
Extending the AIM Model
Topics in this guide include:

Abstract
Background and Objectives
AIM Basic Concepts

What is an AIM annotation?
From AIM 3.0 to the AIM Foundation Model

Why Use AIM Statements and Other Enhancements?
Fundamental Changes from AIM 3.0 to the Foundation Model

AIM UML Modeling
How to Create and Use AIM Annotations
Guidelines to the AIM Foundation Model
Extending AIM Foundation Model to AIM 4.0

AIM Library
Using AIM Library
ImageAnnotation
AnnotationOfAnnotation
AIM Library Objects
AIM Library Operations
Environment Configuration
Sample Code

References

 Original Publication Date: November 30, 2013

Abstract

The Annotation and Image Markup (AIM) Foundation information model is an evolution of AIM version 3 revision 11. It has evolved in response to the
feedback and changing demands from the imaging community. Feedback was collected as part of the requirements for improving the foundation model.
The model is described in a Unified Modeling Language (UML) class diagram and used as a base model for other imaging disciplines to extend information
collection not currently captured in the Foundation model. The model captures imaging physical entities and their characteristics, imaging observation
entities and their characteristics, markups (two- and three-dimensional), AIM statements, calculations, image source, inferences, annotation role, task
context or workflow, audit trail, AIM creator, equipment used to create AIM instances, subject demographics, and adjudication observations.
The AIM 4.0 model is an extension of the AIM Foundation model. It has nine additional classes for storing lesion observation information in Radiology and
Oncology.

The objective of this document is to provide information on how the AIM Foundation model can be extended to store the additional information that other
imaging disciplines require.

Executive Summary
The objective of this document is to provide information on how the Annotation and Image Markup (AIM) [1-4] Foundation model can be extended to store
the additional information that other imaging disciplines require. The AIM Foundation information model is an evolution of AIM version 3 revision 11. It has
evolved in response to the feedback and changing demands from the imaging community. Feedback was collected as part of the requirements for
improving the foundation model. The AIM 4.0 model is an extension of the AIM Foundation model. It captures lesion observation information for Radiology
and Oncology.

The AIM standard has demonstrated its usefulness by integrating the descriptive information of an image or images with user-generated graphical symbols
and textual descriptors placed on the image into a single common information source. The AIM information model provides a supporting infrastructure for
creating and collecting image annotations. Annotation of findings and objects of interest in large clinical or research data collections are fully supported in
the model. The AIM project focuses on annotation and markup of any image type. These annotations and image markups are information objects that are
linked to (but separate from) the images. This approach is forward-looking, providing an infrastructure for future extension of the base information model
that will enable future clinical and research projects, such as annotation of pathology and microscopy images, as well as documentation and tracking of
quantitative changes to image features.

The AIM Foundation and AIM 4.0 model are used to express and capture image annotation and markup information relevant to images. They are
described using a Unified Modeling Language (UML) class diagram. An annotation can contain explanatory or descriptive information that is generated by
humans or machines, which directly relates to the content of a referenced image or images. It describes information regarding the meaning of pixel
information in images. Annotations also become a collection of image semantic content that can be used for data mining purposes. An image markup is a
graphical symbol or textual description associated with an image. Markups can be used to depict textual information and regions-of-interest visually
alongside of, or more typically when overlaid upon, an image.

Both models capture imaging physical entities and their characteristics, imaging observation entities and their characteristics, markups (two- and three-
dimensional), AIM statements, calculations, image source, inferences, annotation role, task context or workflow, audit trail, AIM creator, equipment used to
create AIM instances, subject demographics, and adjudication observations. The 4.0 model has nine additional classes for storing lesion observations in
Radiology and Oncology.

The AIM 4.0 model is used to create the AIM library and a validation and transformation tool. The AIM library is written in C++, using DCMTK and Xerces
for DICOM and XML manipulation and creation. The library has two logical components: implementation of the AIM UML model as an object model and
definition of transformations, which can be performed on the AIM object model. The AIM library has a collection of public mutator and accessor methods or
APIs to manipulate and retrieve information in the AIM model. It also has a set of APIs to read, write, and transcode AIM artifacts to and from AIM DICOM
Structured Reporting (SR) [5] objects and AIM XML documents. The ANIVATR tool is a referenced implementation and used for validating AIM
annotations and transcoding between AIM XML documents and DICOM SR objects.

This document provides information about the AIM Foundation model and how the model can be extended to store and support other types of imaging
disciplines.

Background and Objectives

The objective of this project is to provide sufficient information about AIM 4.0 and guidelines for extending AIM foundation model for other imaging domains.

Modern medical images contain vast amounts of information captured in standard DICOM format. While this information may include metadata about the
image, such as how or when the image was acquired, the majority of image information remains in pixel data. This data contains rich content that is neither
explicit nor easily accessible by computer programs. The information about how images are perceived by human or machine observers is not currently
captured in a form that is directly tied to the images in a structured manner. A wealth of data pertaining to image content is thus segregated from the
images, limiting the value of radiologic images for use with other non-imaging data, such as cancer clinical trials.

There is neither widely-adopted standard terminology nor syntax used to capture annotation, markup, and computational descriptions of image features or
non-imaging biomedical data. This results in limited interoperability between imaging and health information system. The majority of the human image
features and descriptions in the biomedical domain are captured only as free text. This free text often has no association with the spatial location of the
feature, making it difficult to relate image features that are described in that text to the corresponding image locations. Free text is also cumbersome, in
both the lay and technical sense, as indexing, querying, and searching it to retrieve images or their features are time-consuming.

Image annotation information is collected in both a clinical setting of commercial information systems and imaging research tools of more flexible and
tailored software provenance. This diversity of systems has led to the development of a variety of technical frameworks and standards. However, we still
need an information model and imaging tools that can be used by imaging interpreters and machine programs to store image findings in a standard format.
Selecting a single standard format to store image annotations will streamline software development, and enable the work to focus on providing rich
annotation features and functionalities. Designing the software library and tools for compatibility with other standards will enable a high degree of
interoperability and allow the incorporation of the annotation standard into commercial and clinical information systems. This has the potential to open
many existing resources and databases of image data and metadata for exploitation by the broader research and clinical radiology community.

AIM was created to deliver an information model and tools that will allow both human and computer programs to create annotations in a standard format
that is syntactically and semantically interoperable with the informatics infrastructure of National Cancer Informatics Program (NCIP), using the DICOM [6]
and HL7 healthcare standards.

The AIM model has to date undergone several major revisions. After the AIM 3.0 model [2] was released and used by image researchers, new
requirements emerged, as follows: 1) use ISO 21090 data type; 2) explicitly declare association relationships between AIM major or entity type classes via
AIM statements; 3) store three-dimensional markup; 4) store compact calculation results; 5) add the ability to declare task context or workflow; 6) store
more than one image annotation or annotation of annotation in a single AIM instance; 7) store a question as a coded term in AIM entity classes; 8) store a
unique reference for other types of DICOM objects; 9) improve storing for references for image reference class; 10) store DICOM general image and
image plane information; 11) store a unique reference for DICOM segmentation objects; and 12) store information about adjudication observations.

