1 - LexEVS 5.x API

Contents of this Page

® |ntroduction
® Core Services
® Service Extensions
O Query Extensions
© Load Extensions
© Export Extensions
© Index Extensions
O Generic Extensions
® Utilities
© |terators
© Search Algorithms
© Additional Utility Classes
® Code Examples
© Concept Resolution
© Service Metadata Retrieval
© Combinatorial Queries
© Additional Resources
® LexEVS GUI
Launching the GUI
Overview
Creating New Queries
Customizing Queries
Working with Code Sets
Working with Code Graphs
© Viewing Query Results
® Value Domain Services
® Pick List Services

O O O O O O

Introduction

This document is a section of the Programmer's Guide.
The LexEVS APIs fall into three primary categories:

® Core Services Includes the LexBIGService, LexBIGServiceManager, CodedNodeSet and CodedNodeGraph classes, which provide the initial
entry points for programmatic access to all system features and data.

® Service Extensions The extension mechanism provides for pluggable system features. Current extension points allow for the introduction of
custom load and indexing mechanisms; unique query, sort, and filter mechanisms; and generic functional extensions which can be advertised for
availability to client programs.

® Utilities Utility classes, such as those implementing iterator support, are provided by the system to provide convenience and optimize the
handling of resources accessed through the runtime.

Core Services

The LexBIGService illustrated below provides central entry points for programmatic access to system features and data. Some of the features are:

getCodingSchemeConcepts
getFilter
getGenericExtensions
getHistoryUpdate
getMatchAlgorithm

and other features.

https://wiki.nci.nih.gov/display/LexEVS/LexEVS+5.x+Programmer%27s+Guide

clazs LexBIGService -

Sermlizmble

winterface»
LexBlGService:'LexBIGSeivice

+++++++++F+F

getCodingSchemeConcepts|String, CodingSchemeVersionOrTag) © CodedNodeSet
getCodingSchemeConcepts(String. CodingSchemeVersioniTag. boolean) : CodedNodeSeat
getFiiter String) Filter

getFifterExtensions() . ExtensionDescriptionList

getGenericExtension{String) - GenericExtension

getGenericExtensions() : ExtensionDescriptionList

getHistoryService(String) : HistoryService

getLastUpdateTime() : Date

gethMatchAlgorthms() - ModuleDescriptionList

gethodeGraph(String. CodingSchemeVersionQrTag, String) : CodedNodeGraph
gethlodeSet{String, CodingSchemeVersionOrTag. LocalNamelist) : CodedNodaSeat
getServiceManager|{ Object) : LexBIGServiceManager

getServicelMetadatal) ; LexBiGServiceMetadata

getSortAlgorithm(String) - Sort

getSortAlgorithms(SortContext) - SortDescriptionList
getSupportedCodingSchemes() : CodingSchemeRenderingList
resolveCodingScheme(String, CodingSchemeVersionOrTag) : CodingScheme
resolveCodingSchemeCopyright{String. CodingScheme\VersionOrTag) @ String

The following are the components of interest:

CodedNodeGraph A virtual graph where the edges represent associations and the nodes represent concept codes. A CodedNodeGraph
describes a graph that can be combined with other graphs, queried or resolved into an actual graph rendering.

CodedNodeSet A coded node set represents a flat list of coded entries.

LexBIGService This interface represents the core interface to a LexEVS service.

LexBlIGServiceManager The service manager provides a single write and update access point for all of a service's content.

The service manager allows new coding schemes to be validated and loaded, existing coding schemes to be retired and removed and the status
of various coding schemes to be updated and changed.

LexBIGServiceMetadata Interface to perform system-wide query over optionally loaded metadata for loaded code systems and providers.
Value Domain and Pick List Services For details, see 3 - LexEVS 5.x Value Domain Service in this guide.

Service Extensions

Provides registration and lookup for pluggable system features.

https://wiki.nci.nih.gov/display/LexEVS/3+-+LexEVS+5.x+Value+Domain+Service

cd Extensions -

winterfaces winterfaces
ExtensionRegistry Extendable
~ getExportExtension(Sinng) : ExtensionDezcnplion ~ getDeecriplicn(] : Sinng
~ gelExporExtensions() ; ExtensionDescriptionl izt ~ geiName() ; Siring
~ geiFilierExtenszion{Sinng] ; ExtenzionDescription ~ getProviden]) : Siring
~ geiFilterExtensions(] : ExtenzionDescriptionl izt ~ getWersion(j ; Sinng

~ getGenerctxiension|Sinng) ;- ExenzionDezcrption
~ getGenencExfenzions() © ExensionDezcnpiionl izt

~ getindexExtension{Sinng) ; ExtensionDescripiion

~ getindexExtensions(} ; ExtensionDescripiionlist

~ gefl oadExtension(Sinng) ; ExtenzionDescrption

~ gelloadExiensionsz(] ;| ExtenzicnDezcripliionl izt

~ getSorntxtenzion{Sinng) | SonDezenpiion

~ getSorExtenzions(} - SorfDezcriptionlist

~ regizsterExpornExtenzionExtenzicnDezcription) ; void
~ regizterFilterExtension|ExtensionDeecription) © void
~ regizsterGensricExiension/ExtensionDezcnpliion) void
~ registerdndexExtenszion/ExtensionDeszcription) ; void
~ register cadExtension(ExtensionDescription) © void
~ regizterSorCxienzion{SonDezcrpiion) © void

