1 - LexEVS 6.x API

Contents of this Page

Introduction
Core Services
LexEVS Services and Components
Service Extensions
© Query Extensions
Load Extensions
Loader Construction
Export Extensions
Index Extensions
Generic Extensions

O O O O O

® Utilities
© Convenience Classes
© Iterators
® Search Algorithms - Supported LexEVS Search Algorithms
© Lucene Based Algorithms
© Apache Regular Expressions
O Custom Extensions
® Code Examples
© Concept Resolution
© Service Metadata Retrieval
O Combinatorial Queries
® Declaring the Target Concept Space
Applying Filter Criteria
Using the Lucene Query Syntax and Other Text Matching Functions
Applying Sorting Criteria
Restricting the Information Returned for Matching Items
Retrieving the Result
© Additional Resources
® LexEVS GUI
Launching the GUI
Overview
Creating New Queries
Customizing Queries
Working with Code Sets
Working with Code Graphs
© Viewing Query Results
® Value Set Services
® Pick List Services
® Asserted Value Set Services

O O O O O O

LexEVS 6.x Programmers Links

® Programmer's Guide Main Page
O LexEVS API
© LexEVS 6.0 CTS2 API
© LexEVS 6.x CTS2 API Quick Start
® Value Set and Pick List Guide
® LexEVS 6.0 Main Page
® |LexEVS Current Release

Introduction
The LexEVS APIs fall into three primary categories:

® Core Services - Core services include the LexBIGService, LexBIGServiceManager, CodedNodeSet and CodedNodeGraph classes, which
provide the initial entry points for programmatic access to all system features and data.

® Service Extensions - The extension mechanism provides for pluggable system features. Current extension points allow for the introduction of
custom load and indexing mechanisms; unique query, sort, and filter mechanisms; and generic functional extensions which can be advertised for
availability to client programs.

® Utilities - Utility classes, such as those implementing iterator support, are provided by the system to provide convenience and optimize the
handling of resources accessed through the runtime.

Core Services

https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+API+Programmer%27s+Guide
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.0+CTS2+API
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+CTS2+API+Quick+Start
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Value+Set+and+Pick+List+Definition+Guide
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.0
https://wiki.nci.nih.gov/display/LexEVS/LexEVS

The LexBIGService provides central entry points for programmatic access to system features and data. In the following figure, LexBIGService provides
Methods retrieving other services, Methods retrieving discrete node sets and graphs from coding schemes, and Methods retrieving service and coding

sheme meta data.

LexBIGService
7
.
Methods Methods retrieving
retrieving other service and coding
services scheme meta data

Methods retrieving
discrete node sets
and graphs
from coding schemes

LexEVS Services and Components

Interface Link

LexBIGService

CodedNodeGraph

CodedNodeSet

LexBIGServiceManager

LexBIGServiceMetadata
LexEVSAuthoringService

Value Set, Asserted
Value Set, and Pick List
Services

Description

This interface represents the core interface to a LexEVS service and acts as an entry point to other API components
and services

A virtual graph where the edges represent associations and the nodes represent concept codes. A CodedNodeGraph
describes a graph that can be combined with other graphs, queried or resolved into an actual graph rendering.

A coded node set represents a flat list of coded entries.

The service manager provides a single write and update access point for all of a service's content. The service manager
allows new coding schemes to be validated and loaded, existing coding schemes to be retired and removed and the
status of various coding schemes to be updated and changed.

Interface to perform system-wide query over optionally loaded metadata for loaded code systems and providers.
Authoring service interface for creating Mappings and Coding Scheme relationships

The LexBIGService interface is not an entry point for Value Sets and Pick Lists. For details, see the Value Set and Pick
List Services section of this guide.

JavaDocs for the LexEVS Service Interfaces

Service Extensions

Provides registration and lookup for pluggable system features.

https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+LexBIGService+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+CodedNodeGraph+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+CodedNodeSet+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+LexBIGServiceManager+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+LexBIGServiceMetadata+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+LexEVSAuthoringService
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Value+Set+and+Pick+List+Definition+Guide
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Value+Set+and+Pick+List+Definition+Guide
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Value+Set+and+Pick+List+Definition+Guide
http://informatics.mayo.edu/LexGrid/downloads/LexEVS_60_JavaDocs/runtime_javadoc/org/LexGrid/LexBIG/LexBIGService/package-summary.html

Interface Link

Extendable

ExtensionRegistry

Description

Marks a class as an extension to the LexEVS application programming interface. This allows for centralized registration, lookup,
and access to defined functions.

Allows registration and lookup of implementers for extensible pieces of the LexEVS architecture.

Javadocs for LexEVS Extensions

Query Extensions

Query extensions provide the ability to further constrain or manage query results. For details on the LexEVS 6.0 Query Extension, see the document
section Query Services Extension.

Interface Description

Link

Eilter Allows for additional filtering of query results.

Sort Allows for unique sorting of query results. This interface provides a comparator to evaluate order of any two given items from the
result set.

Search Allows for unique search of query results.

Javadocs for LexEVS Query Extensions

Load Extensions

Load extensions are responsible for the validation and import of content to the LexEVS repository. Vocabularies may be imported from a variety of formats
including LexGrid canonical XML, NCI Thesaurus (OWL), and NCI MetaThesaurus (UMLS RRF). For details on LexEVS loaders and the Loader
Framework, see the Loader Guide.

