
LexEVS 6.0 Design Document - Solution Architecture

Contents of this Page

Solution Architecture
Required CTS 2 Functionality

Administrative Operations
Search and Query Operations
Authoring and Curation Operations

High Level Architecture
Structure of the CTS 2 Service

CTS 2 Query Profile
Terminology Administration Profile
Terminology Authoring Profile
Semantic Profiles
Conformance Profiles
Sub-Categorization of CTS 2 Services
Service Interfaces for CTS 2

High Level Design Diagram

Document Information

Author: Craig Stancl
 Stancl.craig@mayo.eduEmail:
 LexEVSTeam:

 CBITT BOA Subcontract# 29XS223Contract:
 NCI CBIITClient:

National Institutes of Heath
US Department of Health and Human Services

Revision History

Version Date Description of Changes Author 

1.0 5/14/10 Initial Version Approved via Design 
Review

Team 

Solution Architecture

Proposed technical solution to satisfy the following requirements:

Provide support for Value Sets.
Develop within LexEVS the ability to provide local extensions to code sets and maps among code sets.
Develop within LexEVS other capabilities called for in the CTS2 Specification.

Required CTS 2 Functionality

The required LexEVS functionality to support CTS2 addresses several broad categories.

Administrative Operations

Import Operations The CTS2 SFM calls for the ability to import code systems, code system revisions, value set versions and association versions. The 
current LexEVS model does not differentiate between the importation of a complete code system and an incremental update in the form of a code system 
revision, but the functionality is sufficient to fully meet the requirements of both operations. Note, however, that the incremental update functionality of 
LexEVS has not been fully implemented as of version 5.1, and will be completed in order to meet these requirements. The import of association versions 
will be also be absorbed as part of the code system revision functionality. The current LexEVS implementation already supports the import of value domain 
definitions, although incremental updates have not been implemented and will be provided.

Export Operations The CTS2 SFM calls for the ability to export code systems, associations and value sets. The current LexEVS implementation supports 
the ability to export complete code systems in LexGrid XML and OBO formats. At the moment, it does not support the ability to export value domain 
definitions or pick lists which will be provided. The CTS2 SFM also calls for the ability to provide filter criteria in the exports although the use and functions 
of such filters are not totally clear.

While the SFM does not spell a minimal set of export requirements, we believe that it will be necessary to support LexGrid XML and RDF / OWL. We also 
believe that there are use cases that will require the ability to export a set of changes as a "delta" from a previous version - a set of changes that can be 
applied to another image that will supply the appropriate update.

Code System Status Changes The current LexEVS implementation already supports a superset of this functionality.



Notification While the need to support notification has been anticipated in the current LexGrid architecture, it has not been completely modeled or 
implemented. Analysis, however, has identified a set of requirements that extend beyond the basic ones identified in the CTS 2 SFM. As an example, a 
use case was identified where an administrator needed to be notified when the contents of a concept that was referenced by a value set changed.

Architectures and corresponding implementations for notification and event generation already exist. While it will be necessary to tie these events in to the 
LexEVS implementation, we do not plan to implement any of the notification tooling directly but, instead will implement it in such a way that it can be tied 
into a standards compliant event and messaging architecture.

Search and Query Operations

Code Systems LexEVS already implements a superset of the code system search and access requirements with the exception that search criteria and 
the "query control" aspects are combined as a single operation.

Value Sets The CTS2 SFM calls for the ability to list value sets, return value set details and list value set contents. It also calls for a determination of value 
set subsumption and queries about concept membership. The current LexEVS implementation supports all of these functions with the exception of value 
set subsumption. It should be noted, however, that there are two possible interpretations of "subsumption" - an extensional and intensional subsumption. 
Testing extensional subsumption determines whether one value set subsumes another based on their current resolutions. Testing extensional 
subsumption, however, is more difficult, as it involves the determination whether subsumption is necessary. We intend to postpone subsumption pending 
further clarification of the use case.

