
3 - LexEVS 6.x Loader Framework

Contents of this Page

Introduction
Loader Framework Background and Enhancements
Scope
Architecture
Dependencies
Development and Build Environment

Third Party Tools
Loader Framework Code

Loader Framework Projects
Loader Proejcts Using the New Framework
Maven

How to Use the Loader Framework: A Roadmap
Spring
ItemReader/ItemProcessor
Maven Setup
Eclipse Project Setup
Configure your Spring Config (myLoader.xml)
Beans

Bean
Job
Step
Tasklet
Chunk
Reader
Processor
Writer

Key Directories
Algorithms
Batch Processes
Error Handling
Database Changes
Client
JSP/HTML
Servlet
Security Issues
Performance
Internationalization

Installation / Packaging
Migration
Testing

Test Guidelines
Test Cases
Test Results

LexEVS 6.x Loader Links

Loader Use Guide
Loader Guide for developers

Included Loaders
Model Element Mapping
Loader Framework

LexEVS 6.0 Main Page
LexEVS Current Release

Introduction

This document provides the detailed design and implementation of the Loader Framework Extension. It is the goal of this document to provide enough
information to enable application developers to create custom loaders. This document assumes the developer is already familiar with the LexEVS
software. The Loader Framework created in LexEVS 5.1 is the same for LexEVS 6.0.

Loader Framework Background and Enhancements

Previous versions of LexEVS software have provided a set of loaders within an existing legacy framework which served LexEVS developers well over
many years. But as LexEVS has gained users, and requests for new loaders have grown, it was decided to create a new loader framework.

https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Loader+Use+Guide
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Loader+Guide
https://wiki.nci.nih.gov/display/LexEVS/1+-+LexEVS+6.x+Included+Loaders
https://wiki.nci.nih.gov/display/LexEVS/2+-+LexEVS+6.x+Loader+Model+Elements+Mapping
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.0
https://wiki.nci.nih.gov/display/LexEVS/LexEVS

Created in LexEVS v5.1, the loader framework meets these emerging needs compared to the loader framework of previous versions:

is easier to extend
provides improved performance
enables dynamic loading of new loaders
leverages proven open source components, such as Spring Batch and Hibernate

Also, the new framework is completely independent of existing loader code, so there is no impact to existing loaders.

Scope

The Loader Framework provides a way for LexEVS developers to write new loaders and have them recognized dynamically by the LexEVS code. Also the
framework provides help to loader developers in the form of utility classes and interfaces.

Architecture

The image below shows the major components of the Loader Framework.
(A) A hypothetical new loader in relation to the loader framework, and what expected API usage would be.
(B) Ideally, the new loader can make most if its API calls through the utilities provided by the Loader Framework API.
(C) Some work will need to be done with Spring (C) such as configuration of a Spring config file.
(D and E) It may or may not be necessary for a loader to use Hibernate or the LexBIG API. Again, the hope is that much of the work a new loader may
need to do can be accomplished by the Loader Framework API.

The Loader Framework utilizes Spring Batch for managing its Java objects to improve performance and Hibernate provides the mapping to the LexGrid
database.

Dependencies

This Loader Framework requires LexEVS release 6.x.
Development systems are required to install the Sun Java Development Kit (SDK) or Java Runtime Environment (JRE) version 1.7.
Maven 3.x.
For software and hardware dependencies for the system hosting the LexEVS runtime, refer to the of the summary Installation and downloads
page for the latest release.

https://wiki.nci.nih.gov/display/LexEVS/LexEVS#LexEVS-InstallationandDownloads

1.
2.
3.

Development and Build Environment

Third Party Tools

Spring: A lightweight open-source application framework.
Spring
Spring Batch
Spring Batch Reference

Hibernate: An open source Java persistence framework

Maven: Apache build manager for Java projects

Eclipse: An Open Source IDE

Loader Framework Code

The Loader Framework code is available in the NCI Subversion (SVN) repository. It is comprised of three Framework projects. Also at the time of this
writing there are three projects in the repository that utilize the Loader Framework.

