Contents of this Page

- **Summary**
 - Description of the profile
 - Capabilities
- **Requirements traceability**
- **assembly**
 - Description
 - Requirements addressed
 - Overview of possible operations
- **binding**
 - Description
 - Requirements addressed
 - Overview of possible operations
- **cadrsModel**
 - Description
 - Requirements addressed
 - Overview of possible operations
- **complianceDiscovery**
 - Description
 - Requirements addressed
 - Overview of possible operations
- **componentAcquisition**
 - Description
 - Requirements addressed
 - Overview of possible operations
- **compositionArchive**
 - Description
 - Requirements addressed
 - Overview of possible operations
- **compositionChange**
 - Description
 - Requirements addressed
 - Overview of possible operations
- **configurationManagement**
 - Description
 - Requirements addressed
 - Overview of possible operations
- **discovery**
 - Description
 - Requirements addressed
 - Overview of possible operations
- **eprModel**
 - Description
 - Requirements addressed
 - Overview of possible operations
- **identity**
 - Description
 - Requirements addressed
 - Overview of possible operations
- **interactionLog**
 - Description
 - Requirements addressed
 - Overview of possible operations
- **interactionResults**
 - Description
 - Requirements addressed
 - Overview of possible operations
- **interoperabilityDiscovery**
 - Description
 - Requirements addressed
 - Overview of possible operations
- **lexEvsAPI**
 - Description
 - Requirements addressed
 - Overview of possible operations
- **lexEvsRdfBackend**
 - Description
 - Requirements addressed
 - Overview of possible operations
<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
<th>Requirements addressed</th>
<th>Overview of possible operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>lexEvsSparqlEndpoint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>logging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mediation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metadata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metrics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metricsDiscovery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>monitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>monitoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>provenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>security</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>semanticConversion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>serviceChangeNotification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>serviceMetadataCompatabilityLevel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>serviceMetadataValidation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>serviceQualityAndStabilityAssessmentModel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>store</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>transition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uniquelIdentifierResolution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>versioning</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

Description of the profile

Users expressed requirements that suggest caBIG services are not sufficiently described to determine if they meets a user’s requirements or are interoperable with other services. These requirements are deemed applicable to future KR services.

The Services Functional Profile derives its capabilities from the SOA Service Description Model and consequently specialize capabilities architecturally implied by the concept of Service Description Model.

Services specializes capabilities architecturally implied by its associated concepts of Artifact, Change, Composition, Interaction, Interoperability, Metrics, Policy, Semantic Model, Service Description Model. The implied architectural capabilities are described in the following paragraphs.

Artifact An artifact is a managed resource within the Semantic Infrastructure.

An artifact is associated with the following capabilities:

- descriptions to enable the artifact to be visible, where the description includes a unique identifier for the artifact and a sufficient, and preferably a machine processible, representation of the meaning of terms used to describe the artifact, its functions, and its effects;
- one or more discovery mechanisms that enable searching for artifacts that best meet the search criteria specified by the service participant;
- where the discovery mechanism will have access to the individual artifact descriptions, possibly through some repository mechanism;
- accessible storage of artifacts and artifact descriptions, so service participants can access, examine, and use the artifacts as defined.

Change Artifact descriptions change over time and their contents will reflect changing needs and context.

Architectural implications of change on the Semantic Infrastructure are reflected in the following capabilities:

- mechanisms to support the storage, referencing, and access to normative definitions of one or more versioning schemes that may be applied to identify different aggregations of descriptive information, where the different schemes may be versions of a versioning scheme itself;
- configuration management mechanisms to capture the contents of the each aggregation and apply a unique identifier in a manner consistent with an identified versioning scheme;
- one or more mechanisms to support the storage, referencing, and access to conversion relationships between versioning schemes, and the mechanisms to carry out such conversions.

Composition Artifact Descriptions may capture very focused information subsets or can be an aggregate of numerous component descriptions. Service description is an example of a likely aggregate for which manual maintenance of all aspects would not be feasible.

