LexEVS 6.x Loader Implementation

Contents of this Page

Overview
Where to Start
Interfaces and Abstract classes to Extend
Implementation Example and Discussion
© Call the Super Constructor
Define the Extension
Validate the Source (Optional)
Implement the Abstract Method doLoad() (and possibly override the load() method)
Less Structure Beyond the Loader, BaseLoader Implementation and Extension
Tasks to be Accomplished
Mapping Entry Point
Read the Data to Source Model Objects
Map the Model Objects to LexGrid Model Objects
Pass Control Back to BaseLoader

O O O O O 0O O 0O O

LexEVS 6.x Programmers Links

® Programmer's Guide Main Page
O LexEVS API
© LexEVS 6.0 CTS2 API
© LexEVS 6.x CTS2 API Quick Start
® Value Set and Pick List Guide
® LexEVS 6.0 Main Page
® LexEVS Current Release

Overview

LexEVS provides classes to extend and interfaces to implement that help provide the framework for in-memory transformations of source files into the
LexGrid model. If the target source is large, batch loading may well be a better solution, in which case the Loader Framework built on Spring Batch may be
a better match for source loading. On the other hand, users may find the standard LexEVS loader interface a little easier to implement.

Writing loaders requires both programming skill and content expertise. Mapping source into the LexGrid data model requires knowledge of how the source
defines entities, relationships between entities and any qualifiers or properties for these elements. However, some study of other presentations of that

content, and documentation of the source files, can help most programmers make informed choices as to that mapping. Examples of source mapped into
LexGrid are documented here.

Where to Start
The LexEVS API programming environment is currently available in a github repository here: LexEVS Source Code

Cloning this repository produces a large set of eclipse friendly projects that can be imported into Eclipse or Intellij.

Interfaces and Abstract classes to Extend

Loader interfaces must extend the interface org.LexGrid.LexBIG.Extensions.Load.Loader from the Ibinterfaces project and implementations of your new
interface must also extend the abstract class org.LexGrid.LexBIG.Impl.loaders.BaseLoader in the Ibimpl project. Let's take as an example the MedDRA
loader interfaces and classes as it is a relatively simple implementation.

The extension of Loader is org.LexGrid.LexBIG.Extensions.Load.MedDRA_Loader.java and is found in the Ibinterfaces project.

Extend Loader

public interface MedDRA Loader extends Loader {
public final static String name = "MedDRALoader";
public final static String description = "This | oader | oads MedDRA files into the LexGid format.";

The implementation of MedDRA_Loader (and extension of BaseLoader) is org.LexGrid.LexBIG.Impl.loaders.MedDRALoaderlmpl.

https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+API+Programmer%27s+Guide
https://wiki.nci.nih.gov/display/LexEVS/1+-+LexEVS+6.x+API
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.0+CTS2+API
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+CTS2+API+Quick+Start
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.x+Value+Set+and+Pick+List+Definition+Guide
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+6.0
https://wiki.nci.nih.gov/display/LexEVS/LexEVS
https://wiki.nci.nih.gov/x/5pC4Aw
https://github.com/lexevs/lexevs.git

Extension of Baseloader and Implementation of MedDRA_Loader

public class MedDRALoader| nmpl extends BaselLoader inplements MedDRA _Loader

This defines load and validation methods and creates initialized class attributes name and description. The name of this interface will eventually be used
by the LexEVS extension function to call the loader into existence. (Loaders are always extensions to LexEVS).

Implementation Example and Discussion

Call the Super Constructor

Looking at the implementation of this interface in Ibimpl, org.LexGrid.LexBIG.Impl.loaders.MedDRALoaderImpl, notice that implementation is kept relatively
clean thanks the fact that much of the mechanism of loading into LexEVS is taken care of under the covers by the BaselLoader class. MedDRALoaderImpl
creates a constructor that always calls the BaselLoader constructor, then prevents the use of manifests. (If you wish you may choose to allow manifest
use, since it allows load time manipulation of coding scheme metadata. Often source files do not provide all that needs to be known about the source. A
manifest file allows values that may not be present in the source such as copyrights, authoring information, version definition and formal coding scheme
name to be added to the load.)

Loader Constructor

publ i ¢ MedDRALoader I npl () {
super () ;
t hi s. set DoAppl yPost LoadMani fest (f al se);

Preventing the use of a manifest is not typical loader behavior.