The following are the components of interest:

Interface Link
Loader
LexGrid Loader

NCI Metathesaurus
Loader

OBO Loader
OWL Loader
OWL2 Loader

Text Loader

UMLS Loader
MetaData Loader
NCIHistoryLoader
OBOHistoryLoader
MrMapLoader
ClaML Loader

Radlex Protege
Frames Loader

Description

The loader interface validates and/or loads content for a service.
Validates and/or loads content provided in the LexGrid canonical XML format.

Validates and/or loads the complete NCI MetaThesaurus. Content is supplied in RRF format. Note: To load individual coding
schemes, consider using the UMLS_Loader as an alternative.

Validates and/or loads content provided in Open Biomedical Ontologies (OBO) text format.
Validates and/or loads content provided in Web Ontology Language (OWL) XML format.
Validates and/or loads content provided by the latest OWL standard and as interpreted by the OWL API.

A loader for delimited text type files. Text files come in one of two formats: indented code/designation pair or indented code
/designation/description triples.

Load one or more coding schemes from UMLS RRF format stored in a SQL database.

Validates and/or loads content provided in metadata xml format. The only requirement of the xml file is that it be a valid xml file
A loader that takes the delimited NCI history file and applies it to a coding scheme.

Load an OBO change history file.

Load mappings between coding schemes from UMLS formatted MRMAP.RRF and MRSAT.RRF files.

Loads representations sourced in the Classification Markup Language such as ICD-10 (No longer supported)

Loads the Radlex terminology from a Protege Frames formatted source. (No longer supported)

Javadocs for LexEVS Load Extensions

https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Extendable+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+ExtensionRegistry+Interface
http://informatics.mayo.edu/LexGrid/downloads/LexEVS_60_JavaDocs/runtime_javadoc/org/LexGrid/LexBIG/Extensions/package-summary.html
https://wiki.nci.nih.gov/display/LexEVS/5+-+LexEVS+6.x+Query+Service+Extension
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Filter+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Sort+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Search+Interface
http://informatics.mayo.edu/LexGrid/downloads/LexEVS_60_JavaDocs/runtime_javadoc/org/LexGrid/LexBIG/Extensions/Query/package-summary.html
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Loader+Guide
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Loader+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+LexGrid+Loader+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+MetaBatchLoader+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+MetaBatchLoader+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+OBO+Loader+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+OWL+Loader+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Text+Loader+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+UMLSBatchLoader+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+MetaDataLoader+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+NCIHistoryLoader+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+OBOHistoryLoader+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+MrMapLoader+Interface
https://wiki.nci.nih.gov/pages/viewpage.action?pageId=62427320
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+RadlexProtegeFrames+Loader+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+RadlexProtegeFrames+Loader+Interface
http://informatics.mayo.edu/LexGrid/downloads/LexEVS_60_JavaDocs/runtime_javadoc/org/LexGrid/LexBIG/Extensions/Load/package-summary.html

Loader Construction

While not specifically developed as an APl loader interfaces for the LexEVS API exist new loaders are regularly written. Some unsupported, community-
contributed loaders have been created such as those for RXNORM and NDFRT content.

We provide instructions for creating loaders of your own and include a framework for loaders that can be written using Spring Batch.

LexEVS 6.x Loader Implementation

Loader Frame Work

Export Extensions

Export extensions are responsible for the export of content from the LexXEVS repository to other representative vocabulary formats.

Interface Link
Exporter
LexGrid_Exporter
OBO Exporter

OWL Exporter

Description

Defines a class of object used to export content from the underlying LexGrid repository to another repository or file format.
Exports content to LexGrid canonical XML format.
Exports content to OBO text format.

Exports content to OWL XML format.

Javadocs for LexEVS Export Extensions

Index Extensions

Index extensions are built to optimize the finding, sorting and matching of query results. It is the responsibility of the loader to properly interpret each index
it services by name, version, and provider.

Interface Description
Link
Index Identifies expected behavior and an associated loader to build and maintain a named index. Note that a single loader may be used to

maintain multiple named indexes.

IndexLoader = Manages registered index extensions. A single loader may be used to create and maintain multiple indexes over one or more coding
schemes.

Javadocs for LexEVS Index Exensions

Generic Extensions

Generic extensions provides a mechanism to register application-specific extensions for reference and reuse.

Interface Link

GenericExtension

Description

The generic extension class. Classes that implement this class are accessible via the LexBIGService
interface.

LexBIGServiceConvenienceMethods @ Convenience methods to be implemented as a generic extension of the LexEVS API.

MappingExtension

A grouping of Mapping Coding Scheme related functionality.

SupplementExtension A grouping of Coding Scheme Supplement related functionality.

Javadocs for LexEVS Generic Extensions

Utilities

Defines helper classes externalized by the LexEVS API.