Architectural implications of composition on the Semantic Infrastructure are reflected in the following capabilities:

- tools to facilitate identifying description elements that are to be aggregated to assemble the composite description;
- tools to facilitate identifying the sources of information to associate with the description elements;
- tools to collect the identified description elements and their associated sources into a standard, referenceable format that can support general access and understanding;
- tools to automatically update the composite description as the component sources change, and to consistently apply versioning schemes to identify the new description contents and the type and significance of change that occurred.

Interaction Descriptions of interactions are important for enabling auditability and repeatability, thereby establishing a context for results and support for understanding observed change in performance or results. Infrastructure services provide mechanisms to support service interaction.

Architectural implications of interactions on the Semantic Infrastructure are reflected in the following capabilities:

- one or more mechanisms to capture, describe, store, discover, and retrieve interaction logs, execution contexts, and the combined interaction descriptions;
- one or more mechanisms for attaching to any results the means to identify and retrieve the interaction description under which the results were generated.
- mediation services such as message and event brokers, providers, and/or buses that provide message translation/ transformation, gateway capability, message persistence, reliable message delivery, and/or intelligent routing semantics;
- binding services that support translation and transformation of multiple application-level protocols to standard network transport protocols;
- auditing and logging services that provide a data store and mechanism to record information related to service interaction activity such as message traffic patterns, security violations, and service contract and policy violations;
- security services that abstract techniques such as public key cryptography, secure networks, virus protection, etc., which provide protection against common security threats in a SOA ecosystem;
- monitoring services such as hardware and software mechanisms that both monitor the performance of systems that host services and network traffic during service interaction, and are capable of generating regular monitoring reports.

Interoperability Descriptions provide up-to-date information on what a resource is, the conditions for interacting with the resource, and the results of such interactions. As such, the description is the source of vital information in establishing willingness to interact with a resource, reachability to make interaction possible, and compliance with relevant conditions of use.

Architectural implications of interoperability on the Semantic Infrastructure are reflected in the following capabilities:

- one or more discovery mechanisms that enable searching for described resources that best meet the criteria specified by a service participant, where the discovery mechanism will have access to individual descriptions, possibly through some repository mechanism;
- tools to appropriately track users of the descriptions and notify them when a new version of the description is available.

Metrics Artifact Descriptions include references to metrics which describe the operational characteristics of the subjects being described.

Architectural implications of metrics on the Semantic Infrastructure are reflected in the following capabilities:

- access to platform infrastructure monitoring and reporting capabilities.
• access to metrics information generated or accessible by related services
• mechanisms to catalog and enable discovery of which metrics are available for a described artifact and information on how these metrics can be accessed;
• mechanisms to catalog and enable discovery of compliance records associated with policies, contracts, and constraints that are based on these metrics.

Policy Artifact Descriptions include references to policies defining conditions of use and optionally contracts representing agreement on policies and other conditions.

Architectural implications of policy on the Semantic Infrastructure are reflected in the following capabilities:

• descriptions to enable the policy modules to be visible, where the description includes a unique identifier for the policy and a sufficient, and preferably a machine processible, representation of the meaning of terms used to describe the policy, its functions, and its effects;
• one or more discovery mechanisms that enable searching for policies that best meet the search criteria specified by the service participant; where the discovery mechanism will have access to the individual policy descriptions, possibly through some repository mechanism;
• accessible storage of policies and policy descriptions, so service participants can access, examine, and use the policies as defined.

Policy capabilities are specialization of Artifact capabilities.

Semantic Model Artifact Descriptions make use of defined semantics, where the semantics may be used for categorization or providing other property and value information for description classes.

Architectural implications of semantics on the Semantic Infrastructure are reflected in the following capabilities:

• semantic models that provide normative descriptions of the utilized terms, where the models may range from a simple dictionary of terms to an ontology showing complex relationships and capable of supporting enhanced reasoning. This is a refinement of the Artifact metadata capability.
• configuration management mechanisms to capture the normative description of each semantic model and to apply a unique identifier in a manner consistent with an identified versioning scheme. This is a refinement of the Change configurationManagement capability.
• one or more mechanisms to support the storage, referencing, and access to conversion relationships between semantic models, and the mechanisms to carry out such conversions.