Concept Domains and Usage Contexts The HL7 notion of "Concept Domain" was originally architected to align with the ISO 11179 Enumerated 
Conceptual Domain. It has since evolved, however, to be a more abstract entity that, if anything, is closer to the ISO 11179 Data Element Concept. The 
CTS SFM shows the role of Concept Domain as coupling a value set with a set of designations. While LexEVS supports this particular functionality through 
pick list implementation, we are not certain that this model will meet all of HL7's needs, as HL7 Edition 3 views concept domains as controlling the coupling 
of data elements with particular enumerated conceptual domains. We intend to model concept domain, usage context and jurisdictional domain as code 
system entities instead of making them first class model elements. The concept domain binding and concept to concept domain functionality is partially 
implemented in the LexEVS pick list model, but additional modeling and development will be done to provide the full functionality required by the SFM.

Association Related Queries The CTS2 SFM calls for the ability to enumerate associations, compute the transitive path between two concept codes, 
determine whether one coded attribute is subsumed by another and return the details of an association. Some of the requirements are a bit unclear on 
whether they are calling for the ability to query association types or the actual set of associations (relation) coupled with the type. LexEVS provides a rich 
set of functionality to perform the latter and provides all of what we believe to be necessary to support the former.

Full subsumption queries imply the use of a reasoner. We see this as a non-trivial task, as the different terminologies are based on different types of 
description logics and, even within the same family of description logic there are different algorithms that can produce different results based on 
completeness requirements. The LexEVS package does not currently support (a) reasoners and (b) the ability to supply a pre-coordinated expression as 
either the input or output of a function. We will postpone the implementation of compositional expression pending the clarification of whether LexEVS can 
or should support formal reasoning.

Authoring and Curation Operations

"Authoring" and "incremental update" are closely related notions, but there is an important distinction between them. Incremental update, as specified in 
the current version of the LexEVS model, assumes that any set of changes will transform the underlying entity (code system, value domain, pick list) from 
one consistent state to another. Authoring, however, requires an additional ability to save entities in states that are neither valid nor complete. The current 
LexGrid architecture and model is based on the premise that the information being provided is valid and consistent and is not designed to support partially 
formed artifacts such as concepts without associated codes, associations that have a source but no target, etc.

It is assumed that there is an external authoring tool that persists partially formed content and performs the necessary validation and reasoning tasks prior 
to their being incrementally loaded into the LexEVS services. We see this as being a necessary separation, as the potential combination of editors, 
reasoners, terminology models, etc. is almost limitless, and each of these will have its own requirements when it comes to completeness and validity.

Code System Authoring and Curation The CTS2 SFM calls for the ability to create, maintain and update code systems, concepts, and associations as 
separate entities. The LexGrid and LexEVS model views all three of them as aspects of code systems, and its incremental revision approach allows any or 
all of them to be changed as a single unit. The LexEVS model also subsumes the notion of a "code system supplement", as a collection of one or more 
revisions to a code system can be packaged as a "system release", with its own provenance, activation dates, etc., and can be applied to external code 
systems independently.

High Level Architecture

Structure of the CTS 2 Service

The CTS 2 specification defines several functional profiles which are a focused subset of the functionality of a CTS 2 implementation. Functional profiles 
are defined to subset a group of operations which must be supported in order to claim conformance to the profile.

The following functional profiles are considered in scope for LexEVS 6.0:

CTS 2 Query Profile

Searching and querying terminologies
Provide access to terminology content and representational structures (description logic) consistent with the terminology author's intent.

Terminology Administration Profile

Restricting administrative access
Obtaining and loading terminologies



Maintaining terminology access
Control Content Access

Terminology Authoring Profile

Functional terminology analysis/query
Direct terminology edits

Each profile specifies the minimal functional coverage as represented in the following tables.

CTS 2 Query Profile

Function Description

List Code Systems The ability to provide a listing of the available code 
systems that meet input search criteria.

Return Code System Details The ability to retrieve a specific code system attributes 
(synonyms, associations) and other metadata.

List Code System Concepts The ability to retrieve a list of all of the concepts, 
with associated attributes (synonyms, associations) and other metadata 
that 
meet input criteria.

Return Concept Details The ability to retrieve a specific concept, with 
associated attributes (synonyms, associations) and other metadata.

List Value Sets The ability to determine what value sets are available to 
a Terminology Service. This includes seeing a listing of the available value 
sets that match some search criteria, as well as the details pertaining to 
each value set available to the terminology service.

Return Value Set Details The ability to retrieve a specific value set, with 
associated attributes and other metadata.