The AIM Foundation model was created to respond to the above requirements. The model had been designed for extensibility by other image researchers
to capture information not available in the Foundation model. The AIM 4.0 model is an extension model from the Foundation model. It stores lesion
observation information for radiology and oncology.

AIM Basic Concepts

An can be explanatory or descriptive information, generated by humans or machines, directly related to the content of a referenced image annotation
image or images. It describes information about the meaning of pixel information in images. Annotations become a collection of image semantic content
that can be used for data mining purposes. An is a graphical symbol or textual description associated with an image. Markups can be used image markup
to visually depict textual information and the region-of-interest next to an image.

AIM provides a standard way to store annotation information in a structured manner with standard terminology such as RadLex, SONMED CT, etc.
Searching the majority of AIM data can be done using coded terms stored in an AIM instance. AIM data can be stored as AIM DICOM Structured
Reporting (SR) objects, AIM XML documents, and AIM HL7 CDA documents.

What is an AIM annotation?

1.

2.
3.
4.

An is a collection of associated image annotations and markups. An AIM annotation may contain one or more image annotation or AIM annotation
annotation of annotation instances. An AIM annotation can only be of either type image annotation or annotation of annotation. These are the two
kinds of annotations that can be created. class annotates images. class annotates other AIM annotations (both ImageAnnotation AnnotationOfAnnotation
image annotation and annotation of annotation) for comparison and reference purposes.

In the AIM 3.0 model, an image annotation or annotation of annotation is stored as a single file, either as an AIM DICOM SR or AIM XML document. When
AIM was used in Pathology, hundreds of thousands of AIM files were created for a single study. Managing AIM files from different image studies became
very complicated. A collection described in the next section was used to store AIM instances from the same imaging study.

The next section describes changes from AIM version 3.0 to the AIM Foundation model.

From AIM 3.0 to the AIM Foundation Model

Based on the new requirements in the background and objective section, the development team modified and extended the AIM 3.0 model [2] to create the
AIM Foundation model. The Foundation model extends the model to support other imaging disciplines. This section provides a real-world example how of
the Foundation model was created.

The most significant change from the AIM 3.0 to the AIM Foundation model is the use of and the introduction of . ISO 21090 data types AIM Statements
An AIM Statement describes a relationship between the subject and object entities in the AIM Foundation model. As such, this is a generic and very
expressive way to capture a broad range of information AIM annotations need to capture. AIM statements are a core aspect of the design of AIM that will
permit it to be extended in future to meet the needs of other domains.

Why Use AIM Statements and Other Enhancements?

The AIM 3.0 model reflects relationships between classes using containment of a source class to a target class and inheritance or IS-A relationships. The
expressive power of the model is limited by these two types of relationships. No other types of relationships in the AIM 3.0 model are possible and not all
necessary relationships are present. For instance, there is no direct relationship between instances of the class, e.g. right-upper lobe of AnatomicEntity
lung, and the class, e.g. mass. Such classes can be indirectly linked to each other only via the class.ImagingObservation Annotation

The desire to improve the expressiveness of the AIM model and specific use cases prompted us to create a flexible model of AIM statements. Use cases
that led us to change the AIM model from the containment association approach to explicitly stated relationships between two classes follow.

Justin Kirby at the NCI's Cancer Imaging Program has a use case for storing information from a mammography case report form (CRF). The CRF
has "Associated Findings" or imaging observation characteristics that are associated with the entire breast and are not specific to a mass. Dr.
David Channin at Guthrie Clinic also has a similar use case.
Dr. Lior Weizman, a research fellow working with Dr. Daniel Rubin, wants to associate calculation results with a DICOM segmentation object.
Several AIM users want to capture imaging observations and calculations related directly to image markup.
A user wants to capture a measurement of a liver volume from a CT scan to facilitate clinical assessment of liver disorders, to improve decision
making in liver transplant surgery and to avoid donor-recipient graft mismatch.

Adding an association relationship between the and resolved the CRF issue. Adding an association AnatomicEntity ImagingObservationCharacteristic
between segmentation and calculation satisfied Dr. Weizman's comment. Applying the same approach could satisfy use cases 3 and 4.

As the AIM model is used by an increasing number of users, additional requests will arise that add relationships between classes or create new classes to
store other important information related to AIM. Managing and rearranging associations with classes will be too complex to manage without the AIM State

 class and its subclasses.ment

Fundamental Changes from AIM 3.0 to the Foundation Model

The foundation has seventy new classes. We renamed twelve classes and deleted four classes. The detailed AIM model change logs are at https://wiki.nci.
. This section describes changes from the AIM 3.0 to AIM Foundation model.nih.gov/x/N4FSBg

The AIM Foundation model uses ISO 21090 data types.

AIM 3.0 Data Type ISO 21090

Boolean BL

CalculationResultIdentifier Not Applicable

ComparisonOperators Not Applicable

Date TS

Double REAL

Integer INT or II

String ST or Uid

https://wiki.nci.nih.gov/x/N4FSBg
https://wiki.nci.nih.gov/x/N4FSBg

Four attributes in an AIM class are now mapped to a single ISO 21090 CD data type.

AIM 3.0 Data Type ISO 21090

codeValue CD

codeMeaning CD

codingSchemeDesignator CD

codingSchemeVersion CD

All entity type classes in AIM Foundation derive from the Entity class. The Entity class is an abstract class. It represents the existence of a thing, concept,
observation, calculation, measurement, or graphical drawing in AIM. It is a parent class of all entity classes in the foundation model. Entity classes in both
models are as follows.

AnnotationEntity (abstract class)
AnnotationRoleEntity
CalculationEntity
DicomImageReferenceEntity
DicomSegmentationEntity
Entity (abstract class)
GeometricShapeEntity (abstract class)
ImagingObservationEntity
ImagingPhysicalEntity
ImageReferenceEntity (abstract class)
InferenceEntity
MarkupEntity (abstract class)
SegmentationEntity (abstract class)
TaskContextEntity
TextAnnotationEntity
ThreeDimensionGeometricShapeEntity (abstract class)
TwoDimensionGeometricShapeEntity (abstract class)
UriImageReferenceEntity

An AIM Statement describes a relationship between two entity type classes in the AIM Foundation model. An AIM statement has a subject-predicate-
 The introduction of AIM statements requires object construct to precisely define a relationship between two classes: a subject and an object class.

structural and class name changes from the AIM 3.0 model. The naming convention used to create an AIM statement is a concatenation between
 Subject and object information come from entity subject, predicate, and object. A predicate defines a relationship between a subject and an object.

classes in AIM models. The current predicates in AIM are as follows.

Excludes
Has
IsComparedWith
IsCompriseOf
IsFoundIn
IsIdentifiedBy
References
Uses

An AIM statement expresses the most granular amount of information an AIM annotation can have. An AIM annotation presents its content in a collection
of semantic statements. Statements describe a thing found, measured, and graphically annotated on an image or images from the same series in an
imaging study. This approach provides AIM with the ability to describe images at varying granularity and thus is highly extensible, capable of meeting the
needs of future use cases not yet even anticipated.

