
1.

2.
3.

4.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

1.
2.
3.
4.
5.
6.

1.
2.
3.
4.
5.
6.
7.

LexEVS 5.1 Loader Feasibility Doc - Temp

Contents of this Page

Persistence Layer Feasibility
Loader Framework Feasibiity

Feasibility Report and Recommendation

Persistence Layer Feasibility

The Persistence Layer enables LexEVS to have a single access point to the underlying database. This has several advantages:

The DAO is implemented as an Interface, not a concrete class. We can implement this interface with Hibernate, JDBC, Ibatis, or any other
Persistence tool or framework.
All loaders can now share a single entry point to the database, and are not limited by memory constraints as some of the EMF persistence was.
Connection Pooling and management is abstracted from the code and pluggable. Data source implementations may be switched and Connection
Pooling may be configured without recompiling code.
Transactions may be defined programmatically via AOP interceptors.

As LexEVS moves forward, the Persistence Layer is also flexible enough to play a part in the runtime Query API. With this, the runtime and loader code
would be able to share a common Data Access Layer - we would then have a true DAO Layer.

Loader Framework Feasibiity

The Loader Framework has been implemented for two loaders, the UMLS single ontology loader and the NCI Metathesaurus loader. These loaders that
implement the Loader Framework simple must define the READ and TRANSFORMATION mechanisms for the load, as well as load order and flow. All
common details of Loading to LexEVS will be dealt with by the Loader Framework and will not have to be implemented. Tools exist for:

Lucene Indexing
Registering CodingSchemes
Changing CodingScheme status (to ACTIVE, INACTIVE, etc)
Building the Transitivity Closure table
Adding Supported Attributes
Detecting Database type
Staging temporary data to the database
Restarting failed loads
Integrating with LexEVS logging
Detecting and handling Root Nodes
...and more common LexEVS load related tasks

Also, to aid in Transformation, basic building blocks have been created that users may extend, such as:

Processors for all of LexEVS Model Objects
Various List Processors
Grouping Processors
Auto-Supported Attribute adding Processors
Several basic Resolvers to extract LexEVS Specific data from the source
... various other Processors for specialized tasks

Several Utilities are also available for Reading and Writing, such as:

Group Readers
Group Writers
Writers configurable to skip certain records
Partitionable readers to break up large source files
Error checking Readers and Writers
A Validating framework for inspecting content before it is inserted into the database.
etc.

	LexEVS 5.1 Loader Feasibility Doc - Temp