Define the Extension

The buildExtensionDescription method provides a background method for the registration of this loader to take place within LexEVS. It should be created
the same way for each loader.

Extension definition

@verride
prot ected ExtensionDescription buil dExt ensi onDescri ption(){
Ext ensi onDescription tenp = new Extensi onDescription();
t enp. set Ext ensi onBased ass(MedDRALoader | npl . cl ass. getInterfaces()[0].getNane());
t enp. set Ext ensi onCl ass(MedDRALoader | npl . cl ass. get Nane()) ;
tenp. set Descri pti on(description);
t enp. set Nane(nane) ;
tenp. set Versi on(get MedDRAVer si on());
return tenp;

Validate the Source (Optional)

The validate method is not always implemented, but can and should be when a mechanism exists to insure that this is a correctly structured version of the
source. When source is XML formatted and has a schema or dtd document commonly available for validation, this is a relatively easy process. However
any free text files that do not have any associated java-based validation API, would rely on the developer to create validation functions. The validation
method is not required to create a loader for LeXEVS.

Validate the Source

@verride
public void validate(URl sourcebDir, int validationLevel) throws LBParaneterException {

Pass in the URI for the path to the source file and, if desired, provide an integer value for a level of validation for this source. (l.e. what level of errors or
issues can this load live with. This assumes a very detailed validation of source)

Implement the Abstract Method doLoad() (and possibly override the load() method)

The developer could at this point implement only doLoad by mapping content to a coding scheme object before pass control over to BaseLoader which will
call the doLoad method and set default load options in its load method and kick off the processes to persist a coding scheme object to the database. The
other option is to implement doLoad and override the load method which sets up end user option choices for the loader. Most loaders implement the load
method, customizing load options to provide to the end user. In the case of the MedDRA loader, a CUI load option is provided to the end user.

Load Kickoff Implementation in doLoad

@verride

protected URNVersionPair[] doLoad() throws Exception{
LgMessageDi rector| F messages = new Cachi ngMessageDi rector|npl (this. get MessageDirector());
MedDRA2LGVAI n nai nTxf m = new MedDRA2LGMWAI n() ;
/1 Set the source for the CU file when using the GU
i f (UMLSCUl Source == null){

UMLSCUI Source = this.getOptions().getURl Opti on(UVMLSCUl _FI LE_OPTI ON) . get Opti onVal ue();
}
Codi ngSchenme codi ngSchenme = mai nTxf m map(UMLSCUI Sour ce, this. get ResourceUri(), this.
get MessageDirector());

i f(codingSchene !'= null){
messages. i nfo(" Conpl et ed mappi ng. Now saving to database");
t hi s. per si st Codi ngSchenmeToDat abase(codi ngSchene) ;

messages. i nfo("Saved to database. Now constructing version pairs");
return this.construct VersionPairsFronCodi ngSchenmes(codi ngSchene) ;

return null;

This allows the BaselLoader functions to access the results of the load of the MedDRA source file into a LexEVS coding scheme object.

Override the load Method

@verride
public void load(URl wuri, URI cuiUi, boolean stopOnErrors, boolean async) throws LBParaneter Exception,
LBl nvocat i onExcepti on {
this. get Options(). getBool eanOpti on(FAI L_ON ERROR_OPTI ON) . set Opti onVal ue(st opOnErrors);
this. get Options(). get Bool eanOpti on(ASYNC_OPTI ON) . set Opt i onVal ue(async);
this.getOptions().getUR Option(UMLSCUI _FILE_OPTION). set Opti onVal ue(cui Uri);
UMLSCUI Source = cui Uri;
this.load(uri);

This method adds a UMLS CUI source file option for the end user to load as a supplement to the regular MedDRA load.

Less Structure Beyond the Loader, BaseLoader Implementation and Extension
Beyond these methods, the structuring of code is largely and necessarily left up to the developer. However a few common patterns are fairly consistent in

this implementation. Generally speaking, there is a central mapping class where the coding scheme creation is kicked off. ~Other classes, when
necessary, are supportive to this central class.

Tasks to be Accomplished

These classes are generally classified by those that are responsible for either reading a source file or accessing an API that reads the file for you and
those that map objects created from that file into LexEVS coding scheme metadata, entity and relationship objects.

