Leading and Trailing Wild Card Search

Contents of this Page

® Leading and Trailing Wild Card Implementation Details
o Algorithm:
© Example of use:
0 Associated JUnits:

Leading and Trailing Wild Card Implementation Details

Equivalent to "*term* This should be a very poor performing search and is not recommended especially when entering a phrase.

Algorithm:
The Leading and Trailing Wild Card search has the following characteristics:

This search is case in-sensitive.

It only searches on the property value and literal property value.

A leading and trailing wild card is added to each token in the search text.

The literal property part (without the wild cards) of the query is boosted by 50. This gives a literal match priority.
Parsing is done with the following analyzers:

© propertyValue - Uses our custom standard analyzer that has no stop words.
o literal_propertyValue - Uses our custom literal analyzer. This literal analyzer uses Lucene's WhitespaceTokenizer with Lucene's
LowerCaseFilter.

Example of use:

The following examples are based on the Automobiles coding scheme.
Example 1:

Search string: hevy

Lucene query: +propertyValue:*hevy* literal_propertyValue:hevy"50.0
Result: 1 result

® entity code: Chevy
® entity description: Chevrolet

Example 2:
Search string: hev

Lucene query: +propertyValue:*hev* literal_propertyValue:hev~50.0
Result: 1 result

® entity code: Chevy
® entity description: Chevrolet

Associated JUnits:

Junits can be found here: https://github.com/lexevs/lexevs/blob/master/IbTest/src/test/java/org/LexGrid/LexBIG/Impl/function/query/lucene
IsearchAlgorithms/TestLeadingAndTrailingWildcard.java


https://github.com/lexevs/lexevs/blob/master/lbTest/src/test/java/org/LexGrid/LexBIG/Impl/function/query/lucene/searchAlgorithms/TestLeadingAndTrailingWildcard.java
https://github.com/lexevs/lexevs/blob/master/lbTest/src/test/java/org/LexGrid/LexBIG/Impl/function/query/lucene/searchAlgorithms/TestLeadingAndTrailingWildcard.java

	Leading and Trailing Wild Card Search