Service Description Model A service description is an artifact, usually document-based, that defines or references the information needed to use, deploy, manage and otherwise control a service. This includes not only the information and behavior models associated with a service to define the service interface but also includes information needed to decide whether the service is appropriate for the current needs of the service consumer. Thus, the service description will also include information such as service reachability, service functionality, and the policies and contracts associated with a service.

A service description artifact may be a single document or it may be an interlinked set of documents.

Architectural implications of service description on the Semantic Infrastructure are reflected in the following functional decomposition:

• Description will change over time and its contents will reflect changing needs and context. This is elaborated in the inherited Change profile.
• Description makes use of defined semantics, where the semantics may be used for categorization or providing other property and value information for description classes. This is elaborated in the inherited Semantic Model profile.
• Descriptions include reference to policies defining conditions of use and optionally contracts representing agreement on policies and other conditions. This is elaborated in the inherited Policy profile.
• Descriptions include references to metrics which describe the operational characteristics of the subjects being described. This is elaborated in the inherited Metrics profile.
• Descriptions of the interactions are important for enabling auditability and repeatability, thereby establishing a context for results and support for understanding observed change in performance or results. This is elaborated in the inherited Interaction profile.
• Descriptions may capture very focused information subsets or can be an aggregate of numerous component descriptions. Service description is an example of a likely aggregate for which manual maintenance of all aspects would not be feasible. This is elaborated in the inherited Composition profile.
• Descriptions provide up-to-date information on what a resource is, the conditions for interacting with the resource, and the results of such interactions. As such, the description is the source of vital information in establishing willingness to interact with a resource, reachability to make interaction possible, and compliance with relevant conditions of use. This is elaborated in the inherited Interoperability profile.

Policy capabilities are specialization of Artifact capabilities.
Make it mandatory that user-friendly service metadata (e.g., service name) is always exposed. Even better, provide automated validation of the service metadata.

Service metadata should capture the compatibility level of the service, including the date of the review.

Service metadata should be extended to provide some assessment of service quality and stability.

Use Introduce Toolkit generated service metadata and a service loader tool to register use/reuse of data elements in caDSR.

Semantic infrastructure should support metadata around EPRs.

Provide a SPARQL endpoint for querying, LexEVS.

Provide an RDF triple store backend for LexEVS, so that LexEVS can leverage tools and technologies (i.e, querying, browsing) developed by the Semantic Web community.

Programmatic Access to LexEVS API

Provide Unique Identifier Resolution across Grid

Artifact lifecycle management and metadata requirements include the ability to: * Manage lifecycle, governance and versioning of the models, content and forms * Establish relationships and dependencies between models, content and forms * Determine provenance, jurisdiction, authority and intellectual property * Create representation and views of the information, realized through the appropriate transforms * Provide access control and other security constraints * Create annotations for better discovery and searching of artifacts * Develop usage scenarios and context for the information * Provide terminology and value set binding The artifacts are bound to the services via the service metadata. The service metadata combined with the artifacts and supporting metadata provide a comprehensive service specification. The artifact management requirements listed above are derived from the following use cases: * The caEHR project has adopted ECCF for specifications and CDA documents for caEHR interoperability. The caEHR project requirements include the need for an infrastructure for managing all the artifacts generated during specification process, including HL7 models and documents. The caEHR project also intends to publish these artifacts for the community and vendors. The infrastructure needs to support better discovery, making all the relevant information available in the right context. * ONC and other external EHR adopters: ONC has adopted CDA and CCR for meaningful use. All national EHR implementations are expected to support forms and the semantics of those forms play a critical role in interoperability. The semantic infrastructure must provide a mechanism to create, store and manage these forms. Clinical Trials: Clinical trials use forms to capture clinical information, and the semantics captured by these forms are critical for interoperability and reporting. The semantic infrastructure must provide a mechanism to manage the lifecycle of these forms.
KR needs terminology from the enterprise vocabulary services at both the concept and value set level to bind to metadata objects in the knowledge repository.

