LexGrid Background Information

Contents of this Page

The Lexical Grid
LexGrid Features
LexGrid Users
LexGrid Principles
LexGrid Model

© Code Systems

© Concepts

O Relations

© Available Representations
LexGrid Components
LexGrid Node
LexGrid Projects
LexBIG Project

© What is LexBIG?

© LexBIG Components
® LexBIG API

o Declaring the target concept space

Applying filter criteria
Applying sorting criteria
Restricting the information returned for matching items
Retrieving the result

[e]
[e]
[e]
[e]

The Lexical Grid

Currently, there are many terminologies and ontological resources available (ICD-9, NCI Thesaurus, SNOMED-CT). However, many of these resources
involve incompatible formats, tooling, and programming interfaces. This can make it difficult to use these resources to their full potential. The Lexical Grid
(LexGrid) project is an initiative of the Mayo Clinic Division of Biomedical Informatics (BMI) designed to bridge this gap using common tools, data formats,
and read/update mechanisms. Resources on the Lexical Grid are intended to be:

® represented using a single information model accessible through a set of common application programming interfaces (APIs)
® joined through shared indices accessible online

® downloadable

® |oosely coupled

® Jocally extendable

® globally revised

® available in web-space on web-time

® cross-linked

The realization of this vision requires three interlocking components:

1. Standards: access methods (programming APIs) and formats need to be published and openly available
2. Tools: standards-based tools must be readily available
3. Content: commonly used vocabularies and ontologies have to be available for access and download

In short, LexGrid provides the standardized building blocks and tools to take advantage of vocabulary and ontology content where and when needed,
thereby providing the infrastructure necessary to support large-scale terminology adoption and use. Additional information for LexGrid is available on the Le
xGrid page.

LexGrid Features

Accommodation of multiple vocabulary and ontology distribution formats

Support of multiple data stores to accommodate federated vocabulary distribution
Consistent and standardized access across multiple vocabularies

Rich API for supporting lexical and graph search and traversal

Fully compatible with HL7-CTS implementation

Support for programmatic access via Java, .NET, and web services

Open source tooling and code to facilitate adoption and use

LexGrid Users

LexGrid is intended to meet the needs of the following groups:

® Vocabulary service providers - Describes organizations currently supporting externalized API-level interfaces to vocabulary content

® Vocabulary integrators - Describes organizations that desire to integrate new vocabulary content or relations to be served locally

® Vocabulary users - Describes persons and organizations desiring common, consistent access to vocabulary content for a supporting multiple
application development uses

https://wiki.nci.nih.gov/display/LexEVS/LexGrid
https://wiki.nci.nih.gov/display/LexEVS/LexGrid

LexGrid Principles

LexGrid software is based on a model-driven architecture. The LexGrid model (further described below) is maintained in XML-Schema format and
represents a core component of design. The LexBIG API, a Java-based API to LexGrid content (also described below) is formally modeled and
accommodates registration of additional load, index, and search functions. The LexBIG API also provides a conscious separation of service and data
classes in order to support deferred query resolution and software iterators.

LexGrid Model

The LexGrid Model is Mayo's proposal for standard storage of controlled vocabularies and ontologies. The LexGrid Model defines how vocabularies should
be formatted and represented programmatically, and is intended to be flexible enough to accurately represent a wide variety of vocabularies and other
lexically-based resources. The model also defines several different server storage mechanisms, e.g., relational database, LDAP) and a XML format. This
model provides the core representation for all data managed and retrieved through the LexBIG system, and is now rich enough to represent vocabularies
provided in numerous source formats including:

® Open Biomedical Ontologies (OBO)
®* Web Ontology Language (OWL), e.g., NCI Thesaurus
® Unified Medical Language System (UMLS) Rich Release Format (RRF), e.g., NCI MetaThesaurus

This common model is a critical component of the LexGrid project. Once disparate vocabulary information can be represented in a standardized model, it
becomes possible to build common repositories to store vocabulary content and common programming interfaces and tools to access and manipulate that
content. The HL7 Common Terminology Services (CTS) and LexBIG API as developed for the Cancer Biomedical Informatics Grid (caBIG®) initiative are
two examples of APIs able to query information stored in the LexGrid Model.