Loader Framework Projects

PersistanceLayer: a Hibernate connector to the LexBIG database
Loader-framework: a framework that sets up build information for Maven
Loader-framework-core: a framework that contains all the interfaces and utilities; also contains an extendable class "AbstractSpringBatchLoader"
that all new Loaders should extend

Loader Proejcts Using the New Framework

abstract-rrf-loader: a holder for common rrf-based loader code
meta-loader: a new loader to read the NCI MetaThesaurus
umls-loader: a loader for reading Unified Medical Language System (UMLS) content

Maven

The preceding projects utilize Maven for build and dependency management. You may obtain the .Maven plugin for Eclipse

How to Use the Loader Framework: A Roadmap

You can write a loader that uses the Loader Framework. The loader would follow this general process:

Read the raw data from the file into intermediate data structures, such as a user-defined ICD9SourceObject object.
Process the user-defined objects into LexGrid model objects.
Write the data in the LexGrid objects to the database.

An example may help in understanding the Framework. Our discussion will refer to the illustration below. Let's say we are writing a loader to load the ICD-
9-CM codes and their descriptions, which are contained in a text file. We know we'll need a data structure to hold the data after we've read it so we have a
class:

<source>
ICD9SourceObject \{
String id;
String descr;
String getId() \{ return id; \}
\}
</source>

The Loader Framework uses Spring Batch to manage the reading, processing, and writing of data. Spring provides classes and interfaces to help do this
work, and the Loader Framework also provides utilities to help loader developers. In our example, illustrated below, we will write a class that will use the
Spring ItemReader interface. It will take a line of text and return an ICD9SourceObject (shown as 1 and 2). Next we'll want to process that data into a
LexEVS object such as an Entity object. So we'll write class that implements Spring's ItemProcessor interface. It will take our ICD9SourceObject and
output a LexEVS Entity object (shown as 3 and 4). Finally, we'll want to write the data to the database (shown as 5). Note that the LexEVS model objects
provided in the Loader Framework are generated by Hibernate and utilize Hibernate to write the data to the database. This will free us from having to write
SQL.

http://www.springsource.com/
http://www.cancer.gov/policies/linking
http://static.springsource.org/spring-batch/
http://www.cancer.gov/policies/linking
http://static.springsource.org/spring-batch/reference/html/index.html
http://www.cancer.gov/policies/linking
https://www.hibernate.org/
http://www.cancer.gov/policies/linking
http://maven.apache.org/
http://www.cancer.gov/policies/linking
http://www.eclipse.org/
http://www.cancer.gov/policies/linking
http://m2eclipse.codehaus.org
http://www.cancer.gov/policies/linking

1.
2.

3.
4.

5.

Spring

Configure Spring to be aware of your objects and to manage them. This is done via an XML configuration file. More details on the Spring config file are
below.

ItemReader/ItemProcessor

Either write a class implementing this interface or use one of the Spring helper classes that already implement this interface. If you use one of the Spring
classes, you may need to provide one of your own helper classes to construct your internal data structure object, such as ICD9SourceObject. Provide it to
the Spring object via a setProperty call configured in the Spring config file.

Maven Setup

The projects containing the Loader Framework (, , and) use Maven for dependency PersistanceLayer loader-framework loader-framework-core
management and build. You will still use Eclipse as your IDE and code repository, but you will need to install a Maven plugin for Eclipse.

Install the .Maven plugin for Eclipse
Provide a URL and userid/password to a Maven repository on a server (which manages your dependencies or dependent jar files). The Maven
repository at Mayo Clinic is

http://bmidev4:8282/nexus-webapp-1.3.3/index.html

Import the Loader Framework classes from SVN.
You will most likely see build errors about missing jars. Resolve those by right clicking on the project with errors, select , and Maven Resolve

. This will pull the dependent jars from the Maven repository into your local environment.Dependencies
To build a Maven project, right click on the project, select , then select .Maven assembly:assembly

Eclipse Project Setup

When you create a new loader project in Eclipse, it is recommended you follow the Maven directory structure. By following this convention, Maven can
build the project and find the test cases.