Each entity class in the AIM model must have a unique identifier (UID) that must conform to the DICOM UID format. An AIM statement contains a
UID from a subject and an object. A name of an AIM statement class expresses an explicit meaning and relationship between two entity type
classes (subject and object) in the AIM model.

Three abstract classes, namely , and , are used to create AIM AnnotationStatement ImageAnnotationStatement AnnotationOfAnnotationStatement
statements.

The class represents a general concept about a statement used to describe something found that can be compared or addressed on AnnotationStatement
an image or images in a series. It can be used for image annotation or annotation of annotation. The class has eight different AnnotationStatement
subtypes of annotation statements that can be applied to both annotation of annotation and image annotation. The statements available in this group are
depicted in figure 1. Classes that can be used for annotation statements are as follows (descriptions of each of these classes and those mentioned below
are given in Section 5).

AnnotationEntity (abstract class)
AnnotationRoleEntity
CalculationEntity
ImagingObservationEntity
ImagingPhysicalEntity

TaskContextEntity

Figure 1. Annotation statements can be used for image annotations and annotation of annotations

The class represents a group of statements used to describe annotation-of-annotation relationships between a subject AnnotationOfAnnotationStatement
and an object class entity that do not have direct reference to the image or images. Classes that can be used for annotation-of-annotation statements are
as follows.

AnnotationOfAnnotation
AnnotationRoleEntity
CalculationEntity
ImageAnnotation
ImagingObservationEntity
ImagingPhysicalEntity
InferenceEntity
TaskContextEntity

Statements available from this group are shown in Figure 2.

Figure 2. Annotation of annotation statement can be used for AnnotationOfAnnotation

The class represents a group of statements used to describe image annotation relationships between a subject and an object ImageAnnotationStatement
class entity that have direct reference to the image or images. Classes that can be used for image annotation statements are as follows.

AnnotationRoleEntity
CalculationEntity
DicomImageReferenceEntity
DicomSegmentationEntity

ImageAnnotation
ImagingObservationEntity
ImagingPhysicalEntity
InferenceEntity
TaskContextEntity
TextAnnotationEntity
UriImageReferenceEntity

Statements available for the image annotation statement group are in Figure 3.

1.

2.

3.

4.

5.

Figure 3. Image annotation statement can be used for ImageAnnotation

An AIM annotation, either stored as XML documents or DICOM Structured Reporting objects, can store more than one image annotation and
annotation-of-annotation instance.
The AIM Foundation has a capability to store both two and three-dimensional markups placed on images. Each two and three-dimensional
markup has its own graphical type. All spatial coordinate and graphical types comply with DICOM standard part 3 [6].
Calculation results are stored as individual data elements in AIM 3.0. This approach takes a lot of storage space resulting in a large file size if
there is a large amount of data that must be saved. The AIM Foundation offers a new storage mechanism whereby compression of data is
allowed.
The AIM Foundation model supports clinical and research workflow activity. The class contains identifying and descriptive TaskContextEntity
attributes of the reading session and the reading subtask that result in clinical environment or trial results. The class consists of the overall task
and the specific subtask. A task represents a unit of overall work, e.g. "Read all of the available timepoints for the subjects". It may have one or
more subtasks. The class can be used to capture and record planned (scheduled) and performed tasks.
The and classes are required to store the same type of AIM annotations, image ImageAnnotationCollection AnnotationOfAnnotationCollection
annotation, and annotation-of-annotation respectively. stores AIM instances from the same imaging study and in a ImageAnnotationCollection
reading session. stores AIM statements that reference image annotation and annotation-of-annotation AnnotationOfAnnotationCollection
instances as well as any image findings, calculations, inferences, workflow, annotation role, and/or adjudication observations.

Understanding the AIM Foundation Model
The model is used to capture image annotation and markup information relevant to images. It describes explicitly what kind of information the model can
collect. An annotation describes information about the meaning of pixel information in images. It is captured as a coded term supplied by medical lexicons
(e.g. SNOMED CT®, RadLex, LOINC, etc.) or user-defined terms. Annotations become a collection of image semantic content that can be used for data
mining purposes. An AIM annotation is a collection of associated annotations, markups, calculation results that may or may not be directly related to a
markup, a well-defined role of an annotation (e.g. baseline or follow-up), workflow activity, simple subject demographics, and creator and tools used to
create AIM instances. This information is used to design and create AIM information model.

AIM UML Modeling

The AIM UML model illustrated as a UML class diagram is used to capture information about how images are perceived by human or machine observers.
Our design process started with understanding the initial requirements [2] and the information in "From AIM 3.0 to the AIM Foundation Model," on page .
We identified a set of information objects that are used to collect information about imaging annotations and markup. Classes are divided into image
semantic content, calculation, markup, image reference, and AIM statements. If there are classes that do not pertain to a specific group, we classify them
in the general information group. These classes contain information about the workstation used to create the AIM annotations, the user that creates the
AIM annotations, patient identification, DICOM segmentation, annotation role, inference, workflow activity, adjudication observation, image annotation, and
annotation-of-annotation.

The AIM Foundation Model, shown in figure 1, has evolved through an iterative feedback process since the release of AIM version 3, revision 11. The
model has gone through many reviews and recommendation processes. can be used to view the AIM UML class diagram file, Enterprise Architect AIM_Fo

. One can also view this diagram in JPEG format. You can from the NCI Wiki.undation_v4_rv47_load.eap download the model

Based on the information in Figure 4, we can categorize the collection of classes into six groups: General Information, Calculation, Image Semantic
Content (Finding), Markup, Image References, and AIM Statements. AIM statements are described in "From AIM 3.0 to the AIM Foundation Model" (need
reference). Descriptions of the other five groups follow.

http://www.sparxsystems.com/products/ea/index.html
http://cbiit-download.nci.nih.gov/aim/releases/Model/AIM_Foundation/AIM_Foundation_v4_rv47.zip

Figure 4. AIM Foundation Model

The General Information group, shown in Figure 5, contains a collection of classes that do not belong to any of the five other groups. Each class is self-
described and does not work with other classes to provide a larger concept. We begin with . It is an abstract concept of a container AnnotationCollection
that collects the same type of annotation. It contains a UID used to identify a collection, a version of the AIM model used for collecting annotation data,
creation date and time, and description about the AIM annotation contained in the collection. is the parent of AnnotationCollection ImageAnnotationCollecti

 and . associates with two optional classes used to capture the information about a person or on AnnotationofAnnotationCollection AnnotationCollection
computer program generating AIM instances as well as the manufacturer's information of the software used to create AIM instances, which are and User E

 class, respectively. The class represents a person or a computing resource that creates an AIM annotation. The class is composed of quipment User User
a user's full name, login name with optional role in trial, and order within a trial. The class provides information about the system that is used to Equipment
create AIM annotations. The class collects manufacture name, model description, and software versions. stores Equipment ImageAnnotationCollection
instances of . It associates with the class that contains basic patient demographic information: patient name, identification string, ImageAnnotation Person
birth date, and sex. The class represents both humans and animals. stores instances of . Person AnnotationofAnnotationCollection AnnotationOfAnnotation

 can be used to annotate both image annotations and annotation-of-annotation via the AIM statements AnnotationOfAnnotation AnnotationOfAnnotationHas
 or . As described in the previous section, an AIM statement AnnotationOfAnnotationStatement AnnotationOfAnnotationHasImageAnnotationStatement

contains two UIDs for subject (which is an UID of an annotation-of-annotation) and object (which is an UID of either annotation of annotation or image
annotation).