In summary:
® Read source

® Map to objects related to source structure
® Map from source structure objects to LexEVS coding scheme object

Mapping Entry Point

In the IbConverter project the edu.mayo.informatics.lexgrid.convert.directConversions.medDRA package contains the classes that do much of the work of
the MedDRA load into LexGrid. edu.mayo.informatics.lexgrid.convert.directConversions.medDRA.MedDRA2LGMain provides a central kickoff point with
some methods that can be wrapped for load and validation responsibilities down further up the execution chain.

Main Entry Point to Loader Code

public class MedDRA2LGWAI n {

/I providing paraneters for the source directory, the UMLS CU file and a | oggi ng object from LexEVS
public Codi ngSchene map(URI cui Uri, URl sourceDir, LgMessageDirectorlF | g_nmessages)

//Val idate choice for the MedDRA source only
private bool ean vali dateSourceDir(URl sourceDir)

Read the Data to Source Model Objects

This package also contains edu.mayo.informatics.lexgrid.convert.directConversions.medDRA.MedDRAMapToLexGrid with a readMedDRAFile method
that reads from a CSV file and persists it to objects defined in package edu.mayo.informatics.lexgrid.convert.directConversions.medDRA.Data. While this
data package defines beans that model the content of lines read from the CSV file, it also organizes them into structures that are easier for the mapping
code to use. The individual manner of implementation is left up to the developer but this is a good example of how a third party library was used to process
the file and how the resulting objects were stored in a data structure that's easy for the mapping code to consume.

Read the Source File

public void readMedDRAFi | es() {
String input;

for(int i=0; i < meddraMetaData.length; i++){
i nput = nedDRASour ceDir.getPath() + neddraMetaDatali].filenane();
try {

Fi | eReader fil eReader = new Fil eReader (i nput);

CSVReader reader = new CSVReader (fil eReader, '$');

Col umPosi ti onMappi ngSt r at egy<Dat abaseRecord> strat = new
Col umPosi ti onMappi ngSt r at egy<Dat abaseRecor d>() ;

strat.set Type(nmeddraMet aData[i].cl assnanme());

String[] colums = getFiel ds(neddraMetabDatali].classnane());

strat . set Col uimMappi ng(col ums);

CsvToBean<Dat abaseRecor d> csv = new CsvToBean<Dat abaseRecor d>();
Li st <Dat abaseRecord> list = csv.parse(strat, reader);
meddr aDat abase. add(neddr aMet aDat a[i] . tabl enane(), list);
} catch (Fil eNot FoundException e) {
messages_. error ("MedDRA input file nmissing.", e);
} catch (Exception e) {
nmessages_.error("Failed to read MedDRA files.");

}

CSVReader is a third party CSV reader.

Map the Model Objects to LexGrid Model Objects

Once the source is read and persisted to the appropriate model objects the MedDRAMapToLexGrid class can map these data objects derived from the
MedDRA source into a complete coding scheme object.

Map to Coding Scheme

public void mapToLexG i d(Codi ngSchene cscl ass) {
try {
| oadCodi ngSchene(cscl ass) ;
| oadConcept s(cscl ass);
| oadRel ati ons(cscl ass);
} catch (Exception e) {
nessages_.error("Failed to nap MedDRA data to LexEVS.");

}

messages_. i nfo(" Mappi ng conpl eted, returning to | oader");

Pass Control Back to BaseLoader

The tasks are to read the file into some kind of logical model or bean class object, organize these objects or make them available to be mapped into
LexEVS objects, tie all objects together as a coding scheme, and pass this potentially large coding scheme object to the LexEVS BaselLoader to be
persisted to the database. Back up the execution chain in MeDRALoaderImpl the doLoad method first calls the mapping method of the conversion class M
edDRA2LGMain to get the reading and mapping done, then passes control of the resulting coding scheme to BaselLoader by calling this.
persistCodingSchemeToDatabase method on the BaselLoader super class.

Persistance is handled in the BaseLoader

i f(codingScheme !'= null){
nessages. i nfo(" Conpl et ed mappi ng. Now saving to database");
t hi s. per si st Codi ngSchenmeToDat abase(codi ngSchene) ;

nessages. i nfo("Saved to database. Now constructing version pairs");
return this.construct VersionPairsFronCodi ngSchenes(codi ngSchene) ;

While it's not required, most loaders have been written in this way.

	LexEVS 6.x Loader Implementation