The following diagram is from the Maven documentation:

http://m2eclipse.sonatype.org/
http://www.cancer.gov/policies/linking

For more information on the Maven project, refer to the .documentation

Configure your Spring Config (myLoader.xml)

Spring is a lightweight bean management container; among other things, it contains a batch function that is utilized by the Loader Framework. A loader
using the framework will need to work closely with Spring Batch. The way it does that is through Spring's configuration file where you configure beans
(your loader code) and how the loader code should be utilized by Spring Batch (by configuring a Job, Step, and other Spring Batch stuff in the spring
config file). Here is sample code:

<source>
<job id="ioSampleJob">
 <step name="step1">
 <tasklet
 <chunk reader="fooReader" processor="fooProcessor" writer="compositeItemWriter" commit-interval="100">
 </chunk>
 </tasklet>
 </step>
</job>

<bean id= "compositeItemWriter" class="...compositeItemWriter">
 <property name="delegate" ref="barWriter" />
</bean>

<bean id="barWriter" class="...barWriter" />
</source>

What follows is a brief overview of those tags related to the LoaderFramework. For more detail refer to the .Spring documentation

Beans

The tag is the all-encompassing tag. You define all your other tags in it. You can also define an import within this tag to import an external beans:beans
Spring config file. (Import is not shown in the sample image above.)

Bean

Use these tags, ', to define the beans to be managed by the Spring container by specifying the packaged qualified class name. You can also beans:bean
specify inititialization values and set bean properties within these tags.

http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://www.cancer.gov/policies/linking
http://static.springsource.org/spring-batch/reference/html/index.html
http://www.cancer.gov/policies/linking

<source>
<beans:bean id="umlsCuiPropertyProcessor" parent="umlsDefaultPropertyProcessor" class="org.lexgrid.loader.
processor.EntityPropertyProcessor">
 <beans:property name="propertyResolver" ref="umlsCuiPropertyResolver" />
</beans:bean>
</source>

Job

The tag is the main unit of work. The job is comprised of one or more steps that define the work to be done. Other advanced and interesting things can job
be done within the Job such as using and tags to indicate work that can be done in parellel steps to improve performance.split flow

<source>
<job id="umlsJob" restartable="true">
 <step id="populateStagingTable" next="loadHardcodedValues" parent="stagingTablePopulatorStepFactory"/>
...
</Source>

Step

One or more tags make up a job and can vary from simple to complex in content. Among other things, you can specify which step should be step
executed next.

Tasklet

You can do anything you want within a Tasklet, such as sending an email or a LexBIG function such as indexing. You are not limited to just database
operations. The Spring documentation also has this to say about Tasklets:

The Tasklet is a simple interface that has one method, execute, which will be a called repeatedly
by the TaskletStep until it either returns RepeatStatus.FINISHED or throws an exception to signal
a failure. Each call to the Tasklet is wrapped in a transaction.

Chunk

Spring documentation says it best:

Spring Batch uses a "Chunk-Oriented" processing style within its most common implementation. Chunk-
oriented processing refers to reading the data one at a time, and creating "chunks" that will be
written out, within a transaction boundary. One item is read in from an ItemReader, handed to an
ItemWriter, and aggregated. Once the number of items read equals the commit interval, the entire
chunk is written out via the ItemWriter, and then the transaction is committed.

Reader

An attribute of the tag. Here is the class that you defined implementing the Spring ItemReader interface to read data from your data file and create chunk
domain-specific objects.