~ unregizterCxporiCxiension|Sirnng) & void

~ unregizterFilterExtension{Sinng) : void

~ unregisterGenencExtension|{Sinng) ; void

~ unregisterdndexExtenesion]Sinng) © void

~ unregizier cadExiension|sSinng) © void

~ unregizterSorCxtension{Sinng) ;| void

The following are the components of interest:
® ExtensionRegistry Allows registration and lookup of implementers for extensible pieces of the LexEVS architecture.

® Extendable Marks a class as an extension to the LexEVS application programming interface. This allows for centralized registration, lookup, and
access to defined functions.

Query Extensions

Query extensions provide the ability to further constrain or manage query results. For details on the LexEVS v5.1 Query Extension, see the document
section Query Services Extension.

cd Guery -

Extendabie Extendsbl=
Comparator winterfacexs

winterfaces Filter
Sort ~ match{RezolvedConceptReference) - boolean

The following are the components of interest:

® Filter Allows for additional filtering of query results.
® Sort Allows for unique sorting of query results. This interface provides a comparator to evaluate order of any two given items from the result set.

Load Extensions

Load extensions are responsible for the validation and import of content to the LexEVS repository. Vocabularies may be imported from a variety of formats
including LexGrid canonical XML, NCI Thesaurus (OWL), and NCI MetaThesaurus (UMLS RRF). For details on LexEVS loaders and the Loader
Framework, see the Loader Guide. The following graphic shows Loader interface with the LexGridLeader, NCI_MetaThesaurusLoader, UMLS_Loader,
Metadata_Loader, OBOHistoryLoader, OBO_Loader, NCIHistoryLoader, OWL_Loader, and the Text_Loader feeding into the Loader interface.

https://wiki.nci.nih.gov/display/LexEVS/2+-+LexEVS+5.x+Query+Service+Extension
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+5.x+Loader+Guide

td Load

wineriscee 2
; s ez e
LexGrid_Loader + =

wnEriaee
NCI_Metz Thesaurusl oader

smefaee

UMLS Loadar

anEriace

0B0HistoryLoader

sneEriacze

Wetalata Loader

The following are the components of interest:

® Loader The loader interface validates and/or loads content for a service.

® LexGrid_Loader Validates and/or loads content provided in the LexGrid canonical XML format.
NCI_MetaThesaurusLoader Validates and/or loads the complete NCI MetaThesaurus. Content is supplied in RRF format. Note: To load
individual coding schemes, consider using the UMLS_Loader as an alternative.

® OBO_Loader Validates and/or loads content provided in Open Biomedical Ontologies (OBO) text format.

® OWL_Loader Validates and/or loads content provided in Web Ontology Language (OWL) XML format. Note that for LexEVS phase 1 this loader
is designed to specifically handle the NCI Thesaurus as provided in OWL format.

® Text_Loader A loader for delimited text type files. Text files come in one of two formats: indented code/designation pair or indented code
/designation/description triples.

® UMLS_Loader Load one or more coding schemes from UMLS RRF format stored in a SQL database.

® MetaData_Loader Validates and/or loads content provided in metadata xml format. The only requirement of the xml file is that it be a valid xml
file.

® NCIHistoryLoader A loader that takes the delimited NCI history file and applies it to a coding scheme.

® OBOHistoryLoader Load an OBO change history file.

Export Extensions

Export extensions are responsible for the export of content from the LexEVS repository to other representative vocabulary formats.

cd Export -

Exfendsble
winterfaces
Exporter

+ clearlog() ;- void

+ getlogfloglevel) : LogEming]
+ geiReferencesz(] ; URI]

+ getSiatuzs(] ; ExporntSiatius

N4

winter faoss
Lex Grid_Exporter
+ exporfAbzoluteCodingScheme VersionReference, URS, boolean, boolean, boolean) © void
+ getSchemaURL{) - URI
+ getSchemaVerzion(] : Siring

winterfaces
OBO_Exporter
+ exporfAbzscluteC odingSchemeVerzionReference, URI, boolean, boolean, boolean) © void
+ getOBOVer=ion|) : Sinng

winterfaoes
OWL_Exporter
+ exporfAbzoluteCodingScheme VersionReference, URS, boolean, boolean, boolean) © void

The following are the components of interest:

® Exporter Defines a class of object used to export content from the underlying LexGrid repository to another repository or file format.
® LexGrid_Exporter Exports content to LexGrid canonical XML format.

® OBO_Exporter Exports content to OBO text format.

® OWL_Exporter Exports content to OWL XML format.

