NIH | National Cancer Institute | NCI Wiki  

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Page info
title
title

...

ISA-TAB-Nano Curated Examples (ISA-TAB-Nano Version 1.

...

The following ISA-TAB-Nano curated examples are using Version 1.2 of the ISA-TAB-Nano specification.

...

      2. Lo ST, Stern S, Clogston JD, Zheng J, Adiseshaiah PP, Dobrovolskaia M, Lim J, Patri AK, Sun X, Simanek EE. Biological assessment of triazine dendrimer: toxicological profiles, solution behavior, biodistribution,
        drug release and efficacy in a PEGylated, paclitaxel construct. Mol Pharm 7:993-1006 (2010).

        2014-05-02 UTSMC_TAM_NCL-SLoMP2010v1.2.zip

      3. Efthimiadou EK, Tapeinos C, Chatzipavlidis A, Boukos N, Fragogeorgi E, Palamaris L, Loudos G, Kordas G. Dynamic in vivo imaging of dual-triggered microspheres for sustained release applications: synthesis, characterization and cytotoxicity study Int J Pharm. 461:54-63 (2014).

       2014-06-30 NCSR_UP_TEI-EEfthimiadouIJP2014v1.2.zip

    4. Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5:209ra152 (2013).

       2016-10-14 NWU-SJensenSTM2013v1.2.zip

    5. Wen CY, Wu LL, Zhang ZL, Liu YL, Wei SZ, Hu J, Tang M, Sun EZ, Gong YP, Yu J, Pang DW. Quick-response magnetic nanospheres for rapid, efficient capture and sensitive detection of circulating tumor cells. ACS Nano. 8:941-9 (2014).

      2015-03-04 WU_HCH-CWenACSNano2014v1.2.zip

   6. Han H, Davis ME. Targeted nanoparticles assembled via complexation of boronic-acid-containing  targeting moieties to diol-containing polymers. Bioconjug Chem. 24:669-77 (2013). Han, Davis ME. Single-antibody, targeted nanoparticle delivery of camptothecin. Mol Pharm. 10:2558-67 (2013).

     2015-02-04 Caltech-HHanBC2013v1.2.zip

   7. Gaur S, Wang Y, Kretzner L, Chen L, Yen T, Wu X, Yuan YC, Davis M, Yen Y. Pharmacodynamic and pharmacogenomic study of the nanoparticle conjugate of camptothecin CRLX101 for the treatment of cancer.   Nanomedicine 10:1477-1486 (2014).

    2015-02-27 BRICH_Caltech_TMU-SGaurNNMB2014v1.2.zip

  8. Guan YY, Luan X, Xu JR, Liu YR, Lu Q, Wang C, Liu HJ, Gao YG, Chen HZ, Fang C. Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapyof melanoma lung metastasis. Biomaterials 35:3060-3070 (2014).

   2015-08-26 SJTU-YGuanBM2014v1.2.zip

 9. Perica K, Tu A, Richter A, Bieler JG, Edidin M, Schneck JP. Magnetic-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 8:2252-2260.

  2015-07-03 JHU_MB-KPericaACSNano2014v1.2.zip

10. Tang L, Yang X, Yin Q, Cai K, Wang H, Chaudhury I, Yao C, Zhou Q, Kwon M, Hartman JA, Dobrucki IT, Dobrucki LW, Borst LB, Lezmi S, Helferich WG, Ferguson AL, Fan TM, Cheng J. Investigating the optimal size of anticancer      nanomedicine Proc Natl Acad Sci U S A 111:15344-9 (2014).

  2015-10-01 UI-UC_GPC_NCSU-LTangPNAS2014v1.2.zip

11.  Ayala-Orozco C, Urban C, Knight MW, Urban AS, Neumann O, Bishnoi SW, Mukherjee S, Goodman AM, Charron H, Mitchell T, Shea M, Roy R, Nanda S, Schiff R, Halas NJ, Joshi A. Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano. 8:6372-6381 (2014).

  2015-10-01 RU_BCM-CAyala-OrozcoACSNano2014v1.2.zip

12. Sykes EA, Chen J, Zheng G, Chan WC Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACSNano 8:5698-5706 (2014).

2017-04-10 UT_OCI-ASykesACSNano2014v1.2.zip

13. Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z, Zhang L, Yan J, Miller D, Zhang HG. Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver TherapeuticAgents to Inflammatory Tumor Sites. Cancer Res 75:2520-2529 (2015).