Service Oriented Architecture is an architectural paradigm for organizing and utilizing distributed capabilities that may be under the control of different ownership domains. Consequently, it is important that organizations that plan to engage in service interactions adopt governance policies and procedures sufficient to ensure that there is standardization across both internal and external organizational boundaries to promote the effective creation and use of SOA-based services. SOA governance requires numerous architectural capabilities on the Semantic Infrastructure. Governance is expressed through policies and assumes multiple use of focused policy modules that can be employed across many common circumstances. This is elaborated in the inherited Information Model profile. Policy modules are required to support the intent of governance, the structures created to define and implement governance, and the processes to be followed to make governance operational. This is provided by capabilities specialized from the inherited Artifact Profile. Policies are made operational through rules and regulations. This is elaborated in the inherited Interaction profile. The discovery mechanism will have access to the individual descriptions of rules and regulations, possibly through some repository mechanism: * accessible storage of rules and regulations and their respective descriptions, so service participants can understand and prepare for compliance, as defined. * SOA services to access automated implementations of the Governance Processes. Governance implies management to define and enforce rules and regulations. This is elaborated in the inherited Management profile. Governance relies on metrics to define and measure compliance. This is elaborated in the inherited Metric profile.

Interaction is the activity involved in using a service to access capability. In order to achieve a particular desired real world effect, where real world effect is the actual result of using a service. An interaction can be characterized by a sequence of actions. Consequently, interacting with a service, i.e. performing actions against the service. The services involved in a service interaction are referred to as participants. Interactions are composed of actions. Different modes of interaction are possible such as modifying the shared state of a resource. Note that a participant (or agent acting on behalf of the participant) can be the sender of the message, the receiver of a message, or both. Interacting with Services has the following architectural implications on mechanisms that facilitate service interaction: A well-defined service Information Model, as elaborated in the inherited Information Model profile. A well-defined service Behavior Model, as elaborated in the inherited Behavior Model profile. Service composition mechanisms to support orchestration of service-oriented business processes and choreography of service-oriented business collaborations, as elaborated in the inherited Service Composition profile. Infrastructure services that provides mechanisms to support service composition, as elaborated in the inherited Interaction profile. A layered and tiered service component architecture that supports multiple message exchange patterns (MEPs), as elaborated in the inherited Message Exchange profile.

A service description is an artifact, usually document based, that defines or references the information needed to use, deploy, manage and otherwise control a service. This includes not only the information and behavior models associated with a service to define the service interface but also includes information needed to decide whether the service is appropriate for the current needs of the service consumer. Thus, the service description will also include information as to how to obtain the service and the policies and contracts associated with a service. A service description artifact may be a single document or it may be an interlinked set of documents. A well-defined service Information Model, as elaborated in the inherited Information Model profile. Service composition mechanisms to support orchestration of service-oriented business processes and choreography of service-oriented business collaborations, as elaborated in the inherited Service Composition profile. Infrastructure services that provides mechanisms to support service composition, as elaborated in the inherited Interaction profile. A layered and tiered service component architecture that supports multiple message exchange patterns (MEPs), as elaborated in the inherited Message Exchange profile.

One of the key requirements for participants interacting with each other in the context of a SOA is achieving visibility: before services can interoperate, the participants must be visible to each other using whatever means are appropriate. The Reference Model analyzes visibility in terms of awareness, willingness, and reachability. Visibility in a SOA ecosystem has the following architectural implications on mechanisms providing support for awareness, willingness, and reachability: Mechanisms providing support for awareness will likely have the following minimum capabilities:

- Identification of Description, preferably conforming to a standard Description format and structure;
- Publishing of Description directly to a repository mediator;
- Publishing of Description, preferably conforming to a standard for Discovery description;
- Notification of Description updates or notification of the addition of new and relevant Descriptions;
- Classification of Description elements according to standardized classification schemes. In a SOA ecosystem with complex social structures, awareness may be provided for specific communities of interest or for all participants. The social structures will have access to the individual descriptions of rules and regulations, possibly through some repository mechanism. The architectural mechanisms for establishing reachability will require support for: * verification of identity and credentials of the provider and/or consumer; * access to and understanding of description; * inspection of functionality and capabilities; * inspection of policies and/or contracts. The architectural mechanisms for establishing reachability will require support for: * the location or address of an endpoint; * verification and use of a service interface by means of a communication protocol; * determination of presence with an endpoint which may only be determined at the point interaction but may further be added by the use of a presence protocol for which the endpoints actively participate.

assembly

Description

Tools to facilitate identifying description elements that are to be aggregated to assemble the composite description.