List Value Set Contents The ability to see a listing of specific concepts, as well 
as the details pertaining to each concept in any of the given value sets 
available to a terminology service.

Check Concept Value Set Membership The ability to validate that a given concept exists in a 
given value set.

List Concept Domains The ability to determine what concept domains are 
available to a Terminology Service.

Return Concept Domain Details The ability to retrieve a specific concept domain, with 
associated attributes and other metadata.

List Concept Domain Bindings The ability to see a listing of specific value sets that 
are bound to a concept domain in specified usage contexts.

Check Concept Domain Membership The ability to validate that a given concept code is bound 
to a given concept domain.

List Usage Contexts The ability to determine what usage contexts are available 
to a Terminology Service.

Return Usage Context Details The ability to retrieve a specific usage context, with 
associated attributes and other metadata.

List Associations The ability to determine what associations are available 
on the terminology service by browsing a list of available associations on 
the CTS 2 instance that meet specified search criteria.

Return Association Details The ability to retrieve metadata on available associations 
in the CTS 2 service instance.

List Association Types Returns the details for the known attributes (metadata) of 
a coded concept

Return Association Type Details The ability to return all information for a Association 
type.

Check Value Set Subsumption Determine whether one of the two supplied value sets 
subsumes the other

Check Concept to Concept Domain 
Association

Determine whether the supplied coded concept exists in a 
code system in use for the specified concept domain, optionally within 
specific usage contexts.

Determine Transitive Concept Relationship Determine whether there exists a transitive relationship between two 
concepts

Compute Subsumption Relationship Determine Whether One Concept Subsumes a Second

Terminology Administration Profile



Function Description

Import Code System Terminology content would be loaded into the terminology 
server as an entire terminology load or skeleton load (i.e. load of 
structure 
without loading the nodes).

Import Code System Revision Terminology content would be loaded into the terminology 
server as a delta or set of changes from the previous version of the 
terminology.

Import Value Set Version Ability to import values sets

Import Association version Ability to import Associations

Export Association Ability to export Association Type instances

Export Code System Content Terminology content would be exported either in whole or 
in part based on filtering against terminology properties. The export 
format 
may also be specified.

Change Code System Status Terminology content status would be changed, thus changing 
its availability for access by other terminology service functions.

Register for Notification A client registers for notification so that an electronic 
notification would be sent to subscribed users in the event of a change to 
the specified terminology element.

Update Notification Registration Subscription notification information can be updated for a 
subscriber's notification account.

Update Notification Registration 
Status

Updates the status of a notification registration.

Terminology Authoring Profile

Function Description

Create Code System The ability to create a new Code System to contain a set 
of new coded concepts. The Code System is created by defining the set of 
meta-data properties that describe it.

Maintain Code System Version The ability to maintain the content and metadata of a 
version for a code system.

Update Code System Version Status The ability to modify the status of a code system.

Create Concept The ability to define and add a new concept to a code 
system.

Maintain Concept The ability to modify a concept that exists in a code 
system.

Update Concept Status The ability to modify the status of a concept that exists 
in a code system.

Create Value Set The ability to create a dynamic value set that is defined 
by a computable expression that can be resolved to an exact list of coded 
concepts at any given point in time.

Maintain Value Set Update properties or expression of a value set definition 
(extensional and intensional value sets).

Update Value Set Status The ability to modify the status of a value set.

Create Concept Domain The ability to define and add a new concept domain.

Maintain Concept Domain The ability to modify a concept domain, including bindings 
to value sets within usage contexts.

Create Usage Context The ability to define and add a new usage context.

Maintain Usage Context The ability to modify a usage context.

Terminology Administration Profile The Terminology Administration profile is intended to 
provide the functional operations necessary for terminology administrators to 
be able to access and make available terminology content obtained from a Terminology Provider.

Create Association The ability to create an association between concepts.

Update Association Status The ability to update the status of an association between 
concepts.

Create Association Type The ability to create a new Association type that may be 
used to link two concepts.



Maintain Association Type The ability to modify or deprecate an existing Association 
type that may be used to link two concepts.

Create Lexical Association Between Coded 
Concepts 
(optional for this profile)

The ability to instantiate an association between two sets 
of coded concepts using a set of lexical rules (matching algorithms) to 
generate the associations .