2016-05-24 LVAMC_UL_HFPH-QWangCR2015v1.2.zip

14. Reuter KG, Perry JL, Kim D, Luft JC, Liu R, DeSimone JM. Targeted PRINT Hydrogels: The Role of Nanoparticle Size and Ligand Density on Cell Association, Biodistribution, and Tumor Accumulation. Nano Lett. 15:6371-6378 (2015)

2016-11-07 UNC-KReuterNL2015v1.2.zip

15.  Binzel DW, Shu Y, Li H, Sun M, Zhang Q, Shu D, Guo B, Guo P. Specific Delivery of MiRNA for High Efficient Inhibition of Prostate Cancer by RNA Nanotechnology. Mol Ther. 24:1267-77 (2016).

2017-01-04 OSU_UK_NDSU-DBinzelMT2016v1.2.zip

16. Senzer N, Nemunaitis J, Nemunaitis D, Bedell C, Edelman G, Barve M, Nunan R, Pirollo KF, Rait A, Chang EH. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 21:1096-1103 (2013).

2017-02-13 MCCRC_TO_MDDH_GU_SGT-NSenzerMT2013v1.2.zip

17. Pirollo KF, Nemunaitis J, Leung PK, Nunan R, Adams J, Chang EH. Safety and Efficacy in Advanced Solid Tumors of a Targeted Nanocomplex Carrying the p53 Gene Used in Combination with Docetaxel: A Phase 1b Study. Mol Ther        24:1697-1706 (2016).

2017-03-03 GU_MCCRC_Gradalis_TO_MCDH_SGT-KPirolloMT2016v1.2.zip

18. Siefker-Radtke A, Zhang XQ, Guo CC, Shen Y, Pirollo KF, Sabir S, Leung C, Leong-Wu C, Ling CM, Chang EH, Millikan RE, Benedict WF. A Phase l Study of a Tumor-targeted Systemic Nanodelivery System, SGT-94, in Genitourinary Cancers. Mol Ther 24:1484-1491 (2016).

2017-03-03 UTMDACC_UT_GU_SGT-ASiefker-RadtkeMT2016v1.2.zip

19. Le DHT, Lee KL, Shukla S, Commandeur U, Steinmetz NF Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale 9:2348-2357 (2017).

2017-07-11 CWRU_RWTH-Aachen-DLeNanoscale2017v1.2.zip

20. He Z, Wan X, Schulz A, Bludau H, Dobrovolskaia MA, Stern ST, Montgomery SA, Yuan H, Li Z, Alakhova D,  Sokolsky M, Darr DB, Perou CM, Jordan R, Luxenhofer R, Kabanov AV. A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials 101:296-309 (2016).

2018-01-12 UNC_TUD_NCL_JMWU_MSSU_LMSU-ZHeBMat2016v1.2.zip

21. Shmeeda H, Amitay Y, Gorin J, Tzemach D, Mak L, Stern ST, Barenholz Y, Gabizon A Coencapsulation of alendronate and doxorubicin in pegylated liposomes: a novel formulation for chemoimmunotherapy of cancer. J Drug Target. 24:878-889 (2016).

2017-09-28 SZMC_HU_NCL-HShmeedaJDT2016v1.2.zip

22. Kang T, Zhu Q, Wei D, Feng J, Yao J, Jiang T, Song Q, Wei X, Chen H, Gao X, Chen J Nanoparticles Coated with Neutrophil Membranes Can Effectively Treat Cancer Metastasis ACS Nano 11:1397-1411 (2017).

2018-01-12 FU_SJTU-TKangACSNano2017v1.2.zip

23. Chai Z, Hu X, Wei X, Zhan C, Lu L, Jiang K, Su B, Ruan H, Ran D, Fang RH, Zhang L, Lu W. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J Control Release. 264:102-111 (2017).

2018-03-23 FU_UCSD-ZChaiJRC2017v1.2.zip

24. Bressler EM, Kim J, Shmueli RB, Mirando AC, Bazzazi H, Lee E, Popel AS, Pandey NB, Green JJ. Biomimetic peptide display from a polymeric nanoparticle surface for targeting and antitumor activity to human triple-negative breast cancer cells. J Biomed Mater Res A. 2018 (in press)

2018-04-18 AsclepiXTher-JHU-EBresselJBMR2018v1.2.zip

25. Nascimento AV, Singh A, Bousbaa H, Ferreira D, Sarmento B, Amiji MM. Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles Acta Biomat 47:71-80 (2017).