Index Extensions

Index extensions are built to optimize the finding, sorting and matching of query results.

cd Index -

Losder

winterfaces
IndexLoader

+ clesmAbzoluteCodingSchemeVersionReference, index, boolean) - void
+ lpadfAbzoiuieCodingScheme VersionRefarence, index, boolesn, boolesn) © void
+ rebuildjAbzciuteCodingSchemeVersionReference, index, boolesn) | void

Exfendsble
winterfaces
Index

+ geilosden) ; indexl osder
+ [locafteMsichingDesignations(CodedNode Sed, Siring, boolean, Sinng) : CodedNodeSet

+ [locateMafchingProperies{CodedNodeSet, LocalNamel izt, Sinng, Sinng) : CodedNodeSet

The following are the components of interest:

® Index Identifies expected behavior and an associated loader to build and maintain a named index. Note that a single loader may be used to
maintain multiple named indexes.

* |IndexLoader Manages registered index extensions. A single loader may be used to create and maintain multiple indexes over one or more
coding schemes.

It is the responsibility of the loader to properly interpret each index it services by name, version, and provider.

Generic Extensions

Generic extensions provides a mechanism to register application-specific extensions for reference and reuse.

cd Generic

Extendsbie
winterfaces
GenerncExtension

winterfaces
LexBlIGServiceConveniencellethods

~ codeToMsme[Sinng, String, CodingSchemeVersioniTag) ; Sining

~ cregfeCodeNodeSel{Sinng(], Sirng, CodingSchemeVersionOrTag) - CodedNodeSet
~ getChildrenOffSinng, Sirnng, Sinng, Sinng, CodingSdhemeVerzionOrTag, boolean) : Association
~ getEndNodesz(Sinng, CodingSchemeVerzionOrTag, Sining, Sinng) | ResolvedConcepiReferen
~ geiParentz0f 5inng, Sinng, Siring, Sinng, CodingSchemeVersionOrTag, boolean) : Azzocisficn

~ geiRenderngDetsil{Sinng, CodingSchemeVersionCriag) © CodingSchemeRendening

~ gefTopNodesz(Siring, CodingSchemeVersionCOrTag, Sting, Sining) © ResohvedConceptRefarancel izt
~ izCodeRetired{Sinng, Sinng, CodingSchemeVerzionCrTag) - boolean

~ nameToCods(. 1g, Sining, CodingSchemeVersionOrMag) © String

cel izt

The following are the components of interest:

® GenericExtension The generic extension class. Classes that implement this class are accessible via the LexBIGService interface.
® LexBIGServiceConvenienceMethods Convenience methods to be implemented as a generic extension of the LexEVS API.

Utilities
Defines helper classes externalized by the LexEVS API.

Ilterators

Iterators are used to provide controlled resolution of query results.

cd lterators

winterfaoes
EntityListterator

+ hasMexi]) : boolesn
+ numberRemaining() ; int
+ relesee() | void

winterfases
ResolvedConceptReferencesiterator

The following are the components of interest:

® EntityListlterator Generic interface for flexible resolution of LexEVS objects.
®* ResolvedConceptReferenceslterator An iterator for retrieving resolved coding scheme references.

Search Algorithms
The following are supported LexEVS Search Algorithms.

Search Algorithm

Nane: LuceneQuery

Version: 1.0

Description: Search with the Lucene query syntax.

See http://1lucene. apache. org/javal/2_3_2/queryparsersyntax. htm)

Search Algorithm

Nane: Doubl eMet aphoneLuceneQuery

Version: 1.0
Description: Search with the Lucene query syntax, using a 'sounds |ike' algorithm

A search for 'atack' will get a hit on 'attack'
See http://lucene. apache. org/javal/ 2_3_2/ queryparsersyntax. htm)

Search Algorithm

Nane: StemmedLuceneQuery
Version: 1.0
Description: Search with the Lucene query syntax, using stenmed terns.

A search for 'trees' will get a hit on 'tree'
See http://1ucene. apache. org/javal/ 2_3_2/ queryparsersyntax. ht m)

Search Algorithm

Nane: startsWth
Version: 1.0
Description: Equivalent to 'ternt' (case insensitive)

Search Algorithm

Nane: exact Mat ch
Version: 1.0
Description: Exact match (case insensitive)

Search Algorithm

Nane: contains

Version: 1.0

Description: Equivalent to '* ternf *' - in other words - a trailing wildcard on a term
(but no leading wild card) and the term can appear at any position.

Search Algorithm

Nane: RegExp

Version: 1.0

Description: A Regul ar Expression query. Searches against the |owercased text, so a
regul ar expression that specifies an uppercase character will never return a match.
Additionally, this searches against the entire string as a single token, rather than
the tokenized string - so wite your regul ar expression accordingly.

Supported syntax is docurmented here:

http://jakarta. apache. or g/ regexp/ api docs/ or g/ apache/ r egexp/ RE. ht m

Additional Utility Classes

@ Note

It is highly recommended that all LexEVS programmers familiarize themselves with the classes contained in the or g. LexGri d. LexBI G
Utility package. Many useful features are provided in an effort to increase approachability of the API and assist the programmer in common
tasks.

This package currently contains the following classes:

® Constructors - Helper class to ease creating common objects.

