LexEVS 6.1 Design Document - Detailed Design -
Performance - Hierarchy Traversal

Contents of This Page

Overview

Database Hierarchy Performance Evaluation
LexEVS Association Logical Model

LexEVS Hierarchy Performance Architecture
Code Considerations

Document Information

Author: Bauer, Scott

Email: bauer.scott@mayo.edu

Team: LexEVS

Contract: ST12-1106

Client: NCI CBIT

National Institutes of Heath

US Department of Health and Human Services

Revision History

Version Date Description of Changes Author
1.0 2013/03/05 | Initial Version Bauer, Scott
Overview

LexEVS has long relied on a relational database to provide the data store for semantic assertions made about the entity level constructs in terminologies
and ontologies. Recently it has become clear that graph database technology has matured enough to allow the the relationships between entities defined
by these assertions to be stored in a way that better reflects the nodes and edges of these relationships. Benchmarking tests and practicality reviews have
led the LexEVS team to the conclusion that a graph database back end for LexEVS associations will vastly improve traversal performance time and
potentially simplify implementation of the association API.

Database Hierarchy Performance Evaluation

New technologies such as the MVRB-tree algorithm implmented in the OrientDB graph database have proved far more efficient and scalable than the
traditional relational data base management system.

Graph Traversals

Time - mm:ss.ms (process time)

Depth Small Medium Large
8 00:09.69 00:15.13 00:18.93
9 00:53.29 01:17.72 01:07.35
10 07:17.80 09:51.33 05:55.29
Depth Medium Large Huge
8 00:00.23 00:00.91 00:00.245
9 00:00.23 00:00.93 00:00.450
10 00:00.29 00:00.133 00:01.150
Small: 100 nodes/500 edges Large: 10,000 nodes/50,000 edges
Medium: 1,000 nodes/5,000 edges Huge: 1,000,000 nodes/5,000,000 edges

*** Process ran out of memory

LexEVS Association Logical Model

The LexGrid Model defines relationships in terms of a source and target node with an edge defined separately in the AssociationPredicate model
element. These are the construction basics for larger coded node graphs which are currently represented in a relational schema. The performance
restrictions of the relational schema have been well documented above. The source and target structure of LexGrid will be mapped to the structure of the

higher performing graph database OrientDB.

class associationinstance /

entity
associationEntity

whttributes

forwardName: tsCaselgnorelA5String [0..1]
isNavigable: tsBoolean [0..1] = true
isTransitive: tsBoolean [0..1]
reverseName: tsCaselgnorelA5String [0..1]

PR

wChoicen
association Source

whttributen
+ sourceEntityCode: entityCode
+ sourceEntityCodeNamespace: namespaceName [0..1]

+targetDats 0.7
ey

associationTarget associationData

Attributes + associationDataText: text [0..1]
+ targetEntityCode: entityCode
+ targetEntityCodeNamespace: namespaceMame [0..1]

verzionable

associatableElement

+ usageContext: context [0..]
whttributexs

+ associationlnstanceld: nodeld [0..1]
+ isDefining: tsBoolean [0..1]

+ isInferred: tsBoolean [0..1]

+associstionQuslificsti :n?{l..'

associationQualification

+ qualifierText: text[0..1]

wAttributes
+ associationQualifier: associationQualifierName

While the graph based database seems capable to handle the functions shown in the diagram above, some calls to LexEVS will continue to access some
of the model elements that define metadata about the association.

class association

verzionabledAndDescribabie

«EntryPoints
coding Schemes::coding 5cheme

+relations |07

verzicnableAndDeszcribable
relations
whitributex
+ containerName: containerMame
+ isMapping: tsBoolean [0..1] = false
+ represents\Version: version [0..1]
+ spurceCodingScheme: codingSchemeName [0..1]
+ spurceCodingSchemeVersion: version [0..1]
+ targetCodingScheme: codingS5chemeMame [0..1]
+ targetCodingSchemeVersion: version [0..1]
+associationPredicate 1.*
associationPredicate
whttributes
+ associationlame: associationName
+source 1.7
wChoices
association Source
whttributes

+ sourceEntityCode: entityCode
+ sourceEntityCodeNamespace: namespaceName [0..1]

LexGrid in the LexEVS schema (From the MySQL workbench)

! associationPredicateGuid BIGINT(20)
¥ relationGuid BIGINT(20)
+ associationName VARCHAR[LOD)

" ertityAssrsGuid BIGINT2D)

@ amnciztionPredicateGuid BIGINT20)
 sourceEntityCode VARCHAR] 2007

+ spurceEntityCodeMNamespace VARCHAR(SD)
< targetEntityCode VARCHAR[Z00)

+ targetEntityCodeMamespace VARCHAR(SD)
» associationinstanceld VARTHAR]S0)

+ sDefining CHAR{1)

< isInfermed CHAR(1)

< mActive CHAR()

s owmer VARCHAR(Z 50)

» SrAtLs VARCHAR] 50)

+ affectiveDate DATETIME

< expirationDate DATETIME

JeriryStateGuid BIGINT(20)

Mapping LexGrid data model elements to OrientDB

Association Source Association Target
minimal reference Minimal reference

Association Predicate minimal
reference

LexEVS Hierarchy Performance Architecture

While the new implementation of the node graph will largely run against the OrientDB service, some portions of the legacy LexEVS API will be needed to
access various metadata and property elements.

LexEVS Co

LexGri

LexGrid dB
Oracle, DI

Code Considerations

A CodedNodeFactory will determine whether this is an implementation that uses the graph database in conjunction with the relational database or a purely
relational database. And a newly implemented DAO and OrientDBCodedNodeGraph provide the underpinnings of what will be a higher performance
version of LexEVS' traversal of relationship hierarchies in stored terminologies.

<<CodedNodeGraph>> .
OrientDBCodedNodeGraph
implements
< L .
depends on
PagedCodedNodeGraph 1
builds a —
builds a

CodedNodeGraphFacotry QrientDBDAO
getCodedNodeGraph
isOrientDBAvailable

	LexEVS 6.1 Design Document - Detailed Design - Performance - Hierarchy Traversal