Convenience Classes

https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Loader+Implementation
https://wiki.nci.nih.gov/display/LexEVS/3+-+LexEVS+6.x+Loader+Framework
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Exporter+interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+LexGrid+Exporter+interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+OBO+Exporter+interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+OWL+Exporter+interface
http://informatics.mayo.edu/LexGrid/downloads/LexEVS_60_JavaDocs/runtime_javadoc/org/LexGrid/LexBIG/Extensions/Export/package-summary.html
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Index+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+IndexLoader+Interface
http://informatics.mayo.edu/LexGrid/downloads/LexEVS_60_JavaDocs/runtime_javadoc/org/LexGrid/LexBIG/Extensions/Index/package-summary.html
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Generic+Extensions+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+LexBIG+ServiceConvenienceMethods+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+MappingExtension+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+SupplementExtension+Interface
http://informatics.mayo.edu/LexGrid/downloads/LexEVS_60_JavaDocs/runtime_javadoc/org/LexGrid/LexBIG/Extensions/Generic/package-summary.html

@ Note

It is highly recommended that all LexEVS programmers familiarize themselves with the classes contained in the or g. LexGri d. LexBI G
Utility package.

Many useful features are provided in an effort to increase approachability of the APl and assist the programmer in common tasks. This package currently
contains the following classes:

Interface Link Description

Constructors Helper class to ease creating common objects.

ConvenienceMethods @ One-stop shopping for convenience methods that have been implemented against the LexEVS API.

LBConstants Provides constants for use in the LexEVS API.

ObjectToString Provides centralized formatting of LexEVS Objects to String representations.
ServiceUtility Provides utility methods for the LexEVS services.

VSObjectToString Provides centralized formatting of LexEVS Value Set Object to String representations.

Javadocs for LexEVS Utility Classes

Iterators

Iterators are used to provide controlled resolution of query results.
Interface Link Description
EntityListlterator Generic interface for flexible resolution of LexEVS objects

ResolvedConceptReferenceslterator | An iterator for retrieving resolved coding scheme references.

Javadocs for LexEVS lterator classes

Search Algorithms - Supported LexEVS Search Algorithms

Lucene Based Algorithms

See the Lucene Query Parser documentation for more information on these Lucene query expressions.

Nane: LuceneQuery
Version: 1.0
Description: Search with the Lucene query syntax.

Nane: Doubl eMet aphoneLuceneQuery

Version: 1.0
Description: Search with the Lucene query syntax, using a 'sounds |ike' algorithm
A search for "atack' will get a hit on '"attack'

Nanme: StemmedLuceneQuery

Version: 1.0
Description: Search with the Lucene query syntax, using stenmed terns.
A search for 'trees' will get a hit on 'tree'

https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Constructors+Class
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+ConvenienceMethods
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Constants
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+ObjectToString
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+ServiceUtility
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Value+Set+Object+to+String
http://informatics.mayo.edu/LexGrid/downloads/LexEVS_60_JavaDocs/runtime_javadoc/org/LexGrid/LexBIG/Utility/package-summary.html
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Entity+List+Iterator+Interface
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+ResolvedConceptReferencesIterator+Interface
http://informatics.mayo.edu/LexGrid/downloads/LexEVS_60_JavaDocs/runtime_javadoc/org/LexGrid/LexBIG/Utility/Iterators/package-summary.html
http://lucene.apache.org/java/3_5_0/queryparsersyntax.html

Nane: startsWth

Version: 1.0
Description: Equivalent to 'ternt' (case insensitive)

Nane: exact Mat ch

Version: 1.0
Description: Exact match (case insensitive)

Nanme: contains

Version: 1.0
Description: Equivalent to '* ternf *' - in other words - a trailing wildcard on a term
(but no leading wild card) and the termcan appear at any position.

Apache Regular Expressions

Nanme: RegExp

Version: 1.0

Description: A Regul ar Expression query. Searches against the |owercased text, so a
regul ar expression that specifies an uppercase character will never return a natch.
Additionally, this searches against the entire string as a single token, rather than
the tokenized string - so wite your regul ar expression accordingly.

Supported syntax i s docurmented here:

http://jakarta. apache. or g/ regexp/ api docs/ or g/ apache/ r egexp/ RE. ht m

Custom Extensions

The following custom extensions include adaptations of Lucene searches with characters normally stripped by Lucene (Literals).

Nane: phrase

Description: Searches for a Phrase in text.

Base O ass: org.LexGid. LexBl G Extensions. Query. Search

Extension O ass: org.LexGid.LexBlI G | npl.Extensions. Search. PhraseSearch
Version: 1.0

Nane: Leadi ngAndTrailingW | dcard

Description: Equivalent to '*ternt'.

Base O ass: org.LexGrid. LexBl G Ext ensi ons. Query. Sear ch

Extension O ass: org.LexGid.LexBlI G | npl.Extensions. Search. Leadi ngAndTrai |l i ngW | dcar dSear ch
Version: 1.0

Nanme: subString

Description: Search based on a "*sone sub-string here*". Functions nmuch like the Java String.indexCf method.
Base O ass: org.LexGrid. LexBl G Ext ensi ons. Query. Sear ch

Extension O ass: org.LexGid.LexBlI G | npl.Extensions. Search. SubSt ri ngSearch

Version: 1.0

Nanme: Spel | i ngErrorTol erant SubStringSearch

Description: Adds Spelling-error tolerance to 'subString' search.