Next, the class is an abstract class that represents an existence of a thing, concept, observation, calculation, measurement, or graphical drawing in Entity
AIM. The class is the base class that other main concept classes extend. A class derived from the class can be used to create AIM statements.Entity

The next class that we should examine is class. It is an abstract base class for the and classes. AnnotationEntity ImageAnnotation AnnotationOfAnnotation
The class captures name, a general description of the AIM annotation, type of annotation via controlled terminology, creation date and AnnotationEntity
time, a reference to the AIM template used to create an annotation, a reference to a previously related AIM annotation, and AIM annotation UID.

The class annotates images. The class annotates other AIM annotations for comparison and reference ImageAnnotation AnnotationOfAnnotation
purposes. Both and have , , and classes. The ImageAnnotation AnnotationOfAnnotation AnnotationRoleEntity AuditTrail InferenceEntity TaskContextEntity I

 associates with an abstract class . The model currently supports DICOM Segmentation via . mageAnnotation SegmentationEntity DicomSegmentationEntity
DICOM Segmentations are either binary or fractional. The class represents a multi-frame image representing a classification of DicomSegmentationEntity
pixels in one or more referenced images. The class contains the DICOM SOP class UID that defines the type of segmentation. It references its own
instance UID and the instance UID of the image to which the segmentation is applied. It also has an identification number for the segment that shall be
unique within the segmentation instance in which it is created. An may have zero or more segmentation objects. The ImageAnnotation AnnotationRoleEntity
describes a role of an annotation. Each instance can have a role associated with it, e.g. a baseline case. The class provides a conclusion InferenceEntity
derived through interpreting an imaging study and/or medical history. The class captures the status of an annotation instance using a coded AuditTrail
term, contains identifying and descriptive attributes of the reading session, and the reading subtask that results in clinical environment or trial findings. The
class consists of the overall task and the specific subtask. A task represents a unit of overall work. It may have one or more subtasks.

Figure 5. General Information Group

The Calculation group, shown in Figure 6, represents the calculation results of an AIM annotation. Calculation results may or may not be directly
associated with graphical symbols or markups. For example, given an image with a single ellipse markup, calculation results can be an area in square
millimeters and references maximum and minimum pixel values. As another example, an image has an arrow pointing to a specific location and two
concentric circles, with an area measurement of the larger circle minus the smaller circle. The computation result is based on the independence calculation
made on each circle. The AIM schema allows calculation results that are not directly related to markups. class has overall information CalculationEntity
about a calculation performed related directly to image or images. It defines a type of calculation, such as area, height, radius, and volume of ellipsoid from
UCUM, and takes the form of controlled terminology that can be captured in code value, code meaning, and coding scheme designator in a single
attributed call, . It also captures MathML as a string attribute within the class. A attribute captures a reason why a calculation typeCode questionTypeCode
is needed as code. A textual description can be stored in the description attribute. The abstract class contains the type of result (e.g. CalculationResult
binary, scalar, vector, histogram, array, histogram, or matrix), unit of measurement, and coded data type (a primitive programming data type such as
integer, double, etc. as well as other data type such as URI). A can be stored as a compact or an extended result, CalculationResult CompactCalculationR

 and result, respectively. has three attributes: value, encoding, and compression. The result of a esult ExtendedCalculation CompactCalculationResult
calculation is captured in a string format in a value attribute that can hold a value of array, binary, histogram, matrix, scalar, and vector. Encoding is an
encoding method applied to the content of the value attribute. Compression is a method used to compress the content in value attribute. CalculationResult
has an association with the class that states how many dimensions a has. stores a result of a Dimension CalculationResult ExtendedCalculation
calculation individually with the precise location of each element in the result. The Data class is used to store the result value. The class Coordinate
identifies location within a dimension for the Data class. A may have a relationship with a markup or a collection of markups, other CalculationEntity
calculations, imaging observation, and imaging physical entity. These types of relationships can be captured as AIM statements.

Figure 6. Calculation Group

The classes in the Image Semantic Content group, shown in Figure 7, are used to gather image findings or interpretations of images. The ImagingPhysical
 class stores an anatomical location (e.g. femur) as a coded term from a recognized controlled vocabulary (RadLex, SNOMED-CT, UMLS, etc). The Entity I

 class further describes the class such as "fracture". The class is the magingPhysicalEntityCharacteristic ImagingPhysicalEntity ImagingObservationEntity
description of things that are seen in an image. "Mass," "Radiographic evidence of pleural effusion," "Foreign Body," and Artifact," are all examples of Imagi

. The class includes descriptors of the class such as "dense," ngObservationEntity ImagingObservationEntityCharacteristic ImagingObservationEntity
"heterogeneous," "hypoechoic," and "spiculated". Both and may be ImagingPhysicalEntityCharacteristic ImagingObservationEntityCharacteristic
associated with . A quantification can be a numerical value, an interval (e.g. 34-67%), a scale (e.g. 1:None, 2:Mild), a quantile CharacteristicQuantification
(e.g. 1(1-50), 2(51-100)), and a non-quantifiable (e.g. none, mild, mark).

Figure 7. Image Semantic Content Group (Finding)

The Markup group, shown in Figure 8, captures textual information and graphical representation as DICOM SR value type SCOORD and SCOORD3D for
two dimensions and three dimensions, respectively. The available graphic types for two dimensions are point, multipoint, polyline, circle, and ellipse. Each
drawing type has an x and y coordinate defined in the class. The class has TwoDimensionSpatialCoordinate TwoDimensionGeometricShapeEntity TwoDim

, the SOPInstance UID of the image that contains the pixel and the frame number within the referenced SOP Instance to which ensionSpatialCoordinate
the reference applies. The first frame shall be denoted as frame number 1. In the case of a multi-frame image, we use the frame number from the DICOM
header. Available two-dimensional graphic types [6] are as follows.

Graphical
Type

Description

POINT A single pixel denoted by a single (column,row) pair

MULTIPOINT Multiple pixels each denoted by an (column,row) pair

POLYLINE A series of connected line segments with ordered vertices denoted by (column,row) pairs

CIRCLE A circle defined by two (column,row) pairs. The first point is the central pixel. The second point is a pixel on the perimeter of the circle

ELLIPSE An ellipse defined by four pixel (column,row) pairs, the first two points specifying the endpoints of the major axis and the second two
points specifying the endpoints of the minor axis of an ellipse

The available graphic types for three dimensions are point, multipoint, polyline, polygon, ellipse, and ellipsoid. Each drawing type has x, y, and z
coordinate defined in the class. The class has ThreeDimensionSpatialCoordinate ThreeDimensionGeometricShapeEntity ThreeDimensionSpatialCoordinate
as well as the frame of reference for a Series. Available three-dimensional graphic types [6] are as follows.