® ConvenienceMethods - One-stop shopping for convenience methods that have been implemented against the LexEVS API.
® LBConstants - Provides constants for use in the LexEVS API.

® ObjectToString - Provides centralized formatting of LexEVS Objects to String representations.

Code Examples

Concept Resolution

Programmers access coded concepts by acquiring first a node set or graph. After specifying optional restrictions, the nodes in this set or graph can be
resolved as a list of Concept Ref er ence objects which in turn contain references to one or more Concept objects. The following example provides a
simple query of concept codes:

Java Code Snippet

/1 Create a basic service object for data retrieval
LexBl GService | bSvc = LexBI GServi cel npl . def aul t1 nstance();

/1 Create a concept reference |list appropriate for this coding schene and

/1 this concept code where the paraneters are a String array consisting of

/1 a single value and the name of the coding schene where this concept resides.

Concept Ref erencelLi st crefs = Conveni enceMet hods. cr eat eConcept Ref er encelLi st (
new String[], SAWMPLE_SCHEME);

/1 Initialize a coding schene version object with a version nunber for the
/1 sanpl e scheme.

Codi ngScheneVer si onOr Tag csvt = new Codi ngScheneVer si onOr Tag() ;

csvt. set Ver si on(VERSI ON) ;

/Il Initialize a CodedNodeSet Object with all concepts in our sanple coding

/'l scherme. (W nanmed the scheme we wanted and by using the Bool ean val ue,

/1 false, retrieved both active and inactive concepts.) This nethod call

/1 ignores the version tag using the null parameter. The final

/1 restrictToCodes(crefs) nethod call restricts the return to the single

/1 code in the previously initialized |ist of one.

CodedNodeSet nodes = | bSvc. get Codi ngSchenmeConcept s(SAMPLE_SCHEME, csvt).
restrictToCodes(crefs);

/1 Build a list of references fromthe current (and already restricted) set
/1 and restrict themfurther to the single property of NCI_NAVE and
/1 restrict to a single answer (paraneter 1)).
Resol vedConcept Ref er enceLi st mat ches = nodes. resol veToLi st (
nul |, Conveni enceMet hods. creat eLocal NanmeLi st ("FULL_SYN'), 1);

/| Does our list of one contain the single reference we were |ooking for?
/1 1f so, then initialize a Resol vedConcept Reference with the result and
/1 initialize a Concept object by calling the getReferencedEntry()
/1 method. The Concept object is the base information nodel object and
/1 contains, anong other things, the CONCEPT_NAME val ue we were seeking.
/1l W retrieve it with a call to the first element in the properties |ist,
/1 getting the text & it's acconpanying content.
i f (mat ches. get Resol vedConcept Ref erenceCount () <> 0)
{ Resol vedConcept Ref erence ref = (Resol vedConcept Ref er ence) mat ches.
enuner at eResol vedConcept Ref erence() . next El ement () ;
Concept entry = ref.get ReferencedEntry();
System out. println("Mtching synonym " +
entry. getPresentation(0).getValue()); }

el se
{ Systemout.println("No match found"); }

Service Metadata Retrieval

The LexEVS system maintains service metadata which can provide client programs with information about code system content and assigned copyright
llicensing information. Below is an brief example showing how to access and print some of this metadata:

Java Code Snippet

/1 W can get a Codi ngScheneRenderi ngLi st object directly from LexBi gService
LexBI GService | bs = LexBl GServi cel npl . defaul t1nstance();
Codi ngSchenmeRender i ngLi st scheneLi st = | bs. get Support edCodi ngSchemes();

for (Codi ngSchemeRendering csr : scheneLi st. get Codi ngSchemeRendering())

{
Codi ngSchemeSummary css = csr. get Codi ngScheneSunmary();

/1 Print separator then details fromthe Codi ngScheneSunmary
System out . println(" ")
System out. println(CbjectToString.toString(css));

/1 Set up a coding schene reference to resolve Copyri ght
String urn = css. get Codi ngScheneURI () ;
String version = css. get RepresentsVersion();
Codi ngScheneVer si onOr Tag csVorT =
Constructors. creat eCodi ngScheneVer si onOr TagFr onVer si on(ver si on) ;
Codi ngSchenme cs = | bs. resol veCodi ngSchenme(urn, csVorT);
Systemout. println("Copyright: " +cs.getCopyright().getContent());

/Il Get the final details fromthe RenderingDetail
RenderingDetail rd = csr.getRenderingDetail();
System out. println(CbjectToString.toString(rd));
Systemout.printin();

Combinatorial Queries

One of the most powerful features of the LexEVS architecture is the ability to define multiple search and sort criteria without intermediate retrieval of data
from the LexEVS service. Consider the following code snippet:

Java Code Snippet

System out . println("Exanpl e double restriction query with additional
+"application of sort criteria and restricted return values.");
/| Declare the service...
LexBl GServi cel npl | bs = LexBl GServi cel npl. defaul tlnstance();