Base O ass: org.LexGid. LexBl G Extensions. Query. Search

Extension O ass: org.LexGid.LexBlI G | npl.Extensions. Search. Spel | i ngError Tol er ant SubSt ri ngSear ch
Version: 1.0

Nane: |iteral Contains

Description: Equivalent to '* ternmt *' - in other words - a trailing wildcard on a term (

but no leading wild card) and the termcan appear at any position. Includes special characters.
Base O ass: org.LexGrid. LexBl G Ext ensi ons. Query. Sear ch

Extension O ass: org.LexGid.LexBlI G | npl.Extensions. Search. Li teral Contai nsSear ch

Version: 1.0

Nanme: nonLeadi ngW | dcardLi teral SubStri ng

Description: Search based on a "*sonme sub-string here*". Functions nuch |ike the

Java String.indexOF nethod. Singe termsearches will nmatch '*termi and 'ternt' butnot '*ternr'.
This is because leading w ldcards are very inefficient. Special characters are included.

Base O ass: org.LexGrid. LexBl G Ext ensi ons. Query. Sear ch

Extension O ass: org.LexGid.LexBlI G |Inpl.Extensions. Search. NonLeadi ngW | dcar dLi t eral SubSt ri ngSear ch
Version: 1.0

Nane: literal

Description: Al special characters are taken literally.

Base O ass: org.LexGrid. LexBl G Ext ensi ons. Query. Sear ch

Extension O ass: org.LexGid.LexBlI G Inpl.Extensions. Search. Literal Search
Version: 1.0

Code Examples

Concept Resolution

Programmers access coded concepts by acquiring first a node set or graph. After specifying optional restrictions, the nodes in this set or graph can be
resolved as a list of Concept Ref er ence objects which in turn contain references to one or more Entity objects. The following example provides a simple
query of concept codes:

Java Code Snippet

/1 Create a basic service object for data retrieval
LexBl GServi cel npl | bs = LexBlI GServi cel npl . defaul t1nstance();

/Il Create a list of unique references (concept codes) for this coding schene.

/| Paraneters:

11 A String array initialized with a single concept code

11 The nane of the target Codi ng Schene.

Concept Ref erencelLi st crefs = Conveni enceMet hods. cr eat eConcept Ref er enceLi st (
new String[], SAMPLE SCHEME);

// Initialize a coding scheme version object the version of the
/1 sanpl e schene.

Codi ngScheneVer si onOr Tag csvt = new Codi ngScheneVer si onOr Tag() ;
csvt. set Versi on(VERSI ON) ;

/1 Initialize a CodedNodeSet Object with all possible concepts in our sanple coding
/1 schene, then restrict the node set to a single node using restrictToCodes(crefs)
CodedNodeSet nodes = | bs. get Codi ngSchenmeConcept s(SAMPLE_SCHEME, csvt).

restrict ToCodes(crefs);

/1 Build a potential list of references fromthe current (and already restricted) set
/1 and restrict themto the single property name "textual Presentation" and
/1 allowthe list a size of 1.
Resol vedConcept Ref er enceLi st mat ches = nodes. resol veToLi st (
nul |, Conveni enceMet hods. cr eat eLocal NaneLi st ("textual Presentation"), null, 1);

/1 Check the list size to see if any references are returned. If true
/1 get the only referenced entity in the list and print out it's "presentation"
/1 or textual representation.
i f (mat ches. get Resol vedConcept Ref er enceCount () > 0)
{

Resol vedConcept Ref erence ref = (Resol vedConcept Ref er ence) mat ches.

enuner at eResol vedConcept Ref erence() . next El enent () ;
Entity entry = ref.getReferencedEntry();
System out. println("Mtching Name: " +
entry. getPresentation(0).getValue().getContent());

Service Metadata Retrieval

The LexEVS system maintains service metadata which can provide client programs with information about code system content and assigned copyright
llicensing information. Below is an brief example showing how to access and print some of this metadata:

Java Code Snippet

/1 W can get a Codi ngScheneRenderi ngLi st object directly from LexBi gService
LexBI GService | bs = LexBl GServi cel npl . defaul t1nstance();
Codi ngSchenmeRender i ngLi st scheneLi st = | bs. get Support edCodi ngSchemes();

for (Codi ngSchemeRendering csr : scheneLi st. get Codi ngSchemeRendering())

{
Codi ngSchemeSummary css = csr. get Codi ngScheneSunmary();

/1 Print separator then details fromthe Codi ngScheneSunmary
System out . println(" ")
System out. println(CbjectToString.toString(css));

/1 Set up a coding schene reference to resolve Copyri ght
String urn = css. get Codi ngScheneURI () ;
String version = css. get RepresentsVersion();
Codi ngScheneVer si onOr Tag csVorT =
Constructors. creat eCodi ngScheneVer si onOr TagFr onVer si on(ver si on) ;
Codi ngSchenme cs = | bs. resol veCodi ngSchenme(urn, csVorT);
Systemout. println("Copyright: " +cs.getCopyright().getContent());

/Il Get the final details fromthe RenderingDetail
RenderingDetail rd = csr.getRenderingDetail();
System out. println(CbjectToString.toString(rd));
Systemout.printin();