Following are some of the higher-level objects incorporated into the model definition:

od oodingBohe me 5)

o g Coding
coding Scheme SCheme

0.4 +elal 0.

Concepts B — Relati
— elations
relations relatiors "-

concepts: coded ERtry

Properties
"--__* +properly o.:
| conceptspropery
o il relations::
as=ociationinstance
[]

+bage oncep)0.

FasC Y S

cnncepts::presentat‘curl cnncepts::cu:ummelnt relations::associationTarget

concepts definiti J)n

Code Systems

Each service defined to the LexGrid Model can encapsulate the definition of one or more vocabularies. Each vocabulary is modeled as an individual code
system, known as a codingScheme. Each scheme tracks information used to uniquely identify the code system, along with relevant metadata. The
collection of all code systems defined to a service is encapsulated by a single codingSchemes container.

Concepts

A code system may define zero or more coded concepts, encapsulated within a single container. A concept represents a coded entity (identified in the
model as a codedEntry) within a particular domain of discourse. Each concept is unique within the code system that defines it. To be valid, a codedEntry
must be qualified by at least one term or designation, represented in the model as a property. Each property is an attribute, facet, or some other
characteristic that may represent or help define the intended meaning of the encapsulating codedEntry. A concept may be the source for or the target of
zero or more relationships. Relationships are described in more detail in a following section.

Relations

Each code system may define one or more containers to encapsulate relationships between concepts. Each named relationship (e.g., "hasSubtype" or
"hasPart") is represented as an association within the LexGrid model. Each relation's container must define one or more association. The association
definition may also further define the nature of the relationship in terms of transitivity, symmetry, reflexivity, forward and inverse names, etc. Multiple
instances of each association can be defined, each of which provide a directed relationship between one source and one or more target concepts.

Source and target concepts may be contained in the same code system as the association or another if explicitly identified. By default, all source and

target concepts are resolved from the code system defining the association. The code system can be overridden by each specific association, relation
source (associationlnstance), or relation target (associationTarget).

Available Representations

The master representation of the LexGrid Model is provided in XML Schema Definition (XSD) format. Conversions to other formal representations are
available, including XML Metadata Interchange (XMI) and Unified Modeling Language (UML).

Implementation or technology-specific renderings of the model also exist. These include relational database schema (MySQL, PostgreSQL, DB2, Oracle,

etc.) and Lightweight Directory Access Protocol (LDAP) schema. Programming interfaces generated from the formal representation include Java bean
interfaces based on the Eclipse Modeling Framework (EMF) and Castor frameworks.

LexGrid Components

This section provides a basic description of the building blocks, interfaces, and tools comprising the LexGrid project.

ROF LexiGrid
Senvice Index

Emme and

ey GrdT

DL

Elrtrwsers

LexGrid Node

A LexGrid Node represents both software and a backing data store that provide a logical persistence layer for accessing, storing, and managing
vocabulary content according to a formalized information model (described above). LexGrid nodes typically utilize relational database management
systems for management of data and indexing functions. Implementations include but are not limited to MySQL, PostgreSQL, UDB/DB2, Oracle,
Hypersonic, and LDAP/BDB.

The *LexGrid Services provide an access layer to search and access vocabulary content. Specific APIs have been implemented to access LexGrid
content. Health Level Seven Common Terminology Services specification (HL7-CTS) is an HL7 standard. LexBIG is a rich API created to support the use
cases and requirements to support the National Cancer Institute and Cancer Biomedical Informatics Grid (caBIG®). Lex* represent other APIs to access
vocabulary content. The set of LexGrid APIs can be implemented using standard technologies like Web Services (SOAP), Java, and .Net.

The *LexGrid Registry Service provides a mechanism to locate available vocabularies that are stored on one or more LexGrid nodes.