Graphical
Type

Description

POINT A single location denoted by a single (x,y,z) triplet

MULTIPOINT Multiple locations each denoted by an (x,y,z) triplet; the points need not be coplanar

POLYLINE A series of connected line segments with ordered vertices denoted by (x,y,z) triplets; the points need not be coplanar

POLYGON A series of connected line segments with ordered vertices denoted by (x,y,z) triplets, where the first and last vertices shall be the same
forming a polygon; the points shall be coplanar

ELLIPSE An ellipse defined by four (x,y,z) triplets, the first two triplets specifying the endpoints of the major axis and the second two triplets
specifying the endpoints of the
minor axis

ELLIPSOID A three-dimensional geometric surface whose plane sections are either ellipses or circles and contains three intersecting orthogonal
axes, "a", "b", and "c".

The ellipsoid is defined by six (x,y,z) triplets, the first and second triplets specifying the
endpoints of axis "a", the third and fourth triplets specifying the endpoints of axis "b",
and the fifth and sixth triplets specifying the endpoints of axis "c"

The class has coordinates captured as SCOORD or SCOORD3D graphic type as or TextAnnotationEntity TwoDimensionMultiPoint ThreeDimensionMultiP
, respectively. A 's MultiPoint implementation is expected to have no more than two coordinates that can be represented as an oint TextAnnotationEntity

arrow connecting to a point on an image. Only the class can have markups.TextAnnotationEntity ImageAnnotation

Figure 8. Markup Group

The group, as shown in Figure 9, represents an image or collection of images being annotated. The two possible types of references are ImageReference
DICOM and URI or web image reference. First, associates with other classes that mimic the DICOM information model. It DICOMImageReferenceEntity
has one object that has one object, which in turn has one or more objects. The class has study instance UID, ImageStudy ImageSeries Image ImageStudy
start date and start time, and procedure description. may have zero or more references to DICOM objects via the ImageStudy ReferencedDicomObject
class. The class has series instance UID. The class has SOP class UID and SOP instance UID. The class has two associations ImageSeries Image Image
with and ; both classes came from the DICOM module general image and image plane, respectively. They are used to store GeneralImage ImagePlane
frequently-used DICOM tags such as patient orientation, pixel spacing, and image position. The second image reference type is that WebImageReference
contains a URI to an image.

Figure 9. ImageReference Group

Note that abstract classes in the AIM schema are , , , AnnotationCollection AnnotationStatement ImageAnnotationStatement AnnotationOfAnnotationStatem
, , , , , , , ent AnnotationEntity CharacteristicQuantification CalculationResult Entity GeometricShapeEntity ImageReferenceEntity TwoDimensionGeometricShap

, , , and . [0..1] denotes an optional occurrence of an eEntity ThreeDimensionGeometricShapeEntity MarkupEntity SegmentationEntity SpatialCoordinate
attribute.

How to Create and Use AIM Annotations

AIM annotations can only contain either one or more image annotation or annotation-of-annotation type. An image annotation is represented by the ImageA
 class. The class is used to annotate images. Annotation-of-annotation is represented by class. The class is used to nnotation AnnotationOfAnnotation

annotate other AIM annotations for comparison and reference purposes. Each class inherits all properties of the abstract class, .AnnotationEntity
There are two root classes that can contain either or ; namely and ImageAnnotation AnnotationOfAnnotation ImageAnnotationCollection AnnotationOfAnnot

 respectively. These are the two kinds of annotation collections that can be instantiated. An instance of class ationCollection ImageAnnotationCollection
contains one or more instances of related class. An instance of class may contain a collection of instances of ImageAnnotation AnnotationOfAnnotation Ima

 and/or class.geAnnotation AnnotationOfAnnotation

Both annotation collections may contain information about the equipment (class) used to create an AIM instance and the user (class) who Equipment User
created the AIM instance.

An instance of object has annotation and markup information on one or more images in the same series and study. Annotation and ImageAnnotation
markup information describes particular findings of a single thing found on an image or images. For instance, if there are two nodules found on an axial
image, two instances must be created. Image markups of the same nodule put on different images in the same study can be captured in ImageAnnotation
a single instance. must have one or more objects, which can be either DICOM image objects or URI ImageAnnotation ImageAnnotation ImageReference
(Uniform Resource Identifier) image objects. may be associated with one instance of a class. may have zero or ImageAnnotation Person ImageAnnotation
more , , (e.g. text, two-dimension geometric shape or three-dimension geometric shape), AuditTrail SegmentationEntity MarkupEntity ImagingPhysicalEntity
(e.g. anatomic entity), , , , , and instances.ImagingObservationEntity InferenceEntity CalculationEntity TaskContextEntity AnnotationRoleEntity

1.
a.

An has annotation information about one or more AIM annotations, which can be or . It AnnotationOfAnnotation ImageAnnotation AnnotationOfAnnotation
is used for the purpose of comparison, reference, and annotating additional information to existing AIM or ImageAnnotation AnnotationOfAnnotation
instances. An example of this type of annotation can be used to compare measurement results of the same tumor from two studies from timepoint one and
two of the same patient. may have zero or more , (e.g. anatomic entity), AnnotationOfAnnotation AuditTrail ImagingPhysicalEntity ImagingObservationEntity
, , , , and instances.InferenceEntity CalculationEntity TaskContextEntity AnnotationRoleEntity AdjudicationObservation

An has references to instances of or via two kinds of AIM statements, namely AnnotationOfAnnotation ImageAnnotation AnnotationOfAnnotation Annotatio
 and .nOfAnnotationHasAnnotationOfAnnotationStatement AnnotationOfAnnotationHasImageAnnotationStatement

How to Extend the AIM Foundation Model
The previous section describes the AIM foundation in detail. This section provides information used to extend the AIM foundation model to store other
information that is not currently available in the foundation model. As described in sections 4 and 5, the AIM information model uses UML to depict the type
of information it is currently capable of collecting. The model explicitly describes how image annotation semantic contents can be stored. A class name in
the model was intentionally created to inform a reader of what information is stored in the class. Each attribute in a class supports the class purpose. A
relationship between classes indicates how one class works with other classes to form and capture a larger concept and information.

Guidelines to the AIM Foundation Model

This section provides a set of guidelines to extend the AIM Foundation Model. The foundation model conceptually orders classes in the AIM UML model
into six groups: AIM Statements, General Information, Calculation, Image Semantic Content (Finding), Image References, and Markup. You may extend
the foundation model to fit your own needs by following the criteria. If you want your additions to be included in the official NCI AIM model, please enter
your request directly at .https://tracker.nci.nih.gov/browse/AIM

Naming Convention:
A name of a class must explicitly describe what information the class will collect. It must start with a capital letter. If part of the class
name has a capital abbreviation, only the first character of the abbreviation is capitalized, e.g. DICOM should be Dicom see figure 10.

Figure 10. A Class Name

Association name, figure 11, of a source class has the same name as the source class name with the first character being a lower case.