Processor

Another attribute of the tag. This is the class that implements the ItemProcessor interface where other manipulations of the domain objects take chunk
place. In the case of the Loader Framework, we create LexGrid model objects from the domain objects so that they can be written to the database via
Hibernate. Note that this is not a required attribute. In theory, if you had a data source from which you could read such that you could create LexBIG
objects immediately, you would not need a processor. In practice this would most likely not be the case, but rather you need to work with the data to get it
into LexBIG objects.

Writer

Attribute of the tag. This class will implement the Spring interface ItemWriter. In the case of the Loader Framework, these classes have been chunk
written for you. They are the LexGrid model objects that use Hibernate to write to the database.

Key Directories

Below is an image of the loader-framework-core project in Eclipse, which shows the key directories of the Loader Framework. The following is a summary
of the contents of those directories.

Directory Summary

connection Connect to LexBIG and do LexBIG tasks such as register and activate

constants Assorted constants

dao Access to the LexBIG database

data Directly related to data going into the LexBIG database tables

database Database-specific tasks not related to data, such as finding out the database type (MySQL, Oracle)

fieldsetter Spring-related classes for helping to write to the database

lexbigadmin Common tasks for LexBIG to perform, such as indexing

listener Listeners you can attach to a load so that the code will execute at certain points in the load, such as a cleanup listener that runs when the
load is finished, or a setup listener, etc.

logging Access to the LexBIG logger

processor Important directory: classes to which you can pass a domain-specific object and which will return a LexBIG object

properties Code used internally by the Loader Framework

reader Readers and reader-related tools for loader developers

rowmapper Classes for reading from a database; currently experimental code

setup Loader developers should not need to dive into this directory. Classes such as JobRepositoryManager that help Spring do its work; as
Spring hums along it keeps tables of its internal workings.

staging Helper classes to use if your loader needs to load data to the database temporarily

wrappers Helper classes and data structures such as a Code/CodingScheme class

writer Miscellaneous classes that write to the database. These are not the same classes you would use in your loader, i.e the LexBIG model
objects that use Hibernate. Those classes are contained in the PersistanceLayer project (shown below). It is by using those classes in the
PersistenceLayer that you let the Loader Framework do some of the heavy lifting for you.

Algorithms

None

Batch Processes

None

Error Handling

Spring Batch gives the Loader Framework some degree of recovery from errors. Like the other features of Spring, error handling is something you need to
configure in the Spring config file. Basically, Spring will keep track of the steps it has executed and make note of any step that has failed. Those failed
steps can be re-run at a later time. The Spring documentation provides additional information on this function. See and .ConfigureJob ConfigureStep

Database Changes

None

Client

Loaders written to use the new framework will be called via the command line or script. Currently, the LexBIG GUI does not provide a framework to
dynamically load extendable GUI components.

JSP/HTML

None

Servlet

None

Security Issues

None

Performance

Spring can accommodate parallel processing to enhance performance. The Spring documentation provides a good discussion of this topic. Refer to the Sc
 page.alability

Internationalization

Not internationalized

Installation / Packaging

The Loader Framework is packaged as a LexBIG extension and thus is not included in the LexBIG jar

Migration

None

Testing

Automated tests are run via Maven. As mentioned earlier, the projects containing the Loader Framework code are configured to work with Maven. The
illustration below shows the PersistenceLayer project and its standard Maven layout. Notice the structure of the test code mirrors the structure of the
application code. To run the automated test in our Eclipse environment, we select the project, right click, select and select . Maven Run As Maven test
does the rest.

http://static.springsource.org/spring-batch/reference/html/configureJob.html
http://www.cancer.gov/policies/linking
http://static.springsource.org/spring-batch/reference/html/configureStep.html
http://www.cancer.gov/policies/linking
http://static.springsource.org/spring-batch/reference/html/scalability.html
http://static.springsource.org/spring-batch/reference/html/scalability.html
http://www.cancer.gov/policies/linking

Test Guidelines

The test cases are also integrated into the LexBIG 5.1 build environment and are run with each build.

Test Cases

See System Testing

Test Results

See System Testing

	3 - LexEVS 6.x Loader Framework