Requirements addressed

- Service Description Model

Overview of possible operations

binding

Description

binding services that support translation and transformation of multiple application-level protocols to standard network transport protocols.

Requirements addressed

- Service Description Model
• Interacting with Services Model

Overview of possible operations

cadsrModel

Description

Use Introduce Toolkit generated service metadata and a service loader tool to register use/reuse of data elements in caDSR

Requirements addressed

• 065 - caDSR data element registration

Overview of possible operations

complianceDiscovery

Description

Mechanisms to catalog and enable discovery of compliance records associated with policies, contracts, and constraints that are based on these metrics.

Requirements addressed

• Service Description Model

Overview of possible operations

componentAcquisition

Description

Tools to facilitate identifying the sources of information to associate with the description elements.

Requirements addressed

• Service Description Model

Overview of possible operations

compositionArchive

Description

Tools to collect the identified description elements and their associated sources into a standard, referenceable format that can support general access and understanding.

Requirements addressed

• Service Description Model

Overview of possible operations

compositionChange

Description

Tools to automatically update the composite description as the component sources change, and to consistently apply versioning schemes to identify the new description contents and the type and significance of change that occurred.

Requirements addressed

• Service Description Model

Overview of possible operations

configurationManagement

Description

Mechanisms to support the storage, referencing, and access to normative definitions of one or more versioning schemes that may be applied to identify different aggregations of descriptive information, where the different schemes may be versions of a versioning scheme itself.

Requirements addressed

• Service Description Model
Overview of possible operations
discovery

Description
One or more discovery mechanisms that enable searching for artifacts that best meet the search criteria specified by the service participant; where the discovery mechanism will have access to the individual artifact descriptions, possibly through some repository mechanism.

Requirements addressed
- Service Visibility Model
- Service Description Model
- Governance Model

Overview of possible operations
eprModel

Description
Semantic infrastructure should support metadata around EPRs

Requirements addressed
- 071 - EPR metadata

Overview of possible operations
identity

Description
Descriptions which include a unique identifier for the artifact.

Requirements addressed
- Governance Model
- Service Description Model

Overview of possible operations
interactionLog

Description
One or more mechanisms to capture, describe, store, discover, and retrieve interaction logs, execution contexts, and the combined interaction descriptions.

Requirements addressed
- Service Description Model
- Interacting with Services Model

Overview of possible operations
interactionResults

Description
One or more mechanisms for attaching to any results the means to identify and retrieve the interaction description under which the results were generated.

Requirements addressed
- Interacting with Services Model
- Service Description Model

Overview of possible operations
interoperabilityDiscovery

Description
One or more discovery mechanisms that enable searching for described resources that best meet the criteria specified by a service participant, where the discovery mechanism will have access to individual descriptions, possibly through some repository mechanism.

Requirements addressed
• **Service Description Model**

Overview of possible operations

lexEvsAPI

Description

Programmatic Access to LexEVS API

KR needs terminology from the enterprise vocabulary services at both the concept and value set level to bind to metadata objects in the knowledge repository.

Requirements addressed

• EVS-6 - Value Set Versioning
• EVS-1 - Concept and Value Set Terminology binding
• 129 - Programmatic Access to LexEVS API
• Artifact Lifecycle Management

Overview of possible operations

lexEvsRdfBackend

Description

Provide an RDF triple store backend for LexEVS, so that LexEVS can leverage tools and technologies (i.e, querying, browsing) developed by the Semantic Web community.