2018 06 26 CESPU_UP_NEU-ANascimentoAB2017v1.2.zip

26. Lu YJ, Lin PY, Huang PH, Kuo CY, Shalumon KT, Chen MY, Chen JP  Magnetic Graphene Oxide for Dual Targeted Delivery of Doxorubicin and Photothermal Therapy Nanomaterials 8:193 (2018).

2018 08 10 CGU_CGMH_CGUST_MCUT-YJLuNanomat2018v1.2.zip

27. Vogus DR, Evans MA, Pusuluri A, Barajas A, Zhang M, Krishnan V, Nowak M, Menegatti S, Helgeson ME,  Squires TM, Mitragotri S. A hyaluronic acid conjugate engineered to synergistically and sequentially delivery gemcitabine and doxorubicin to treat triple negative breast cancer. J Control Release 267:191-202 (2017).

2019 04 04 UCSB_HU-DVogusJCR2017v1.2.zip

28. Pathak RKBasu UAhmad ASarkar SKumar ASurnar BAnsari SWilczek KIvan MEMarples BKolishetti NDhar S.  A designer bow-tie combination therapeutic platform: An approach to resistant cancer treatment by simultaneous delivery of cytotoxic and anti-inflammatory agents and radiation. Biomaterials.  187:117-129 (2018).

2019 04 04 UMMSM_UG_FIU-RPathakBMat2018v1.2.zip

29. Heße C, Kollenda S, Rotan O, Pastille E, Adamczyk A, Wenzek C, Hansen W, Epple M, Buer J, Westendorf AM, Knuschke T.  Tumor-Peptide-Based Nanoparticle Vaccine Elicits Efficient Tumor Growth Control in Antitumor Immunotherapy. Mol Cancer Ther. 18:1069-1080 (2019).

2019 07 16 UDE_CeNIDE-CHesseMCT2019v1.2.zip

30. Parayath NN, Gandham SK, Leslie F, Amiji MM. Improved anti-tumor efficacy of paclitaxel in combination with MicroRNA-125b-based tumor-associated macrophage repolarization in epithelial ovarian cancer. Cell Lett 461:1-9 (2019).

2020 01 15 NEU-NParayathCL2019v1.2.zip

31. Crecente-Campo J, Guerra-Varela J, Peleteiro M, Gutiérrez-Lovera C, Fernández-Mariño I, Diéguez-Docampo A, González-Fernández Á, Sánchez L, Alonso MJ. The size and composition of polymeric nanocapsules dictate their interaction with macrophages and biodistribution in zebrafish. J Control Release. 308:98-108 (2019)

2020 01 15 USC_UV-JCrecente-CampoJCR2019v1.2.zip

32. Mendes LP, Sarisozen C, Luther E, Pan J, Torchilin VP Surface-engineered polyethyleneimine-modified liposomes as novel carrier of siRNA and chemotherapeutics for combination treatment of drug-resistant cancers. Drug Deliv 26:443-458 (2019).

2020 01 15 NEU-LMendesDD2019v1.2.zip

33. Cole G, Ali AA, McErlean E, Mulholland EJ, Short A, McCrudden CM, McCaffrey J, Robson T, Kett VL, Coulter JA, Dunne NJ, Donnelly RF, McCarthy HO DNA vaccination via RALA nanoparticles in a microneedle delivery system induces a potent immune response against the endogenous prostate cancer stem cell antigen. Acta Biomater. 96:480-490 (2019).

 2020 05 12 QUB_UBC_UCC_RCS_DCU-GColeAB2019v1.2.zip

34. Rastinehad AR, Anastos H, Wajswol E, Winoker JS, Sfakianos JP, Doppalapudi SK, Carrick MR, Knauer CJ, Taouli B, Lewis SC, Tewari AK, Schwartz JA, Canfield SE, George AK, West JL, Halas N Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci U S A 116(37):18590-18596 (2019).

2020 05 12 ISMMS_NB_MGMSUTHSCH_MMUM_DU_RU-ARRastinehadPNAS2019v1.2.zip

ISA-TAB-Nano Curated Examples (ISA-TAB-Nano Version 1.3)

...