Figure 11. An Association Name of a Source Class

Association name of a target class, figure 12, has the same name as the target class name with the first character being a lower case.

https://tracker.nci.nih.gov/browse/AIM

1.

2.

3.

4.
a.
b.
c.

5.

Figure 12. An Association Name of a Target Class

A source class may have or contain 1-to-0..* (zero-to-many) or 1-to-1..* (one-to-many) associations to a target class. The target association name
must append "Collection", figure 13, at the end of the class name.

Figure 13. An Example of Collection

It must be possible to map a new class to DICOM SR data element(s). See "AIM DICOM SR templates" for more information. It is important for a
user to have knowledge about DICOM SR and how to modify a DICOM SR template properly because new classes added to the model will need
to be stored in DICOM format.
Use ISO 21090 data type for every attribute in a class. Using ISO 21090 data type provides a good foundation to convert AIM information to HL7
Clinical Document Architecture (CDA).
A name of any class extending from the class must end with the word "Entity". A class derived from the class represents an existence Entity Entity
of a thing or concept that is not currently captured in the AIM foundation model. A new entity class can also be included if a user wants to
explicitly express what information the new model will be able to store.
A class that can be used to construct an AIM statement must extend or inherit from the class.Entity

There must be a subject and object class.
A predicate must be selected from a list of existing predicate from section 4.b.4. You may use your own predicates.
A name of an AIM statement shall be a concatenation between the name of a subject class, predicate and the name of object class.

AIM markup is modeled after DICOM 2D and 3D spatial coordinate geometries [2]. New additional markups must be able to be stored in DICOM
SR format.

Extending AIM Foundation Model to AIM 4.0

1.

AIM 4.0 model, Figure 14, is an official extension of the AIM foundation model. This extension explicitly captures lesion results and measurements derived
during image-based clinical trials [7,8]. There are nine new classes that cover lesion annotation needs. Three classes were created for lesion observation
as follows.

LesionObservationEntity

The class is an abstract class that stores observations made about lesions in both clinical trial and day-to-day clinical treatments. For detailed information,
see .DICOM Clinical Trials Results Reporting Supplement (Working group 18)

GeneralLesionObservationEntity

This class contains general observations made about lesions in clinical trial results and day-to-day clinical treatment that are not specific to timepoint. For
detailed information, see .DICOM Clinical Trials Results Reporting Supplement (Working group 18)

TimePointLesionObservationEntity

This class contains observations made about lesions in day-to-day clinical interpretations and clinical trial results at a specific timepoint. It also includes
"lesions" that are created for the purpose of calibrating scanned film or other secondary capture images. For detailed information, see DICOM Clinical

.Trials Results Reporting Supplement (Working group 18)

Figure 14. AIM 4.0 Model

Six classes were created for AIM statements as follows.

AnnotationOfAnnotationHasGeneralLesionObservationEntityStatement

An instance of annotation-of-annotation may have one or more general lesion observations associated with it. AnnotationOfAnnotationHasGeneralLesionO
 represents a direct relationship between an instance of annotation-of-annotation and general lesion observation. If you have two bservationEntityStatement

general lesion observations, you will need to create two statements.

 An adjudicator wants to create a general lesion observation statement from an annotation-of-annotation.A use case:

Assumption:

An annotation-of-annotation, each with general lesion observation, was created earlier from a reader.
There is a system capable of reading and extracting information from the annotation for further displaying, computing and manipulating purposes.

Working with AIM:

1.
2.

1.
2.

1.
2.

1.
2.

1.
2.

Create a general lesion observation instance.
Create an statement linking the annotation-of-annotation (subjects) to the AnnotationOfAnnotationHasGeneralLesionObservationEntityStatement
general lesion observation (objects).

AnnotationOfAnnotationHasTimePointLesionObservationEntityStatement

An instance of annotation-of-annotation may have one or more timepoint lesion observations associated with it. AnnotationOfAnnotationHasTimePointLesio
 represents a direct relationship between an instance of annotation-of-annotation and timepoint lesion observation. If you nObservationEntityStatement

have two timepoint lesion observations, you will need to create two statements.

 An adjudicator wants to create a timepoint lesion observation statement from an annotation-of-annotation.A use case:

Assumption:

An annotation-of-annotation, each with timepoint lesion observation, was created earlier from a reader.
There is a system capable of reading and extracting information from the annotations for further displaying, computing and manipulating purposes.

Working with AIM:

Create a timepoint lesion observation instance.
Create an statement linking the annotation-of-annotation (subjects) to AnnotationOfAnnotationHasTimePointLesionObservationEntityStatement
the timepoint lesion observation (objects).

GeneralLesionObservationEntityHasImagingPhysicalEntityStatement

The class is used to record a relationship between a general lesion observation entity and imaging physical entity. Each lesion observation can only be
directly related to one imaging physical entity.

 An imaging interpreter wants to link a general lesion observation and imaging physical annotation.A use case:

Working with AIM:

Create an imaging physical entity instance.
Create a general lesion observation entity instance.
Create a statement linking the general lesion observation entity (subjects) to GeneralLesionObservationEntityHasImagingPhysicalEntityStatement
the imaging physical entity (objects).
ImageAnnotationHasGeneralLesionObservationEntityStatement

An instance of image annotation may have one or more general lesion observations associated with it. ImageAnnotationHasGeneralLesionObservationEnti
 represents a direct relationship between an instance of image annotation and general lesion observation. If you have two general lesion tyStatement

observations, you will need to create two statements.

 An adjudicator wants to create a timepoint lesion observation statement from an image annotation.A use case:

Assumption:

An image annotation, each with timepoint lesion observation, was created earlier from a reader.
There is a system capable of reading and extracting information from the annotation for further displaying, computing and manipulating purposes.

Working with AIM:

Create a timepoint lesion observation instance.
Create an statement linking the annotation-of-annotation (subjects) to the time-ImageAnnotationHasTimePointLesionObservationEntityStatement
point lesion observation (objects).
ImageAnnotationHasTimePointLesionObservationEntityStatement

An instance of image annotation may have one or more timepoint lesion observations associated with it. ImageAnnotationHasTimePointLesionObservation
 represents a direct relationship between an instance of image annotation and time-point lesion observation. If you have two general lesion EntityStatement

observations, you will need to create two statements.

 An adjudicator wants to create a timepoint lesion observation statement from an image annotation.A use case:

Assumption:

An image annotation, each with timepoint lesion observation, was created earlier from a reader.
There is a system capable of reading and extracting information from the annotation for further displaying, computing and manipulating purposes.

Working with AIM:

Create a timepoint lesion observation instance.
Create an statement linking the image annotation (subjects) to the timepoint ImageAnnotationHasTimePointLesionObservationEntityStatement
lesion observation (objects).
TimePointLesionObservationEntityHasImagingPhysicalEntityStatement

1.
2.
3.

The class is used to record a relationship between a timepoint lesion observation entity and imaging physical entity. Each lesion observation can only be
directly related to one imaging physical entity.