Requirements addressed

• 122 - RDF triple store backend for LexEVS

Overview of possible operations

lexEvsSparqlEndpoint

Description

Provide a SPARQL endpoint for querying, LexEVS

Requirements addressed

• 115 - LexEVS SPARQL Endpoint

Overview of possible operations

logging

Description

Auditing and logging services that provide a data store and mechanism to record information related to service interaction activity such as message traffic patterns, security violations, and service contract and policy violations

Requirements addressed

• Interacting with Services Model

Overview of possible operations

mediation

Description

Mediation services such as message and event brokers, providers, and/or buses that provide message translation/transformation, gateway capability, message persistence, reliable message delivery, and/or intelligent routing semantics;

Requirements addressed

• Interacting with Services Model

Overview of possible operations

metadata

Description
A representation of the meaning of terms used to describe the artifact, its functions, and its effects.

Requirements addressed
- Governance Model
- Service Description Model

Overview of possible operations

metrics

Description
Access to metrics information generated or accessible by related services
Requirements addressed
- Service Description Model
- Governance Model

Overview of possible operations

metricsDiscovery

Description
Mechanisms to catalog and enable discovery of which metrics are available for a described artifact and information on how these metrics can be accessed.
Requirements addressed
- Service Description Model

Overview of possible operations

monitor

Description
Access to platform infrastructure monitoring and reporting capabilities.
Requirements addressed
- Service Description Model
- Governance Model

Overview of possible operations

monitoring

Description
monitoring services such as hardware and software mechanisms that both monitor the performance of systems that host services and network traffic during service interaction, and are capable of generating regular monitoring reports.
Requirements addressed
- Interacting with Services Model

Overview of possible operations

provenance

Description
While the Resource identity provides the means to know which subject and subject description are being considered, Provenance as related to the Description class provides information that reflects on the quality or usability of the subject. Provenance specifically identifies the entity (human, defined role, organization, ...) that assumes responsibility for the resource being described and tracks historic information that establishes a context for understanding what the resource provides and how it has changed over time. Responsibilities may be directly assumed by the Stakeholder who owns a Resource or the Owner may designate Responsible Parties for the various aspects of maintaining the resource and provisioning it for use by others. There may be more than one entity identified under Responsible Parties; for example, one entity may be responsible for code maintenance while another is responsible for provisioning of the executable code. The historical aspects may also have multiple entries, such as when and how data was collected and when and how it was subsequently processed, and as with other elements of description, may provide links to other assets maintained by the Resource owner.

Requirements addressed
Overview of possible operations

security

Description

security services that abstract techniques such as public key cryptography, secure networks, virus protection, etc., which provide protection against common security threats in a SOA ecosystem;

Requirements addressed

• Interacting with Services Model

Overview of possible operations

semanticConversion

Description

One or more mechanisms to support the storage, referencing, and access to conversion relationships between semantic models, and the mechanisms to carry out such conversions.

Requirements addressed

• Service Description Model

Overview of possible operations

serviceChangeNotification

Description

Tools to appropriately track users of the descriptions and notify them when a new version of the description is available.

Requirements addressed

• Service Description Model

Overview of possible operations

serviceMetadataCompatbilityLevel

Description

Service metadata should capture the compatibility level of the service, including the date of the review.

Requirements addressed

• 061 - Service compatibility level

Overview of possible operations

serviceMetadataValidation

Description

Make it mandatory that user-friendly service metadata (e.g., service name) is always exposed. Even better, provide automated validation of the service metadata.

Requirements addressed

• 060 - Service metadata validation

Overview of possible operations

serviceQualityAndStabilityAssessmentModel

Description

Service metadata should be extended to provide some assessment of service quality and stability

Requirements addressed

• 062 - Service quality and stability assessment

Overview of possible operations
store

Description

Accessible storage of artifacts and artifact descriptions, so service participants can access, examine, and use the artifacts as defined.

Requirements addressed

- Service Description Model
- Governance Model

Overview of possible operations

transition

Description

One or more mechanisms to support the storage, referencing, and access to conversion relationships between versioning schemes, and the mechanisms to carry out such conversions.

Requirements addressed

- Service Description Model

Overview of possible operations

uniqueIdentifierResolution

Description

Provide Unique Identifier Resolution across Grid

Requirements addressed

- 130.3 - Unique Identifier Resolution

Overview of possible operations

versioning

Description

Configuration management mechanisms to capture the contents of the each aggregation and apply a unique identifier in a manner consistent with an identified versioning scheme.

Requirements addressed

- Service Description Model

Overview of possible operations