Combinatorial Queries

One of the most powerful features of the LexEVS architecture is the ability to define multiple search and sort criteria without intermediate retrieval of data
from the LexEVS service. Consider the following code snippet:

Java Code Snippet

System out . println("Exanpl e double restriction query with additional "
+"application of sort criteria and restricted return values.");
/| Declare the service...
LexBl GServi cel npl | bs = LexBl GServi cel npl. defaul tlnstance();

/1 Start with an unconstrained set of all codes for the vocabul ary
Codi ngScheneVer si onOr Tag csvt = new Codi ngScheneVer si onOr Tag() ;

csvt . set Ver si on(VERSI O\2) ;

CodedNodeSet cns = | bs. get Codi ngScheneConcept s(SAMPLE_SCHEME2, csvt);

// Constrain to concepts with designations (assigned text presentations
/1 that contain text that sounds |ike 'Short Saphenous Vein'
cns = cns.restrict ToMat chi ngDesi gnati ons(
"Short Safinus Vane",
Sear chDesi gnati onOpti on. ALL,
Mat chAl gori t hns. Doubl eMet aphoneLuceneQuery. toString(),
null);

/1 Further restrict the results to concepts with a semantic type of
/1 ' Anatomical Structure'
cns = cns.restrict ToMat chi ngProperties(

Constructors. createLocal NaneLi st (" Semantic_Type"),

null, "Anatom cal Structure",
"exact Mat ch",
null);

/1 Indicate that the resulting list should be sorted with the best

Il results first and then sorted by code if there is a tie.

Sort OptionList sortCriteria = Constructors. createSortOptionList(
new String[] {"matchToQuery", "code"});

/1 Indicate to return only the assigned UML.S_CU and

/'l textual Presentation properties.

Local NareLi st restrict To =Conveni enceMet hods. cr eat eLocal NameLi st (
new String[] {"UMLS_CU ", "textual Presentation"});

/1 Still nothing conmputed yet.

/1 Performthe query && resolve the sorted/filtered list with a
/1 maxi mum of 6 itens returned.

Resol vedConcept Ref erenceLi st |ist = cns.resol veToLi st (

sortCriteria, restrictTo, null, 6);
/1 Print the results
Resol vedConcept Ref erence[] rcr = |ist.getResol vedConcept Ref erence();
for (Resol vedConcept Reference rc : rcr)
{
System out. println("Resol ved Concept: " + rc.getConcept Code());
}

The example above shows a simple yet powerful query to search a code system based on a 'sounds like' match algorithm (the list of all available match
algorithms can be listed using the 'ListExtensions -m' admin script).

Declaring the Target Concept Space
The coded node set (variable ‘cns') is initially declared to query the NCI Thesaurus vocabulary. At this point the concept space included by the set can be

thought of as unrestricted, addressing every defined coded entry (the 'false' value on the declaration indicates to also include inactive concepts). However,
it important to note that no search is performed by the LexEVS service at this time.

Applying Filter Criteria
Similarly, no computation is performed (to realize query results) during invocation of the r est ri ct ToMat chi ngDesi gnati ons() andrestri ct ToMatc

hi ngProperties() methods. However, these calls effectively narrow the target space even further, indicating that filters should be applied to the
information returned by the LexEVS query service.

Using the Lucene Query Syntax and Other Text Matching Functions

The text criteria applied in methods such as restrictToMatchingDesignations() uses one of a number of powerful text processing applications to provide the
user with broad capability for text based searches. Text matches can be simple applications of exactMatch, startsWith or contains algorithms as well as
powerful regular expressions and Lucene Query syntax (used in the LuceneQuery function.) As shown above these options are passed into the
restrictToMatchingDesignations() Method as parameters.

Lucene Queries are well documented and can be very powerful. The uninitiated user may need some background on their use however. The user should
start here with the official Lucene Query Parser documentation

Keep in mind that some LexEVS queries such as "startsWith" and "contains" use wild card searches under the covers, so that use of wild cards in this
context can cause errors in searches involving these search types.

Instead it is best to use the flexibility of the Lucene Query searches in the matchingDesignation by using the Lucene Query searches in LexEVS where
most searches will work much as described in the query syntax documentation.

Special characters in the Lucene Query search can cause unexpected results. If you are not using special characters as recommended for various Lucene
search mechanisms then your searches may not return expected results or may return an error. If the value you are searching upon contains say,
parenthesis, we recommend using literal search mechanisms such as the following:

® literalContains
® Jiteral
® literalSubString

Additionally, you should not expect to see a Lucene Query narrow down search results as you progressively enter a longer substring more closely
matching your term of interest. Instead use the contains method.
Applying Sorting Criteria

Multiple sort algorithms can be applied to control the order of items returned. In this case, we indicate that results are to be sorted based on primary and
secondary criteria. The "matchToQuery" algorithm indicates to sort the result according to best match as determined by the search engine. The "code"
item indicates to perform a secondary sort based on concept code.

(D Note

the list of all available sort algorithms can be listed using the 'ListExtensions -s' admin script.

Restricting the Information Returned for Matching Items

The LexEVS API also allows the programmer to restrict the values returned for each matching concept. In this example, we chose to return only the UMLS
CUI and assigned text presentations.