 An imaging interpreter wants to link a timepoint lesion observation and imaging physical annotation.A use case:

Working with AIM:

Create an imaging physical entity instance.
Create a timepoint lesion observation entity instance.
Create a statement linking the timepoint lesion observation entity TimePointLesionObservationEntityHasImagingPhysicalEntityStatement
(subjects) to the imaging physical entity (objects).

You can download the AIM foundation and 4.0 models from .https://wiki.nci.nih.gov/x/z4X3Ag

AIM Software Toolkit
Based on the above model, an AIM programming library has been constructed to create, validate, and transform between AIM XML documents and
DICOM SR. Implementors should familiarize themselves with the AIM schema and be able to deduce relationships between classes in the schema. The
library is a set of APIs. It is independent from the Graphical User Interface (GUI) and workflow of an application. All interactions with the AIM library are
done through AIM library APIs. In addition to the AIM library, the application would need to provide for:

creating, displaying and converting application markups to AIM markups
presenting and collecting AIM annotation of image findings
capturing and displaying annotation information
computing and translating its computation to AIM calculations.

The AIM software library is a collection of C++ application programming [10] interfaces used to construct the AIM information model based on a UML class
diagram. ANIVATR is a referenced implementation of the AIM library. The ANIVATR software application validates AIM annotations and transcodes them
into different artifacts, namely native AIM XML and DICOM SR. We have developed AIM annotations in DICOM SR such that they can be created and
displayed in a variety of medical imaging workstations, notably the AIM on ClearCanvas workstation and eXtensible Imaging Platform (XIP) as well as in
clinical imaging devices. ANIVATR reads and transcodes DICOM SR into an AIM XML representation and vice versa.

AIM Library

The AIM library is a C++ [9] module. It consists of two logical parts: implementation of the AIM Schema as an object model and definition of a set of
operations, which can be performed on the object model.

The AIM library can be used as a linked dependency of another application. All exported library APIs are thought to conform to ANSI C++ (1998/2003).
Various STL containers are used extensively throughout the library and in the public APIs.

The object model implementation creates an ANSI C++ class for each class in the AIM Schema. The Class hierarchy closely follows the AIM Schema.
Each object's model class provides mutation methods (Set and Get method) for every attribute in the corresponding AIM Schema class. All changes to the
class states are done via those mutation methods. The whole AIM Schema is represented by the object model through containment and inheritance.
The set of object model operations supported by the AIM library includes persisting the model in XML and DICOM SR formats. The reverse set of
operations of reading XML and DICOM SR instances into the object model is supported as well.

Using AIM Library

To instantiate an AIM model, a software developer should start with creating either an or AnnotationOfAnnotationCollection ImageAnnotationCollection
object and populating its related objects' content. All required attributes need to be populated with valid data. Optional attributes are depicted in the AIM
schema with [0..1].

ImageAnnotation

The object is required to have at least one object of type or ImageAnnotationCollection ImageAnnotation DICOMImageReferenceEntity WebImageReferen
. The object must have one imaging study. The object may have one series objects. Each ceEntity DICOMImageReferenceEntity ImageStudy ImageSeries

object may have one or more objects. Image It is implied in the model that all images originate from the same study of the same patient.

 object may have a object. An object may have objects, which contain ImageAnnotationCollection Person ImageAnnotation DicomSegmentationEntity
references to its own instance UID and referenced instance UID of the image to which the segmentation is applied. It also has the segmentation type,
DICOM SOP class, UID, and an identification number of the segment. The identification of the segment shall be unique within the segmentation instance in
which it is created. object is being captured as DICOM code sequence with a possible textual comment. An ImagingObservationEntity ImagingObservation

 may have zero or more objects, which are captured as DICOM code sequences. An Entity ImagingObservationEntityCharacteristic ImageAnnotationEntity
may store conclusions derived by interpreting an imaging study and/or medical history in a collection of objects that store the information as InferenceEntity
code sequence based on a controlled terminology.

https://wiki.nci.nih.gov/x/z4X3Ag

 object may have zero or more objects. Each object may have a two or three-dimensional ImageAnnotationEntity TextAnnotationEntity TextAnnotationEntity
Cartesian coordinate set defined as a MultiPoint type object. is used as a text markup that can be shown on an image. Graphic TextAnnotationEntity
markups are stored as and objects, which extended from TwoDimensionGeometricShapeEntity ThreeDimensionGeometricShapeEntity GeometricShapeEn

. Two dimension graphic types are MultiPoint, Point, Circle, Ellipse, and Polyline objects. These inherit the tity TwoDimensionGeometricShapeEntity
abstract class properties and methods. Each two-dimensional graphic type contains one or more instances. Three-TwoDimensionSpatialCoordinate
dimensional graphic types are Point, MultiPoint, Polyline, Polygon, Ellipse, and Ellipsoid. These objects inherit the ThreeDimensionGeometricShapeEntity
abstract class properties and methods. Each three-dimensional graphic type contains one or more instances. The ThreeDimensionSpatialCoordinate coordi

 attribute in or class signifies the order in which a coordinate appears in the nateIndex TwoDimensionSpatialCoordinate ThreeDimensionSpatialCoordinate
shape. class closely follows DICOM 3.0 part 3, C.18.6.1.2 and C.18.9.1.2 Graphic Type. contains SOP GeometricShape TwoDimensionSpatialCoordinate
Instance UID and frame number (multi-frame image) to identify which image a geometric shape object belongs to.

 inherits that may have at most one Equipment and User objects. inherits properties and ImageAnnotationCollection AnnotationCollection ImageAnnotation
methods from the class. It may have zero or more , and objects.AnnotationEntity ImagingPhysicalEntity ImagingObservationEntity CalculationEntity

A object can be related to a single markup or to a collection of markups and other calculations, which are not related to markup. A CalculationEntity
calculation may reference other calculations by using and objects, CalculationEntityReferencesCalculationEntity CalculationEntityUsesCalculationEntity
which contain a referenced object UID. A object may have zero or more objects. It is possible for a CalculationEntity CalculationEntity CalculationResult
Calculation to have no . This means that the information provided in the object is sufficient to describe the calculation.CalculationResult CalculationEntity

A calculation result can be a scalar, vector, matrix, histogram, or array. Dimensionality of calculation results is represented by objects. A Dimension Calcula
 object must have at least one object. The attribute in the object is a zero based unique index of the dimension. The tionResult Dimension Index Dimension

 attribute in the object specifies how many members a dimension has. Label attribute provides textual meaning to a dimension.Size Dimension

A object may have zero or more objects. The absence of any object means that result is an empty set. Each CalculationResult Data Data Coordinate
object specifies a dimension index and a position within the dimension. The number of objects for each object cannot exceed the total Coordinate Data
number of objects in a . A object cannot have more than one object with the same .Dimension CalculationResult Data Coordinate dimensionIndex

AnnotationOfAnnotation

The object is required to have at least one object. works very much the AnnotationOfAnnotationCollection AnnotationOfAnnotation AnnotationOfAnnotation
same way as for calculation group and image semantic content group (see section 7.c). The object must have at ImageAnnotation AnnotationOfAnnotation
least one AIM statements that contains a UID of or object. may store a conclusions ImageAnnotation AnnotationOfAnnotation AnnotationOfAnnotation
derived by interpreting an imaging study and/or medical history in a collection of Inference object, which stores the information as a code sequence based
on a controlled terminology.

 may refer to a collection of objects that can come from different studies.AnnotationOfAnnotation ImageAnnotation

The AIM model and DICOM templates do not explicitly address the issue of Study Instance UID, Series Instance UID and SOP Instance UID creation of an
 object. These three UIDs can be generated by AIM implementers for the purpose of creating an AIM DICOM object. When an AIM AnnotationOfAnnotation

DICOM object is transformed to AIM XML or HL7 CDA, these three UIDs are not being used.