3)

  1. Peng F, Setyawati MI, Tee JK, Ding X, Wang J, Nga ME, Ho HK, Leong DT. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat Nanotechnol.14:279-286 (2019).
    2020 05 12 NUS_NUHS-FPengNatNano2019v1.3.zip
  2. Wu D, Pusuluri A, Vogus D, Krishnan V, Shields CW 4th, Kim J, Razmi A, Mitragotri S. Design principles of drug combinations for chemotherapy.
    J Control Release 323:36-46 (2020). 2020 06 12 HarvardU-DWuJCR2020v1.3.zip
  3. Wang Y, Xie Y, Kilchrist K V, Li J, Duvall C L, Oupicky D Endosomlytic and Tumor-Penetrating Mesoporous Silica Nanoparticles for siRNA/miRNA Combination Cancer Therapy ACS Appl. Mater. Interfaces 12:4308-4322 (2020) 2020 10 30 UNebraskaMC_VanderbiltU-YWangACSAMI2020v1.3..zip
  4. Yoo B, Ma K, Zhang L, Burns A, Sequeira S, Mellinghoff I, Brennan C, Wiesner U, Bradbury M S  Ultrasmall dual-modality silica nanoparticle drug conjugates: Design, synthesis, and characterization Bioorg Med Chem 23:7119-30 (2015) 2021-03-12 SKIRC_GE_CU-BYooBioorgMedChem2015v1.3.zip
  5. Wang S, Qin L, Yamankurt G, Skakuj K, Huang Z, Chen PC, Dominguez D, Lee A, Zhang B, Mirkin CA. Rational vaccinology with spherical nucleic acids. Proc Natl Acad Sci U S A 116:10473-10481 (2019) 2021-03-12 NWU-SWangPNAS2019v1.3.zip
  6. Kim K, Hall DA, Yao C, Lee JR, Ooi CC, Bechstein DJB, Guo Y and Wang SX Magnetoresistive biosensors with on-chip pulsed excitation and magnetic correlated double sampling
    Sci Rep 8:16493 (2018) 2021-05-11 STANFORD_UCSD_EWU-KKimSR2018v1.3.zip
  7. Liu L, Kshirsagar P, Christiansen J, Gautam SK, Aithal A, Gulati M, Kumar S, Solheim JC, Batra SK, Jain M, Wannemuehler MJ, Narasimhan B Polyanhydride
    nanoparticles stabilize pancreatic cancer antigen MUC4β J Biomed Mater Res A 109:893-902 (2021) 2021-05-11 ISU_UNMC-NI-LLiuJBMRA2021v1.3.zip
  8. Banerjee K, Gautam SK, Kshirsagar P, Ross KA, Spagnol G, Sorgen P, Wannemuehler MJ, Narasimhan B, Solheim JC, Kumar S, Batra SK, Jain M Amphiphilic polyanhydride-based
    recombinant MUC4β-nanovaccine activates dendritic cells Genes Cancer 10:52-62 (2019)  2021-05-18 UNMC_ISU_NI-KBanerjeeGC2019v1.3.zip
  9. K Ni, G Lan, C Chan 1, X Duan 1, N Guo, S S Veroneau, R R Weichselbaum, W Lin
    Ultrathin metal-organic layer-mediated radiotherapy-radiodynamic therapy enhances immunotherapy of metastatic cancers
    Matter 1:1331-1353 (2019). 2021-07-19 UChicago-KNiMatter2019v1.3.zip
  10. Wang X, Wilhelm J, Li W, Li S, Wang Z, Huang G, Wang J, Tang H, Khorsandi S, Sun Z, Evers B, Gao J  Polycarbonate-based ultra-pH sensitive nanoparticles improve therapeutic window Nat Commun 11:5828 (2020) 2021-10-13 UTSWMC-XWangNatComm2020.v1.3.zip

  ISA-TAB-Nano Curated Examples (ISA-TAB-Nano Version 1.2)

The following ISA-TAB-Nano curated examples are using Version 1.2 of the ISA-TAB-Nano specification.

  1. Zou P, Helson L, Maitra A, Stern ST, McNeil SE. Polymeric Curcumin Nanoparticle Pharmacokinetics and Metabolism in Bile Duct Cannulated Rats. Mol Pharm 10:1977-1987 (2013).