/1 Start with an unconstrained set of all codes for the vocabul ary
Codi ngScheneVer si onOr Tag csvt = new Codi ngScheneVer si onOr Tag() ;

csvt . set Ver si on(VERSI O\2) ;

CodedNodeSet cns = | bs. get Codi ngScheneConcept s(SAMPLE_SCHEME2, csvt);

// Constrain to concepts with designations (assigned text presentations
/1 that contain text that sounds |ike 'Short Saphenous Vein'
cns = cns.restrict ToMat chi ngDesi gnati ons(
"Short Safinus Vane",
Sear chDesi gnati onOpti on. ALL,
Mat chAl gori t hns. Doubl eMet aphoneLuceneQuery. toString(),
null);

/1 Further restrict the results to concepts with a semantic type of
/1 ' Anatomical Structure'
cns = cns.restrict ToMat chi ngProperties(

Constructors. createLocal NaneLi st (" Semantic_Type"),

null, "Anatom cal Structure",
"exact Mat ch",
null);

/1 Indicate that the resulting list should be sorted with the best

Il results first and then sorted by code if there is a tie.

Sort OptionList sortCriteria = Constructors. createSortOptionList(
new String[] {"matchToQuery", "code"});

/1 Indicate to return only the assigned UML.S_CU and

/'l textual Presentation properties.

Local NareLi st restrict To =Conveni enceMet hods. cr eat eLocal NameLi st (
new String[] {"UMLS_CU ", "textual Presentation"});

/1 Still nothing conmputed yet.

/1 Performthe query && resolve the sorted/filtered list with a
/1 maxi mum of 6 itens returned.

Resol vedConcept Ref erenceLi st |ist = cns.resol veToLi st (

sortCriteria, restrictTo, null, 6);
/1 Print the results
Resol vedConcept Ref erence[] rcr = |ist.getResol vedConcept Ref erence();
for (Resol vedConcept Reference rc : rcr)
{
System out. println("Resol ved Concept: " + rc.getConcept Code());
}

This example shows a simple yet powerful query to search a code system based on a 'sounds like' match algorithm (the list of all available match
algorithms can be listed using the 'ListExtensions -m' admin script).

® Declaring the target concept space
The coded node set (variable ‘'cns') is initially declared to query the NCI Thesaurus vocabulary. At this point the concept space included by the set
can be thought of as unrestricted, addressing every defined coded entry (the 'false' value on the declaration indicates to also include inactive
concepts). However, it important to note that no search is performed by the LexEVS service at this time.
® Applying filter criteria
Similarly, no computation is performed (to realize query results) during invocation of the r est ri ct ToMat chi ngDesi gnati ons() andrestric
t ToMat chi ngProperti es() methods. However, these calls effectively narrow the target space even further, indicating that filters should be
applied to the information returned by the LexEVS query service.
® Using the Lucene Query Syntax and other text matching functions
O The text criteria applied in methods such as restrictToMatchingDesignations() uses one of a number of powerful text processing
applications to provide the user with broad capability for text based searches. Text matches can be simple applications of exactMatch,
startsWith or contains algorithms as well as powerful regular expressions and Lucene Query syntax (used in the LuceneQuery function.)
As shown above these options are passed into the restrictToMatchingDesignations() Method as parameters.
© Lucene Queries are well documented and can be very powerful. The uninitiated user may need some background on their use however.
The user should start here with the official Lucene Query Parser documentation

Li nk provided for historical purposes http://lucene.apache.org/javal/2_3_2/queryparsersyntax. ht m

© Keep in mind that some LexEVS queries such as "startsWith" and "contains" use wild card searches under the covers, so that use of
wild cards in this context can cause errors in searches involving these search types.
O Instead it is best to use the flexibility of the Lucene Query searches in the matchingDesignation by using the Lucene Query searches in
LexEVS where most searches will work much as described in the query syntax documentation.
© Special characters in the Lucene Query search can cause unexpected results. If you are not using special characters as recommended
for various ** Lucene search mechanisms then your searches may not return expected results or may return an error. If the value you
are searching upon contains say, parenthesis, you will need to place the value in quotations. The escape characters described in the
Lucene Documentation do not work at this time.
© Likewise you should not expect to see a Lucene Query narrow down search results as you progressively enter a longer substring more
closely matching your term of interest. Instead use the contains method.
® Applying sorting criteria
Multiple sort algorithms can be applied to control the order of items returned. In this case, we indicate that results are to be sorted based on
primary and secondary criteria. The "matchToQuery" algorithm indicates to sort the result according to best match as determined by the search
engine. The "code" item indicates to perform a secondary sort based on concept code.

@ Note

The list of all available sort algorithms can be listed using the 'ListExtensions -s' admin script.

® Restricting the information returned for matching items
The LexEVS API also allows the programmer to restrict the values returned for each matching concept. In this example, we chose to return only
the UMLS CUI and assigned text presentations.

® Retrieving the result
A query is finally performed during the ‘resolve’ step, with results returned to the declared list. It is at this point that the LexEVS service does the
heavy lifting. By declaring the full extent of the request up front (namespace, match criteria, sort criteria, and returned values), the service then
has the opportunity to optimize the query path. In addition, in this example we restrict the number of items returned to a maximum of 6. This
combined approach has the benefit of reducing server-side processing while minimizing the volume and frequency of traffic between the client
program and the LexEVS service.

