provide a general assurance that no additional errors were introduced in the process of fixing other problems. Regression testing is commonly used to test the system efficiently by systematically selecting the appropriate minimum suite of tests needed to adequately cover the affected change. Common methods of regression testing include rerunning previously run tests and checking whether previously fixed faults have re-emerged.

	Stress testing
	Stress testing refers to tests that put a greater emphasis on robustness, availability, and error handling under a heavy load, rather than on what would be considered correct behavior under normal circumstances. In particular, the goals of such tests may be to ensure the software does not crash in conditions of insufficient computational resources (such as memory or disk space), unusually high concurrency, or denial of service attacks.

APPENDIX D: TEST SUMMARY REPORT

	Project Name
	

	Test Manager/Lead
	

	Reference Number

	Test Case ID
	Description of Test Objectives
	Results:

Pass/Fail

	<Identify when the test will occur. >
	<Reference the test case id name>
	<Briefly describe the purpose/function of the test>
	

	
	
	
	

	
	
	
	

APPENDIX E: BUG REPORT / DEFECT LOG

	Project Name
	
	
	Severity
	
	Priority

	Test Lead
	
	
	1
	Urgent
	
	1
	Critical

	Tester Completing Form
	
	
	2
	High
	
	2
	High

	
	
	
	3
	Medium
	
	3
	Moderate

	
	
	
	4
	Low
	
	4
	Low

	ID#
	Source
	Bug/Defect Description
	Severity
	Priority
	Resolution Strategy
	Associated Change Request
	Date Resolved

	
	<Identify the source of the problem by using the reference number from the Test Case Summary Report>
	< Describe the bug/defect. Include error message generated, when it occurred, after activity X was performed, etc. >
	<Refer to Severity/ Priority Chart>
	<Refer to Severity/ Priority Chart>
	< Identify what steps need to be taken, and by whom, to resolve the identified problem. >
	<If applicable, enter in a change request number associated with correcting this bug/ defect. >
	< Enter the date when the issue was resolved. >

	Bug 1
	
	
	
	
	
	
	

	Bug 2
	
	
	
	
	
	
	

	Bug 3
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

� Reference Number is used to quickly identify when a particular test will be executed within the testing cycle. It is suggested that a decimal be used as outlined in the table below:

Position�
�
Explanation�
�
X.�
=�
Identifies which group the tests will be run. 1= First test group (Unit/ Functional tests); 2= 2nd test group (Initial Integration); 3= 3rd test group (Additional Integration); 4= Regression or Negative Testing; etc. �
�
x. X�
=�
The order the test case/ script/ scenario will be executed within the overall test group.�
�
x.x.X�
=�
Indicates the “run number”, how many time this test has been or will be executed�
�

[Insert appropriate disclaimer(s)]

[image: image1.jpg]