    2014-04-08 NCL_SPP_JHU-PZouMP2013v1.2.zip

      2. Lo ST, Stern S, Clogston JD, Zheng J, Adiseshaiah PP, Dobrovolskaia M, Lim J, Patri AK, Sun X, Simanek EE. Biological assessment of triazine dendrimer: toxicological profiles, solution behavior, biodistribution,
        drug release and efficacy in a PEGylated, paclitaxel construct. Mol Pharm 7:993-1006 (2010).

        2014-05-02 UTSMC_TAM_NCL-SLoMP2010v1.2.zip

      3. Efthimiadou EK, Tapeinos C, Chatzipavlidis A, Boukos N, Fragogeorgi E, Palamaris L, Loudos G, Kordas G. Dynamic in vivo imaging of dual-triggered microspheres for sustained release applications: synthesis, characterization and cytotoxicity study Int J Pharm. 461:54-63 (2014).

       2014-06-30 NCSR_UP_TEI-EEfthimiadouIJP2014v1.2.zip

    4. Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5:209ra152 (2013).

       2016-10-14 NWU-SJensenSTM2013v1.2.zip

    5. Wen CY, Wu LL, Zhang ZL, Liu YL, Wei SZ, Hu J, Tang M, Sun EZ, Gong YP, Yu J, Pang DW. Quick-response magnetic nanospheres for rapid, efficient capture and sensitive detection of circulating tumor cells. ACS Nano. 8:941-9 (2014).

      2015-03-04 WU_HCH-CWenACSNano2014v1.2.zip

   6. Han H, Davis ME. Targeted nanoparticles assembled via complexation of boronic-acid-containing  targeting moieties to diol-containing polymers. Bioconjug Chem. 24:669-77 (2013). Han, Davis ME. Single-antibody, targeted nanoparticle delivery of camptothecin. Mol Pharm. 10:2558-67 (2013).

     2015-02-04 Caltech-HHanBC2013v1.2.zip

   7. Gaur S, Wang Y, Kretzner L, Chen L, Yen T, Wu X, Yuan YC, Davis M, Yen Y. Pharmacodynamic and pharmacogenomic study of the nanoparticle conjugate of camptothecin CRLX101 for the treatment of cancer.   Nanomedicine 10:1477-1486 (2014).

    2015-02-27 BRICH_Caltech_TMU-SGaurNNMB2014v1.2.zip

  8. Guan YY, Luan X, Xu JR, Liu YR, Lu Q, Wang C, Liu HJ, Gao YG, Chen HZ, Fang C. Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapyof melanoma lung metastasis. Biomaterials 35:3060-3070 (2014).

   2015-08-26 SJTU-YGuanBM2014v1.2.zip

 9. Perica K, Tu A, Richter A, Bieler JG, Edidin M, Schneck JP. Magnetic-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 8:2252-2260.

  2015-07-03 JHU_MB-KPericaACSNano2014v1.2.zip

10. Tang L, Yang X, Yin Q, Cai K, Wang H, Chaudhury I, Yao C, Zhou Q, Kwon M, Hartman JA, Dobrucki IT, Dobrucki LW, Borst LB, Lezmi S, Helferich WG, Ferguson AL, Fan TM, Cheng J. Investigating the optimal size of anticancer      nanomedicine Proc Natl Acad Sci U S A 111:15344-9 (2014).

  2015-10-01 UI-UC_GPC_NCSU-LTangPNAS2014v1.2.zip

11.  Ayala-Orozco C, Urban C, Knight MW, Urban AS, Neumann O, Bishnoi SW, Mukherjee S, Goodman AM, Charron H, Mitchell T, Shea M, Roy R, Nanda S, Schiff R, Halas NJ, Joshi A. Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano. 8:6372-6381 (2014).

  2015-10-01 RU_BCM-CAyala-OrozcoACSNano2014v1.2.zip

12. Sykes EA, Chen J, Zheng G, Chan WC Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACSNano 8:5698-5706 (2014).

2017-04-10 UT_OCI-ASykesACSNano2014v1.2.zip

13. Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z, Zhang L, Yan J, Miller D, Zhang HG. Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver TherapeuticAgents to Inflammatory Tumor Sites. Cancer Res 75:2520-2529 (2015).