@ Note

While this section provides one example of combining criteria, this same pattern can be applied to many of the CodedNodeSet and Co
dedNodeGr aph operations. It is strongly recommended that programmers familiarize themselves with this programming model and its
application.

Additional Resources

Reserved for links to Code Snippets and Overview of the Software.

LexEVS GUI

The LexEVS Graphical User Interface, or GUI, is an optional component of the LexEVS install which will be in the /gui folder of the base LexEVS
installation (see file breakdown in Overview of the Software). The GUI is meant to provide a simple tool to test LexEVS APl methods and quickly view the
results; almost all public methods defined by the LexEVS API are supported. This guide provides a brief overview of how the GUI can aid programmers in
writing code to the LexEVS API.

@ Note

The LexEVS GUI supports both administrative and test functions. Please refer to the LexEVS Administrator's Guide for instructions on using the
GUI as an administration tool.

Launching the GUI

Depending on the operating systems that you selected at installation time, you should have one or more of the following programs in the / gui folder:

Li nux_64-1bGUJ . sh Li nux-1bGUJ . sh
OSX- | bGUI . command W ndows- | bGUI . bat

Launch the GUI by executing the appropriate script for your platform. You will be presented with an application that looks like this:

-lolx]

Commands Load Tetminalogy Export Terminology. Help

Awailable Code Systems

Code System Mame | Code Syskem Version I LRI I Tag I Stakus I Lask Lpdate Time Gek Code Set |
iThesaurus. awl 05,09, byt Rkt fincich, nci.nib, gose femlfowliE. inackive 5:31:35 AMon 10012/

MNCI Thesaurus 10.07e httpe ffncich, nci. nib, gose fxmlfowliE. . active 10:41:17 &M on 09)20; &et Code Graph |
MNCI Thesaurus 10.10a Rtk fincich . nai. nib, gosefemlfowl/E,.. | PRODUCTION | active S:11:07 AM on 100142

Zebrafish 1.2_June_14_2010 http: ffncich, nci.nib. gos fxminsfzeb. . active 1:17:29 PM on 09/26)2 Gek Hiskary |
Manoparticle Ontalogy 1.0_Jan_29_2010 Rkt ffpurl. bioontlogy. argiontalag. .. active Q46:21 AMon 104212

fungal_anatomy IUMNASSTGMNED urnilsid:hioontology . org:fungal_a... active 10;17:08 AM on 10/04; Refresh |
Gene Cntology October2010 urn:lsid:bioontology, org: GO PRODUCTION | active 6:50:03 AMon 1of21f: —/—————————————
aukos 1.0 urmioid:11.11.0.1 PRODUCTION | inactive 10:10:41 AM on 10/04) Leal Bl |
Automobiles Extension 1.0-extension urmioid:11.11.0.1.1-extension inactive 7:153:49 AM on 10152 _

MNCI Metathesaurus 200601 urmeoidi2, 16.840,1,1135883,3.26.1.2 active 10:51:33 AM on 09/21) Chanige Tag |
Logical Observation Iden... 229 urn:oid:2, 16.840,1,113883.6.1 PRODUCTION | active £:58:30 AM on D920,z : o
Logical Observation Iden... 226 urmioid:2, 16.840,1,113883.6.1 inackive 7126107 PM on 09/27)2 e |
Current Procedural Termi... 2010 urnioid: 2, 16.840,1,113883.6.12 active 1:08:15 PM on 10/06)2

Medical Dictionary For Re... 12.0 urmoid:2.16.840.1.113583.6.163 active 0:25:32 AM on 097242 Do adtivate |
ICD 9 M 1.0 urnioid: 2, 16.840,1,113883.6.2 active 1:06:36 PM on 10/06/2

SMOMED Clinical Terms, ... 2010_01_31 urn:oid: 2, 16.840.1.113883.6.96 active £:05:03 PM on 09/18/2 T |
SNOMEDCT _2010_01_3... 20100131 urnioid:C2733618, SNOMEDCT.IC. ., active 6:11:09 AM on 10f25)2
MOR:MDR1Z 1 To ICD.., 200909 urn:oid: CL4 3320, MDA, ICDACM ackive 1:32:43 PMon 10/142 Remave History |
MDR:MDR12 1 T (CST.., 200909 urnioid:CL413321,MDR..CST active 1:32:01 PMon 10/14/2

MCIE bo ICDCM Mapping 1.0 urm:oid:MCIE_ko_ICD9CM_Mapping active 1:03:55 PM on 10/06)2 A e |

Reebuild Indes |

5Selected CodedModeSets and CodedModeGraphs Restrictions

{8 g]f=lg] |
Hdd

Interseckon |
Edit

Difference |

Remoye

Restrick b Codes |
Rstibo Source Codes |
Rstto Target Godes |

Remoye |
LaExpart |

HE

You must choose a single Code Set or Graph on the left,

Overview

The upper section of the GUI shows all of the code systems currently loaded, along with corresponding metadata. The lower section of the GUI is used to
combine, restrict and resolve Code Sets and Code Graphs.