Retrieving the Result

A query is finally performed during the 'resolve’ step, with results returned to the declared list. It is at this point that the LexEVS service does the heavy
lifting. By declaring the full extent of the request up front (nhamespace, match criteria, sort criteria, and returned values), the service then has the
opportunity to optimize the query path. In addition, in this example we restrict the number of items returned to a maximum of 6. This combined approach
has the benefit of reducing server-side processing while minimizing the volume and frequency of traffic between the client program and the LexEVS
service.

@ Note

While this section provides one example of combining criteria, this same pattern can be applied to many of the CodedNodeSet and CodedNode
Gr aph operations. It is strongly recommended that programmers familiarize themselves with this programming model and its application.

Additional Resources

® LexEVS 6.0 Local Runtime API javadocs
® LexEVS 6.x Local Runtime Installation Directory Guide

LexEVS GUI

The LexEVS Graphical User Interface, or GUI, is an optional component of the LexEVS install which will be in the /gui folder of the base LexEVS
installation (see file breakdown in LexEVS 6.x Local Runtime Installation Directory Guide). The GUI is meant to provide a simple tool to test LexEVS API
methods and quickly view the results; almost all public methods defined by the LexEVS API are supported. This guide provides a brief overview of how the
GUI can aid programmers in writing code to the LexEVS API.

@ Note

The LexEVS GUI supports both administrative and test functions. Please refer to the LexEVS Administratration Guide for instructions on using
the GUI as an administration tool.

http://lucene.apache.org/java/3_5_0/queryparsersyntax.html
http://informatics.mayo.edu/LexGrid/downloads/LexEVS_60_JavaDocs/runtime_javadoc/
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Local+Runtime+Installation+Directory+Guide
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Local+Runtime+Installation+Directory+Guide
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Administration+Guide

Launching the GUI

Depending on the operating systems that you selected at installation time, you should have one or more of the following programs in the / gui folder:

Li nux_64-1bGUl . sh Li nux-1 bGU . sh
OSX- | bGUI . command W ndows- | bGUI . bat

Launch the GUI by executing the appropriate script for your platform. Opening the GUI for the first time you'll find no terminologies loaded unless you have
run shell scripts to do so already. Instructions in the LexEVS Administration Guide will provide you with the instructions needed to load terminologies using
the GUL.

A terminology service with loaded content will look something like this:

Lol

Commands Load Tetminalogy Export Terminclogy. Help

Awailable Code Systems

Code System Mame | Code System Yersion I LRI I Tag I Skatus I Last Update Time Get Code Set |
iThesaurus.owl 05,09, byt http: ifncich. nci.nib gove fmlfowlfE. . inactive 5:31:35 AMon 10/12)Z

MNCI Thesaurus 10.07e httpe ffncich. nci. nib. gose fxmlfowlfE. . active 10:41:17 &M on 09)20; &et Code Graph |
MNCI Thesaurus 10.10a htkp: ifncich.nci.nib. govfxmljowlfE. .. | PRODUCTION active 8:11:07 AM on 10/14)Z

Zebrafish 1.2_June_14_2010 http: ffncich. nci.nib. gos fxminsfzeb. .. active 1:17:29 PM on 09/26)2 et Hiskary |
Manoparticle Ontalogy 1.0_Jan_29_2010 Rkt ffpurl. bioontlogy, argiontalag. .. active D46:21 AMon 100212

fungal_anatommy UIMASSIGHED urn:lsid:bioontology . org:fungal _a... active 10:17:08 AM on 10/04) Refresh |
Gene Cntalogy Ockober2010 urn:lsid:bioontalogy, orgiGO PRODUCTION | active [T 1 T T T e e —
aukos 1.0 urmoidi11,11.0.1 PRODUCTION | inactive 10:10:41 AM on 10/04) el e |
Automobiles Extension 1.0-extension urmaid:11.11.0.1. 1 -extension inactive 7:53:49 AM on 10415/2 _

NI Metathesaurus 200601 urn;oid: 2, 16.840,1.113883.3.26.1.2 active 10:51:33 AM on 09/21) Change Tag |
Logical Observation Iden... 229 urn:oid: 2, 16.840.1.113883.6.1 PRODUCTION | active 6:58:30 AM on 09/20/2 : .
Logical Observation Iden... 226 urnioid:2, 16.840,1,113383.6.1 inactive 12607 PM on 092712 AT |
Current Procedural Termi... 2010 urnioid: 2, 16.840,1,113883.6.12 active 1:08:15 PM on 10/06)2

Medical Dictionary for Re... 12,0 urmioidi2, 16.540,1,113583.6.163 active 2532 AM on 09242 Dradiinate |
ICD 9 oM 1.0 urnioid:2, 16.840,1,113883.6.2 active 1:06:36 PM on 10/06)2

SMOMED Clinical Terms, ... 2010_01_31 urmoid:2, 16,840,1,1135883.6.96 active 6:05:03 PM on 09/15)2 Femave |
SNOMEDCT_2010_01_3... 20100131 urn:oid: C2733618, SNOMEDCT.IC.,, active 6:11:09 AM on 10/25/2
MDR:MDR12 1 To ICD... 200909 urmaid: CL4H 3320, MOR, ICDACM ackive 1:32:43 PM on 10/14)2 Remove History |
MDR:MDR12_1_To CST.., 200909 urn;oid:CL413321,MDR.CST active 1:32:01 PMon 10/14/2

MCIE bo ICDACM Mapping 1.0 urneoid:MCIE_ko_TCD9CM_Mapping active 1:03:55 PM on 10/06)2 e e |

Rebuild Index |

Selected CodedModeSets and CodedModeGraphs Restrictions

Umian |
fidd

Intersecton |
Edit

Difference |

Remmye

Restrick ko Codes |
Rstibo Source Codes |
Fistto Target Codes |

Remoye |
LgExport |

H&

‘You must choose a single Code Set or Graph on the left.