2016-05-24 LVAMC_UL_HFPH-QWangCR2015v1.2.zip

14. Reuter KG, Perry JL, Kim D, Luft JC, Liu R, DeSimone JM. Targeted PRINT Hydrogels: The Role of Nanoparticle Size and Ligand Density on Cell Association, Biodistribution, and Tumor Accumulation. Nano Lett. 15:6371-6378 (2015)

2016-11-07 UNC-KReuterNL2015v1.2.zip

15.  Binzel DW, Shu Y, Li H, Sun M, Zhang Q, Shu D, Guo B, Guo P. Specific Delivery of MiRNA for High Efficient Inhibition of Prostate Cancer by RNA Nanotechnology. Mol Ther. 24:1267-77 (2016).

2017-01-04 OSU_UK_NDSU-DBinzelMT2016v1.2.zip

16. Senzer N, Nemunaitis J, Nemunaitis D, Bedell C, Edelman G, Barve M, Nunan R, Pirollo KF, Rait A, Chang EH. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 21:1096-1103 (2013).

2017-02-13 MCCRC_TO_MDDH_GU_SGT-NSenzerMT2013v1.2.zip

17. Pirollo KF, Nemunaitis J, Leung PK, Nunan R, Adams J, Chang EH. Safety and Efficacy in Advanced Solid Tumors of a Targeted Nanocomplex Carrying the p53 Gene Used in Combination with Docetaxel: A Phase 1b Study. Mol Ther        24:1697-1706 (2016).

2017-03-03 GU_MCCRC_Gradalis_TO_MCDH_SGT-KPirolloMT2016v1.2.zip

18. Siefker-Radtke A, Zhang XQ, Guo CC, Shen Y, Pirollo KF, Sabir S, Leung C, Leong-Wu C, Ling CM, Chang EH, Millikan RE, Benedict WF. A Phase l Study of a Tumor-targeted Systemic Nanodelivery System, SGT-94, in Genitourinary Cancers. Mol Ther 24:1484-1491 (2016).

2017-03-03 UTMDACC_UT_GU_SGT-ASiefker-RadtkeMT2016v1.2.zip

19. Le DHT, Lee KL, Shukla S, Commandeur U, Steinmetz NF Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale 9:2348-2357 (2017).

2017-07-11 CWRU_RWTH-Aachen-DLeNanoscale2017v1.2.zip

20. He Z, Wan X, Schulz A, Bludau H, Dobrovolskaia MA, Stern ST, Montgomery SA, Yuan H, Li Z, Alakhova D,  Sokolsky M, Darr DB, Perou CM, Jordan R, Luxenhofer R, Kabanov AV. A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials 101:296-309 (2016).

2018-01-12 UNC_TUD_NCL_JMWU_MSSU_LMSU-ZHeBMat2016v1.2.zip

21. Shmeeda H, Amitay Y, Gorin J, Tzemach D, Mak L, Stern ST, Barenholz Y, Gabizon A Coencapsulation of alendronate and doxorubicin in pegylated liposomes: a novel formulation for chemoimmunotherapy of cancer. J Drug Target. 24:878-889 (2016).

2017-09-28 SZMC_HU_NCL-HShmeedaJDT2016v1.2.zip

22. Kang T, Zhu Q, Wei D, Feng J, Yao J, Jiang T, Song Q, Wei X, Chen H, Gao X, Chen J Nanoparticles Coated with Neutrophil Membranes Can Effectively Treat Cancer Metastasis ACS Nano 11:1397-1411 (2017).

2018-01-12 FU_SJTU-TKangACSNano2017v1.2.zip

23. Chai Z, Hu X, Wei X, Zhan C, Lu L, Jiang K, Su B, Ruan H, Ran D, Fang RH, Zhang L, Lu W. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J Control Release. 264:102-111 (2017).

2018-03-23 FU_UCSD-ZChaiJRC2017v1.2.zip

24. Bressler EM, Kim J, Shmueli RB, Mirando AC, Bazzazi H, Lee E, Popel AS, Pandey NB, Green JJ. Biomimetic peptide display from a polymeric nanoparticle surface for targeting and antitumor activity to human triple-negative breast cancer cells. J Biomed Mater Res A. 2018 (in press)

2018-04-18 AsclepiXTher-JHU-EBresselJBMR2018v1.2.zip

25. Nascimento AV, Singh A, Bousbaa H, Ferreira D, Sarmento B, Amiji MM. Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles Acta Biomat 47:71-80 (2017).