Create Rules Based Association Between Coded 
Concepts 
(optional for this profile)

The ability to instantiate an association between two sets 
of coded concepts using a set of description logic or inference rules that either assert or infer mappings between 
two Code Systems.

Create Code System Supplement Create a new Code System Supplement as a container of a 
set of concepts and concept properties to be appended to a target code system

Maintain Code System Supplement Update Code System Supplement meta-data properties and add 
concepts and properties to code system

CTS2 Architecture Diagram

Semantic Profiles

Semantic profiles identify a named set of metamodels that are to be supported by the operations specified in the functional profiles.

The following semantic profile is considered in scope for LexEVS 6.0:

Mature Terminology Profile

Best practices conformance for the terminology



Terminologies in the Mature Terminology Profile make an attempt to conform to many of terminology best practices that are, for example, outlined 
in .Desiderata for Controlled Medical Vocabularies in the Twenty-First Century, James J. Cimino
Sample Terminologies include: SNOMED CT, ICD 10 CM, LOINC, RxNorm, NDF / NDF-RT

This profile best fits the existing NCI terminologies.

Conformance Profiles

Conformance profiles are intended to focus specific implementations to address a specific class of functionality and minimum trait sets for each functional 
class. LexEVS 6.0 intends to implement to the following conformance:

Profile Mature Terminology Semantic Profile

CTS 2 Query Functional Profile CTS2 Query - Mature Terminology Conformance Profile

 Terminology Administration Functional Profile Terminology Administration - Mature Terminology Conformance 
Profile

Terminology Authoring Functional Profile Terminology Authoring - Mature Terminology Conformance Profile

Sub-Categorization of CTS 2 Services

CTS 2 Services can be further categorized from the above profile details.

CTS Services Diagram

Service Interfaces for CTS 2



Interfaces to be considered for CTS 2 Services

High Level Design Diagram

The LexEVS 6.0 infrastructure exhibits an n-tiered architecture with client interfaces, server components, domain objects, data sources, and back-end 
systems (architecture diagram). This n-tiered system divides tasks or requests among different servers and data stores. This isolates the client from the 
details of where and how data is retrieved from different data stores.

The system also performs common tasks such as logging and provides a level of security for protected content. Clients (browsers, applications) receive 
information through designated application programming interfaces (APIs). Java applications communicate with back-end objects via domain objects 
packaged within the client.jar. Non-Java applications can communicate via SOAP (Simple Object Access Protocol) or REST (Representational State 
Transfer) services.



Most of the LexEVS API infrastructure is written in the Java programming language and leverages reusable, third-party components. The service 
infrastructure is composed of the following layers:

Application Service Layer - accepts incoming requests from all public interfaces and translates them, as required, to Java calls in terms of the native 
LexEVS API. Non-SDK queries are invoked against the Distributed LexEVS API, which handles client authentication and acts as proxy to invoke the 
equivalent function against the LexEVS core Java API. The caGrid and SDK-generated services are optionally run in an application server separate from 
the Distributed LexEVS API.

The LexEVS caCORE SDK services work directly against the database, via Hibernate bindings, to resolve stored objects without intermediate translation 
of calls in terms of the LexEVS API. However, the LexEVS SDK services do still require access to metadata and security information stored by the 
Distributed and Core LexEVS API environment to resolve the specific database location for requested objects and to verify access to protected resources, 
respectively.

From the client prospective, the LexEVS services will function as "ports" accessible through the caGrid 1.3 service architectural model. LexEVS services 
will follow the caGrid architecture for analytical and data services. See the caGrid 1.3 documentation for architectural details: https://cabig.nci.nih.gov
/workspaces/Architecture/caGrid/

Core API Layer - underpins all LexEVS API requests. Search of pre-populated Lucene index files is used to evaluate query results before incurring cost of 
database access. Access to the LexGrid database is performed as required to populate returned objects using pooled connections.

Data Source Layer - is responsible for storage and access to all data required to represent the objects returned through API invocation.

High Level Design Diagram

https://cabig.nci.nih.gov/workspaces/Architecture/caGrid/
https://cabig.nci.nih.gov/workspaces/Architecture/caGrid/

	LexEVS 6.0 Design Document - Solution Architecture