The lower left section is where you can perform Boolean logic on Code Sets and Code Graphs. The lower right section is where you can introduce
restrictions on Code Sets and Code Graphs and browse results.

@ Note

The menu options are used primarily for administrative functions and are covered in detail by the LexEVS 5.x Administration Guide. In addition,
all of the disabled buttons in the top half of the application are used for administrative functions, and are also described in the Administration
Guide.

Creating New Queries
There are four buttons on the top half that are of interest for creating queries.

® Refresh - This button causes the LexEVS GUI to reread the available terminologies and their respective metadata. This can be useful when
using the GUI to view a LexEVS environment that is being modified by another process.

https://wiki.nci.nih.gov/display/LexEVS/LexEVS+5.x+Administration+Guide

® Get History - If a terminology with available history data is selected, this button opens a history browser to view it via the NCI history API. This
option is currently only applicable when working with the NCI Thesaurus terminology.

® Get Code Set -This button causes the selected terminology to be added to the lower left section of the GUI as a code set - which is noted by a
'CS' prefix.

® Get Code Graph -This button causes the selected terminology to be added to the lower left section of the GUI as a code graph - which is noted
by a 'CG' prefix.

Customizing Queries

After selecting a code system and clicking on Get Code Set or Get Code Graph, a row will be added to the lower left section of the GUI for each click.

There

are seven buttons in the lower left section that allow combinatorial logic between the code sets in the lower left.

® Union - This button is enabled if two Code Sets or two Code Graphs are selected in the lower left. Clicking the button creates a new virtual Code
Set or Code Graph which represents the Boolean union of the two selected items. All restrictions applied to the individual items still apply.

® [ntersection - This button is enabled if two Code Sets or two Code Graphs are selected in the lower left. Clicking the button creates a new virtual
Code Set or Code Graph which represents the Boolean intersection of the two selected items. All restrictions applied to the individual items still
apply.

® Difference - This button is enabled if two Code Sets or two Code Graphs are selected in the lower left. Clicking the button creates a new virtual
Code Set which represents the Boolean difference of the two selected Code Sets. All restrictions applied to the individual items still apply.

® Restrict to Codes - This button is enabled if a Code Set and a Code Graph are selected in the lower left. Clicking the button creates a new
virtual Code Graph which will be restricted to concept codes occurring in the selected Code Set.

® Restrict to Source Codes - This button is enabled if a Code Set and a Code Graph are selected in the lower left. Clicking the button creates a
new virtual Code Graph which will have its source codes restricted to codes occurring in the selected Code Set.

® Restrict to Target Codes - This button is enabled if a Code Set and a Code Graph are selected in the lower left. Clicking the button creates a
new virtual Code Graph which will have its target codes restricted to codes occurring in the selected Code Set.

® Remove - This button is enabled if any Code Set or Code Graph (or virtual Code Set or Code Graph) is selected in the lower left. Clicking the
button will remove the selected item from the list.

The lower right section of the GUI is used to apply restrictions to Code Sets or Code Graphs, and set the variables that need to be passed into the resolve
method.

Working with Code Sets

If a Code Set is selected in the lower left Select CodedNodeSets and CodedNodeGraphs, then the lower right section will look like this:

ML SEEH 1L MEOPIAST 008 L., | L5 UFMEOI0: 2, 1h G L INSCCrE LELLIE M On U)
MCI_Thesaurus 03.12a urnioid:2,16.840.1... PRODUCTION ackive 10:36:35 &M on 10 eaa o
SHMODEMT 2000 SHMODENT active 10:15:21 AM on 0¢ SR

Hemave |
Remove Histors: |
| _’J Rebuild Index |

Selected CodedModeSets and CodedNodeGraphs Restrictions

Automaobiles 1.0 Coded Mode Set 0 - Automobiles 1.0
o |
Intersection |

EdiE:
Difference |
Remaove |

Restrich bo Cores

[only Include Active Codes

Rsb Lo Saurce Eodes

REsbbo Target Eodes

Remove |

Set Sort Options | Resolve Code Set

In the lower right section, there are two halves - the top half and the bottom half. The top half is used to apply restrictions. The bottom half provides query
options and resolution.

® Add - This button introduces a new restriction to the Coded Node Set. Clicking it will bring up the following dialog box for creating restrictions:

Il Configure Restriction

Restriction Twpe |[§

Match Texk I

Match Algarithm ILuceneQuery

Match Language I
Preferred Only [

(8] 3

Zancel

The top drop down list indicates the type of restriction to add. The rest of the dialog box will change depending on the type of restriction selected.
All required parameters for the selected restriction type will be presented.

Working with Code Graphs

Edit - This button is enabled when a restriction is selected. Clicking it allows revision of an existing restriction.

Remove -This button is enabled when a restriction is selected. Clicking it removes the selected restriction.