LexGrid Projects

LexGrid technologies are integrated and play an essential role in many vocabulary and ontology projects, meeting the needs of both the Mayo Clinic and
external organizations. Some projects include the following:

LexCTS - HL7 Common Terminology Services reference implementation
LexBIG - LexGrid Vocabulary Services for caBIG®

LexBIO - LexGrid Vocabulary Services for NCBO

Mayo Clinic Life Sciences vocabulary services

Mayo Surgical Index Retrieval Services ICD-9 codebook

LexBIG Project

Of these projects, perhaps the most significant and influential to LexGrid architecture, has been the LexBIG (LexGrid Vocabulary Services for caBIG®)
project, which in turn provides the core infrastructure for the LexBIO and LexPHIN projects.

What is LexBIG?

LexBIG is a project that applies LexGrid vision and technologies to requirements of the caBIG® community. The goal of the project is to build a vocabulary
server accessed through a well-structured API capable of accessing and distributing vocabularies as commodity resources. Primary objectives for the
project include:

® Provide a robust and scalable open-source implementation of EVS-compliant vocabulary services. The API specification is based on but not
limited to fulfillment of the caCORE EVS API. The specification also accommodates changes and requirements based on prioritized needs of the
caBIG® community.

® Provide a flexible implementation for vocabulary storage and persistence, allowing for alternative mechanisms without impacting client
applications or end users. Initial development will focus on delivery of open-source freely available solutions, though this does not preclude the
ability to introduce commercial solutions (e.g., Oracle).

® Provide standard tooling for load and distribution of vocabulary content. This includes, but is not limited to, support of standardized
representations such as UMLS Rich Release Format (RRF), the OWL web ontology language, and Open Biomedical Ontologies (OBO).

The LexBIG package represents a compressive set of software and services to load, publish, and access vocabulary. Cancer Centers can use the LexBIG
package to install the NCI Thesaurus and NCI MetaThesaurus and query content via a rich API. LexBIG services can also be incorporated into numerous
applications wherever vocabulary content is needed.

LexBIG Components
Major components within the software package include the following:

Service Management programs to load, index, publish, and manage vocabulary content for the vocabulary server

Application Programming Interface (API) providing Java interfaces to various functions including Lexical queries, Graph representation and
traversal, and NCI change event history

Graphical User Interface providing access to administrative and API functions

Documentation consisting of JavaDocs, Administrator, and Programmer Guides

Examples providing sample source code for common vocabulary queries

Test Suite to validate the LexBIG installation

LexBIG Graphical User Interface - Browse Query Results
r

“= Result Browser E]@1
|

H'CIEII - Organism | Coding Scheme: UMLS_SemMet - urn:lsid:nlm.nih. govisemnet [
| TO28 - Gene or Genome Concept Code: TOO1
| TO25 - Cell Component Entity Description: Crganism -
(T190 - Anatomical Abnormality | (Is Active: true
[TO25 - Cell Presentation PO: Crosnism _
{ TD18 - Embryonic Structure Is Preferred: true [
[TD24 - Tissue
| TO23 - Body Part, Organ, or O has_part TO24
| TD1% - Congenital Abnormality ;
| T021 - Fully Formed Anatomica has_part Tisse
[T020 - Acquired Abnormality Mt m it
(TO17 - Anatomical Structure T001 . -F 1023

Crganism ~ faspart Body Part, Organ, or Organ Component

has_part
T019

| has_part \)
2 5 Congenital Abnormality
==£ — has mart

LexBIG API

This section provides a brief introduction to the LexBIG application programming interface.

Programs access coded concepts within a vocabulary or ontology by first acquiring a node set or graph. After specifying optional restrictions, the nodes in
this set or graph can be resolved as a list of ConceptReference objects. Each concept reference identifies a concept within the vocabulary or ontology.