2018 06 26 CESPU_UP_NEU-ANascimentoAB2017v1.2.zip

26. Lu YJ, Lin PY, Huang PH, Kuo CY, Shalumon KT, Chen MY, Chen JP  Magnetic Graphene Oxide for Dual Targeted Delivery of Doxorubicin and Photothermal Therapy Nanomaterials 8:193 (2018).

2018 08 10 CGU_CGMH_CGUST_MCUT-YJLuNanomat2018v1.2.zip

27. Vogus DR, Evans MA, Pusuluri A, Barajas A, Zhang M, Krishnan V, Nowak M, Menegatti S, Helgeson ME,  Squires TM, Mitragotri S. A hyaluronic acid conjugate engineered to synergistically and sequentially delivery gemcitabine and doxorubicin to treat triple negative breast cancer. J Control Release 267:191-202 (2017).

2019 04 04 UCSB_HU-DVogusJCR2017v1.2.zip

28. Pathak RKBasu UAhmad ASarkar SKumar ASurnar BAnsari SWilczek KIvan MEMarples BKolishetti NDhar S.  A designer bow-tie combination therapeutic platform: An approach to resistant cancer treatment by simultaneous delivery of cytotoxic and anti-inflammatory agents and radiation. Biomaterials.  187:117-129 (2018).

2019 04 04 UMMSM_UG_FIU-RPathakBMat2018v1.2.zip

29. Heße C, Kollenda S, Rotan O, Pastille E, Adamczyk A, Wenzek C, Hansen W, Epple M, Buer J, Westendorf AM, Knuschke T.  Tumor-Peptide-Based Nanoparticle Vaccine Elicits Efficient Tumor Growth Control in Antitumor Immunotherapy. Mol Cancer Ther. 18:1069-1080 (2019).

2019 07 16 UDE_CeNIDE-CHesseMCT2019v1.2.zip

30. Parayath NN, Gandham SK, Leslie F, Amiji MM. Improved anti-tumor efficacy of paclitaxel in combination with MicroRNA-125b-based tumor-associated macrophage repolarization in epithelial ovarian cancer. Cell Lett 461:1-9 (2019).

2020 01 15 NEU-NParayathCL2019v1.2.zip

31. Crecente-Campo J, Guerra-Varela J, Peleteiro M, Gutiérrez-Lovera C, Fernández-Mariño I, Diéguez-Docampo A, González-Fernández Á, Sánchez L, Alonso MJ. The size and composition of polymeric nanocapsules dictate their interaction with macrophages and biodistribution in zebrafish. J Control Release. 308:98-108 (2019)

2021-07-19 USC_UV-JCrecente-CampoJCR2019.v1.2.zip

32. Mendes LP, Sarisozen C, Luther E, Pan J, Torchilin VP Surface-engineered polyethyleneimine-modified liposomes as novel carrier of siRNA and chemotherapeutics for combination treatment of drug-resistant cancers. Drug Deliv 26:443-458 (2019).

2020 01 15 NEU-LMendesDD2019v1.2.zip

33. Cole G, Ali AA, McErlean E, Mulholland EJ, Short A, McCrudden CM, McCaffrey J, Robson T, Kett VL, Coulter JA, Dunne NJ, Donnelly RF, McCarthy HO DNA vaccination via RALA nanoparticles in a microneedle delivery system induces a potent immune response against the endogenous prostate cancer stem cell antigen. Acta Biomater. 96:480-490 (2019).

 2020 05 12 QUB_UBC_UCC_RCS_DCU-GColeAB2019v1.2.zip

34. Rastinehad AR, Anastos H, Wajswol E, Winoker JS, Sfakianos JP, Doppalapudi SK, Carrick MR, Knauer CJ, Taouli B, Lewis SC, Tewari AK, Schwartz JA, Canfield SE, George AK, West JL, Halas N Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci U S A 116(37):18590-18596 (2019).

2020 05 12 ISMMS_NB_MGMSUTHSCH_MMUM_DU_RU-ARRastinehadPNAS2019v1.2.zip


 

ISA-TAB-Nano Curated Examples (ISA-TAB-Nano Version 1.1)

The following ISA-TAB-Nano curated examples are using Version 1.1 of the ISA-TAB-Nano specification.

...