Only Include Active Codes - This check box indicates whether or not to include inactive codes when resolving the selected code set.
Set Sort Options - This button will bring up a dialog box to choose the desired sort order of the results.

Resolve Code Set - This button will bring up a result window where the Code Set will be resolved and displayed.

If you select a Coded Node Graph in the lower left section of the LexEVS GUI, the lower right section, Restrictions, will look like this:

Renmoye History. |

| ﬂ Rebuild Trndex

L«

Selected CodedModeSets and CodedModeGraphs

0{iC5) - Automobiles 1.0
futti 7 ({5 1elg] I

Inkersection

Difference I
Rectrict o Codes I

Rt to Source Zodes

Rsbibo Tatgetitodes

Remowe |

Restrictions
Coded Mode Graph 1 - Automobiles 1.0

#Add

Edit

Remoye

‘LL

Relation Contsiner |

Focus Code |
Focus Code System I j
Max Resolve Depth |-1 ¥ Resclve Forward [Resolve Backward

Set Sort Oplions | Resolve as Set | Resolve as Graph |

Again, there are two halves to the lower right section. The top half allows restrictions to be applied to the selected Code Graph, and it works the same as it
does for a Coded Node Set. Please see the section above on applying restrictions to a Coded Node Set.

The lower half provides additional variables applicable when resolving a Coded Node Graph. For further explanation of these options, refer to the LexEVS

API documentation.

® Relation Container (Optional) - Indicates the CodingScheme Relations container to query. The drop down list is populated with allowable

selections.

® Focus Code (Optional) - Provides the code used as a starting point when resolving graph relations. This value is required for some queries,

depending on the nature of requested associations.

Resolve Backward - Populate codes upstream from the focus node (based on directionality defined by each association).
Set Sort Options - This button will bring up a dialog box to choose the desired sort order of the results.

Resolve As Set - Resolves and displays the graph results as a coded node set.

Resolve As Graph -Resolves and displays the graph results.

Viewing Query Results

Clicking on the Resolve buttons for either a Coded Node Set or a Coded Node Graph will bring up the Result Browser window:

HB Result Browser ==

Focus Code System (Optional) - Indicates the code system containing the Focus Code. The drop down list is populated with allowable selections.
Max Resolve Depth - How many levels deep should the graph be resolved? -1 is the default, which does not limit the depth.
Resolve Forward - Populate codes downstream from the focus node (based on directionality defined by each association).

TO0O1 - Truck

oding Scheme: Automobiles - ornioidi11.11.0.1

Ford - Ford Mokor Company
005 - Domeskic Auto Makers
73 - Oldsmobile

a0t - Car

0001 - Autormobile
Gl - @eneral Motors
Jaguar - Jaguar
Chewy - Chewrolet

oncept Code: TOO01
ntity Description: Truck
tatus: 65
s Active: true
First ¥Yersion: true
Last Yersion: trueg
Presentation t1: Truck
Is Preferred: true

Language: en
Match If Mo Context: true

TOOO1
Trucl L

L0001
Automobile

The left side shows a list of all the concept codes returned. When a concept code is selected on the left, the upper right will show a full description of the

selected code. The lower right will show a graph view of the neighboring concepts.

When a Coded Node Graph is resolved, the result viewing window will look like this (this is the same Code System as above):

BB Result Browser [_ O]

A0001 - Automobile]
TOOO1 - Truck,

a0t - Car

Brakes -

Tires -

Batteries -

005 - Domeskic Auto Makers
Ford - Ford Mokor Company j
Jaguar - Jaguar

GM - General Motars

73 - Dldsmobile

Chewy - Chewrolet

TOOO1
Trucl:
COoo1
i L Car
AD001 PR Brales
Automobile ey
= Tires
S ity s
top-thing Batteries
T Ford
003 sanme FOrd Motor Company
Domestic Auto Makers ... GM

General Motors

The left side still has a list of all of the concepts in the graph. The upper right will give a description of the selected concept. The lower right shows the
entire graph.

The lower right section is adjustable, and dynamic. It responds to mouse clicks, dragging, and numerous key combinations. Beyond a depth of 3, the graph
may "collapse" and not show all of the nodes until you click on a node. Clicking on a node will cause it to expand out and display its children. Here are a
list of key combinations recognized by the graph viewer:

Left Click + Mouse Movement - Drags the view.

Right Click + Mouse Movement Up Or Down - Zooms in or out.
Right Click (on white space) - Zooms the view to fit.

Ctrl + '+' - Expands the graph connection lines

Ctrl + '-' - Contracts the graph connection lines

Ctrl + 1" (or '2' or '3' or '4") - Changes the orientation of the graph.

Value Domain Services

For details about LexEVS Value Domain Services, see LexEVS Value Domain Services

Pick List Services

For details about LexEVS Pick List Services, see LexEVS Pick List Services

https://wiki.nci.nih.gov/display/LexEVS/3+-+LexEVS+5.x+Value+Domain+Service
https://wiki.nci.nih.gov/display/LexEVS/4+-+LexEVS+5.x+Pick+List+Service

	1 - LexEVS 5.x API