Overview

The top bar contains Administrative function drop down menus. The top right side bar with buttons has first query selection buttons and next administration
functions. Just under these menus is a table of the current terminology set for this service. The left and right lower sections provide function for
manipulating code sets and graphs. The lower left section displays the current set or graph sets on which Boolean logic, restriction and resolution functions
can be performed. Code set and graph results can be restricted and tailored to the users needs on the lower right.

https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Administration+Guide

@ Note

The drop down menu options on the top bar are primarily used for administrative functions, like terminology loads, and are covered in detail by
the LexEVS Administration Guide .

Creating New Queries
There are four buttons on the right top side that are of interest for creating queries.

® Refresh - This button causes the LexEVS GUI to reread the available terminologies and their respective metadata. This can be useful when
using the GUI to view a LexEVS environment that is being modified by another process.

® Get History - If a terminology with available history data is selected, this button opens a history browser to view it via the NCI history API. This
option is currently only applicable when working with the NCI Thesaurus terminology.

® Get Code Set -This button causes the selected terminology to be added to the lower left section of the GUI as a code set - which is noted by a
'CS' prefix.

® Get Code Graph -This button causes the selected terminology to be added to the lower left section of the GUI as a code graph - which is noted
by a 'CG' prefix.

Customizing Queries

After selecting a code system and clicking on Get Code Set or Get Code Graph, a row will be added to the lower left section of the GUI for each click.
There are seven buttons in the lower left section that allow combinatorial logic between the code sets in the lower left.

® Union - This button is enabled if two Code Sets or two Code Graphs are selected in the lower left. Clicking the button creates a new virtual Code
Set or Code Graph which represents the Boolean union of the two selected items. All restrictions applied to the individual items still apply.

® Intersection - This button is enabled if two Code Sets or two Code Graphs are selected in the lower left. Clicking the button creates a new virtual
Code Set or Code Graph which represents the Boolean intersection of the two selected items. All restrictions applied to the individual items still
apply.

® Difference - This button is enabled if two Code Sets or two Code Graphs are selected in the lower left. Clicking the button creates a new virtual
Code Set which represents the Boolean difference of the two selected Code Sets. All restrictions applied to the individual items still apply.

® Restrict to Codes - This button is enabled if a Code Set and a Code Graph are selected in the lower left. Clicking the button creates a new
virtual Code Graph which will be restricted to concept codes occurring in the selected Code Set.

® Restrict to Source Codes - This button is enabled if a Code Set and a Code Graph are selected in the lower left. Clicking the button creates a
new virtual Code Graph which will have its source codes restricted to codes occurring in the selected Code Set.

® Restrict to Target Codes - This button is enabled if a Code Set and a Code Graph are selected in the lower left. Clicking the button creates a
new virtual Code Graph which will have its target codes restricted to codes occurring in the selected Code Set.

® Remove - This button is enabled if any Code Set or Code Graph (or virtual Code Set or Code Graph) is selected in the lower left. Clicking the
button will remove the selected item from the list.

The lower right section of the GUI is used to apply restrictions to Code Sets or Code Graphs, and set the variables that need to be passed into the resolve
method.

Working with Code Sets

If a Code Set is selected in the lower left, then the lower right section will look like this:

https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Administration+Guide

ML SEER, 1L NEOPIST 008 ., | L9 UFMEOIg: 2, L 54U, L, INaceive T T o ——
MCI_Thesaurus 03.12a urnioid:2,16.840,1... PRODUCTION active 10:36:35 AM on 10
SMODEMT 2000 SMODENT ackive 10:15:21 &M on 0f

Deachivate

Remaove |
Hemove Histors: |
‘J | -ﬂ Rebuild Index |

Selected CodedModeSets and CodedModeGraphs Restrictions

Automabiles 1.0 Coded Mode Sek 0 - Automobiles 1,0
Urier |
Intersection |

- Edit
Difference |
Remaove |

Hestrick bo Godes

[only Include Active Codes

Est ko Source Eodes I
st bo Target Codes |

Remove |

Set Sort Options | Resclve Code Set

In the lower right section, there are two halves - the top half and the bottom half. The top half is used to apply restrictions. The bottom half provides query
options and resolution.

® Add - This button introduces a new restriction to the Coded Node Set. Clicking it will bring up the following dialog box for creating restrictions:
Bl Configure Restriction

Restriction Tvpe =

Match Text I

Match Algorithm ILuceneQuery j

Match Language I j
Preferred Only [

Ok Zancel

The top drop down list indicates the type of restriction to add. The rest of the dialog box will change depending on the type of restriction selected. All
required parameters for the selected restriction type will be presented.