AIM Library Objects

1.

2.

1.

2.
3.

1.
2.

AIM library is created using C#. The library objects and operations are in the aim_lib namespace. All object model files are located in the model/ sub-
directory. For convenience purposes, there is a model/AimHeaders.h header file that includes all headers of the object model. Below is a sample of how
one can populate parts of the object model.
#include "AIMLib/model/AimHeaders.h"
…………
// Calculation and its dependents
aim_lib::Dimension dim;
dim.SetIndex(0);
dim.SetLabel("Centimeters");
dim.SetSize(1);
aim_lib::DimensionVector dimColl;
dimColl.push_back(dim);
aim_lib::CalculationResult calcResult;
calcResult.SetUnitOfMeasure("cm");
calcResult.SetType("CalculationResultTYpe::Scalar");
calcResult.SetNumberOfDimensions(1);
calcResult.SetDimensionCollection(dimColl);
aim_lib::Coordinate coordinate;
coordinate.SetDimensionIndex(0);
coordinate.SetPosition(0);
aim_lib::CoordinateVector coordColl;
coordColl.push_back(coordinate);
aim_lib::Data data;
data.SetValue(150.0);
data.SetCoordinateCollection(coordColl);
aim_lib::DataVector dataColl;
dataColl.push_back(data);
calcResult.SetDataCollection(dataColl);
aim_lib::CalcResultVector calcResults;
calcResults.push_back(calcResult);
aim_lib::ReferencedCalculation refCalc;
refCalc.SetReferencedCalculationUID("1.23.5698.24546.231365.74654");
aim_lib::ReferencedCalcVector refCalcs;
refCalcs.push_back(refCalc);
aim_lib::Calculation calc;
calc.SetUID(AimUidGenerator::GenerateNewUID("33.333"));
calc.SetCodeValue("Value::Length");
calc.SetCodeMeaning("length");
calc.SetCodingSchemeDesignator("CALC_SCHEME");
calc.SetDescription("Description of the Calculation One - Length");
calc.SetMathML("MathML for the Calc One goes here");
calc.SetCalculationResultCollection(calcResults);
calc.SetReferencedCalculationCollection(refCalcs);
calculations.push_back(calc);

AIM Library Operations

Operations provided by the AIM library reside in the operations/ folder of the library. All operations are performed on the object model via and DCMModel X
 classes. MLModel

AIMLib/operations/DCMModel.h contains operations for DICOM SR.

To read an AIM library object from the DICOM SR file, use one of the two available APIs:

ReadAnnotationsFromFile / pair will read all available annotations from a file and will make the annotations available as an GetNextAnnotation
object model one by one.
ReadAnnotationFromFile will read a single annotation object from a file.

Two more APIs are available to write AIM library object(s) to a DICOM SR file:

WriteAnnotationToFile / will serialize AIM library object(s) into a DICOM SR.WriteAnnotationsToFile

AIMLib/operations/XMLModel/.h contains operations for AIM XML.
To read an AIM XML file into an AIM library object use:

ReadAnnotationsFromFile / pair will read all available annotations from a file and will make the annotations available as an GetNextAnnotation
object model one by one.
ReadFromXmlFile will read a single annotation object from a file.
ReadFromXmlString will read a single annotation object from a string buffer.

To write an AIM library object to an AIM XML file use:

WriteAnnotationToFile / will write AIM library object(s) to file.WriteAnnotationsToFile
WriteAnnotationToString / will write AIM library object(s) to a string buffer.WriteAnnotationsToString

Environment Configuration

1.

2.

3.

4.
5.
6.

7.
8.

9.
10.

The AIM development environment on Windows systems requires a few configurations. An example of how an environment may be set up follows.
Environment variables:

JAVA_HOME=c:\jdk6
BOOST_ROOT=C:\Program Files\boost\boost_1_34_1

Sample Code

The AIMTestLib project contains AIMLibTest/AIMLibTest.cpp, which shows examples of how to use AIM Library for generating/reading/writing AIM library
objects and files.

References

Channin, D. S., Mongkolwat, P., Kleper, V., Sepukar, K. Rubin, D. L., The caBIG Annotation and Image Markup Project. Journal of Digital TM

Imaging, Vol 23, No. 2, April, 2010.
Annotation and Image Markup Version 3 Project: Requirements, Design, Implementation and Usage; September 2010, URL: https://ncisvn.nci.nih.

 Access 2013-09-30.gov/svn/files/trunk/aim/aim/AIMToolkit3.0.2/AIMToolkit_v3.0.2_rv11.rar
Rubin, D. L., Mongkolwat, P., Kleper, V., Supekar, K., Channin, D. S., Medical Imaging on the Semantic Web: Annotation and Image Markup,
Association for the Advancement of Artificial Intelligence, 2008 Spring Symposium Series, Stanford, CA, 2008
Channin D. S., Mongkolwat P., Kleper V, Rubin D. L., The Annotation and Image Mark-up Project: Radiology. 2009; 253:590–592
Clunie, D. A., DICOM Structured Reporting, PixelMed Publishing, 2000.
DICOM 2011. Digital Imaging and Communications in Medicine (DICOM) [online] URL: Accessed 2013-09-http://medical.nema.org/standard.html
30.
Clunie, D. A., DICOM Structured Reporting and Cancer Clinical Trials Results. Cancer Informatics, pp. 33-56, 2007.
Clunie, D. A., Clinical Trials Results Reporting, unpublished DICOM supplemental from Working Group 18, Access 2013-http://www.dclunie.com
09-30.
C++: URL: Access 2013-09-30. {+} http://www.cplusplus.com/+
AIM Toolkit: URL: https://wiki.nci.nih.gov/display/AIM/Annotation+and+Image+Markup+-+AIM#AnnotationandImageMarkup-AIM-AIMToolkit
Access 2013-09-30.

https://ncisvn.nci.nih.gov/svn/files/trunk/aim/aim/AIMToolkit3.0.2/AIMToolkit_v3.0.2_rv11.rar
https://ncisvn.nci.nih.gov/svn/files/trunk/aim/aim/AIMToolkit3.0.2/AIMToolkit_v3.0.2_rv11.rar
http://medical.nema.org/standard.html
http://www.dclunie.com
http://www.cplusplus.com/
http://www.cplusplus.com/+
https://wiki.nci.nih.gov/display/AIM/Annotation+and+Image+Markup+-+AIM#AnnotationandImageMarkup-AIM-AIMToolkit

	Extending the AIM Model