One of the most powerful features of the LexBIG API is the ability to define multiple search and sort criteria without intermediate retrieval of data from the
LexBIG service. Consider the following code snippet:

Swstemn. out.println("Example double restriction gquery with additional application of
20rL criteria and restricted return walues"™):

fiheclare the service...
LexBIGSerwice lbhs = new LexBIGSerwvicelImpl():

FSi%3Cart with an unconstrained set of all codes for the wocabulary...
CodedNodelet cnz = lbhs.getCodingichemneConcepts ("NCI_Thesaurus™, null, false):

FS/Constrain to concepts with designations (assigned text presentations)
Jithat contain text that sounds like ‘*heart wentriclef
cha.restrictToMatchinglesignations ("hart wentrikle™,

SearchbezignationOption.aLL,

Matchil gorithms. Doubl eMetaphone Luceneluery. coitring (),

rall)

FS/Further restrict the rezults to concepts wWwith a semantic type of
SA'Anatomical Structure'.
cha.restrictToMatchingProperties|
Constructors.createlocallamnelist("3emantic Type™) ,
"Anatomical Structure”,
"exactMatch™,
rmll) ;

SiIndicate that the resulting list should be sorted,
Siwith best results first and then sorted by code if there is a tie.
SortOptionlist sortCriteria =

Constructors.createlfortiptionlistinew String[] {"matchToluery™, "code™}):

ffIndicate to return only the azsiogmed THMLE CUI and textunalPresentation properties.
LocalNamelist restrictTo =
ConvenienceMethods. createlocalWNaneli st (new 3tringl]{"UMLS CUI™,
"textualPresentation™})

SA5E1l]l nothing computed yet!

SiPerform the query and resolve the sorted/filtered list,

fiwmith a maximam of & items returned ...

ResolwedConceptReferencelist list = cns.resolwveTolisti{sortlriteria, restrictTo, 6):

FSiPrint the results ...

ResolwedConceptReference[] rocr = list.getResolwvedConceptReference ()

for(ResolvedConceptReference rc @ ECE)
S¥sten. out.printlni("Resalved Concept:

rr

+ ObjectToltring. to3tring (rc)) ;

This example shows a simple yet powerful query to search a code system based on a 'sounds like' match algorithm (the list of all available match
algorithms can be listed using the ‘ListExtensions -m' admin script, distributed with the LexBIG software package).

Note that while this section provides one example of combining criteria, this same pattern can be applied to many of the CodedNodeSet and
CodedNodeGraph operations. Steps include the following:

Declaring the target concept space
The coded node set (variable 'cns') is initially declared to query the NCI Thesaurus vocabulary. At this point the concept space included by the set can be

thought of as unrestricted, addressing every defined coded entry (the 'false' value on the declaration indicates to also include inactive concepts). However,
it is important to note that no search is performed by the LexBIG service at this time.

Applying filter criteria

Similarly, no computation is performed (to realize query results) during invocation of the restrictToMatchingDesignations() and
restrictToMatchingProperties() methods. However, these calls effectively narrow the target space even further, indicating that filters should be applied to
the information returned by the LexBIG query service.

Applying sorting criteria

Multiple sort algorithms can be applied to control the order of items returned. In this case, we indicate that results are to be sorted based on primary and
secondary criteria. The "matchToQuery" algorithm indicates to sort the result according to best match as determined by the search engine. The "code"
item indicates to perform a secondary sort based on concept code.

Note: the list of all available sort algorithms can be listed using the 'ListExtensions -s' admin script.

Restricting the information returned for matching items

The LexBIG API also allows the programmer to restrict the values returned for each matching concept. In this example, we chose to return only the UMLS
CUI and assigned text presentations.

Retrieving the result

A query is finally performed during the 'resolve’ step, with results returned to the declared list. It is at this point that the LexBIG service does the heavy
lifting. By declaring the full extent of the request up front (nhamespace, match criteria, sort criteria, and returned values), the service then has the
opportunity to optimize the query path. In addition, in this example we restrict the number of items returned to a maximum of six. This combined approach
has the benefit of reducing server-side processing while minimizing the volume and frequency of traffic between the client program and the LexBIG service.

Note: Additional information regarding API options and invocation is provided by the LexBIG Programmer's Guide (provided with the software distribution).

	LexGrid Background Information