Edit - This button is enabled when a restriction is selected. Clicking it allows revision of an existing restriction.

Remove -This button is enabled when a restriction is selected. Clicking it removes the selected restriction.

Only Include Active Codes - This check box indicates whether or not to include inactive codes when resolving the s elected code set.
Set Sort Options - This button will bring up a dialog box to choose the desired sort order of the results.

Resolve Code Set - This button will bring up a result window where the Code Set will be resolved and displayed.

Working with Code Graphs

If you select a Coded Node Graph in the lower left section of the LexEVS GUI, the lower right section will look like this:

L«

Remtyve History, |
| ﬂ Rehiild Trides |

Selected CodedModeSets and CodedModeGraphs Restrictions

0 (C5) - Aukornobiles 1.0 Coded Mode Graph 1 - Automobiles 1.0
- \dmion I

add
Inkersection |
= Eddlt: |
Cifkerence I

Remove |
Restrct kol Codes |
oo o] | peiston conconer I |

Estto Target Codes Forus Code |

Focus Code System I ﬂ
Remove | Max Resclve Depth [-1 IV Resolve Forward [Resolve Backward

Set Sort Options | Resolve as Set | Resolve as Graph |

Again, there are two halves to the lower right section. The top half allows restrictions to be applied to the selected Code Graph, and it works the same as it
does for a Coded Node Set. Please see the section above on applying restrictions to a Coded Node Set.

The lower half provides additional variables applicable when resolving a Coded Node Graph. For further explanation of these options, refer to the LexEVS
API documentation.

Relation Container (Optional) - Indicates the CodingScheme Relations container to query. The drop down list is populated with allowable
selections.

Focus Code (Optional) - Provides the code used as a starting point when resolving graph relations. This value is required for some queries,
depending on the nature of requested associations.

Focus Code System (Optional) - Indicates the code system containing the Focus Code. The drop down list is populated with allowable selections.
Max Resolve Depth - How many levels deep should the graph be resolved? -1 is the default, which does not limit the depth.

Resolve Forward - Populate codes downstream from the focus node (based on directionality defined by each association).

Resolve Backward - Populate codes upstream from the focus node (based on directionality defined by each association).

Set Sort Options - This button will bring up a dialog box to choose the desired sort order of the results.

Resolve As Set - Resolves and displays the graph results as a coded node set.

Resolve As Graph -Resolves and displays the graph results.

Viewing Query Results

Clicking on the Resolve buttons for either a Coded Node Set or a Coded Node Graph will bring up the Result Browser window:

BB Result Browser [_ O]

0001 - T oding Scheme: Automobiles - urneoid: 11.11.0.1 ;I

Ford - Fard Makar Company oncept Code: TOOO1
005 - Domestic Auto Makers ntity Description: Truck
73 - Cldsmobile tatus: 65

Z0001 - Car s Active: frue

A0001 - Aukomobile First Yersion: true

GM - General Motors 1 ast Yersion: true

Jaguar - Jaguar Presentation t1: Truck
Chewy - Chewrolet Is Preferred: true

Language: en
Match If Mo Context: true

TOOO1 ADD01
Truck L ALtomobile

The left side shows a list of all the concept codes returned. When a concept code is selected on the left, the upper right will show a full description of the
selected code. The lower right will show a graph view of the neighboring concepts.

When a Coded Node Graph is resolved, the result viewing window will look like this (this is the same Code System as above):

B Result Browser [_ O]

A0001 - Automobile]
TOOO1 - Truck,

a0t - Car

Brakes -

Tires -

Batteries -

005 - Domeskic Auto Makers
Ford - Ford Mokor Company j
Jaguar - Jaguar

GM - General Motars

73 - Dldsmobile

Chewy - Chewrolet

TOOO1
Trucl:
COoo1
Pt Subiyee, Car
AD001 PR Brales
Automobile ey
= Tires
S ity s
top-thing Batteries
T Ford
003 sanme FOrd Motor Company
Domestic Auto Makers ... GM

General Motors

The left side still has a list of all of the concepts in the graph. The upper right will give a description of the selected concept. The lower right shows the
entire graph.

The lower right section is adjustable, and dynamic. It responds to mouse clicks, dragging, and numerous key combinations. Beyond a depth of 3, the graph
may "collapse" and not show all of the nodes until you click on a node. Clicking on a node will cause it to expand out and display its children. Here are a
list of key combinations recognized by the graph viewer:

Left Click + Mouse Movement - Drags the view.

Right Click + Mouse Movement Up Or Down - Zooms in or out.
Right Click (on white space) - Zooms the view to fit.

Ctrl + '+' - Expands the graph connection lines

Ctrl + '-' - Contracts the graph connection lines

Ctrl + 1" (or '2' or '3' or '4") - Changes the orientation of the graph.

Value Set Services

For details about LexEVS Value Set Services, see LexEVS Value Set Service.

Pick List Services

For details about LexEVS Pick List Services, see LexEVS Pick List Service.

Asserted Value Set Services

For details about LexEVS Source Asserted Value Set Services, see LexEVS Asserted Value Set Service

https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Value+Set+Service
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Pick+List+Service
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+Asserted+Value+Set+Service

	1 - LexEVS 6.x API

